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As advanced mass spectrometry- (MS-) based hepcidin analysis offers to overcome the limitations in analytical methods using
antihepcidin, further improvement of MS detection sensitivity for the peptide may enhance the diagnostic value of the hepcidin
for various iron-related disorders. Here, improved MS detection sensitivity of hepcidin has been achieved by reducing the
disulfide bonds in hepcidin, by which proton accessibility increased, compared to the intact hepcidin peptide. Comparing the
ionization efficiencies of reduced and nonreduced forms of hepcidin, the reduced form of hepcidin showed an increase in
ionization efficiency more than two times compared to the nonreduced form of hepcidin. We also demonstrated improved
detection sensitivity of the peptide in SRM assay. We observed a significant improvement of detection sensitivity at the triple-
quadrupole MS platform, that the ionization efficiency increased at least twice more, and that the limit of detection (LOD)
increased more than 10 times in the concentration ranges of 1fmol to 10 fmol of hepcidin. In this study, we demonstrated the
usefulness of the hepcidin modification for overall enhancement of the ionization efficiencies of the hepcidin peptide in the MS-

based quantitative measurement assay.

1. Introduction

Hepcidin, a folded 25-residue peptide hormone stabilized by
four disulfide bonds, plays an important role in the regulation
of iron metabolism in mammals, such as digestive iron ab-
sorption and macrophage iron recycling [1-3]. Although
anemia of inflammation and chronic kidney diseases are
developed in various clinical settings, the most direct causes of
the diseases are associated with the destruction of homeostasis
of iron metabolism [4-6]. Hence, hepcidin has been con-
sidered as an important clinical utility for the diagnosis and
management of a wide range of iron-related disorders [7-10].
Quantitative immunoassays based on the use of antihepcidin
antibodies have been developed for quantitative assessment of
hepcidin concentrations in the patient’s serum and urine

[11-15]. However, the antibody-based immunoassays have
the limitations because it is interfered by N-terminal deletion
forms as well as isoforms such as prohepcidin and pre-
prohepcidin [16, 17]. Recent advances in mass spectrometry-
(MS-) based quantitative assays (e.g., SRM assay) for hepcidin
complement the immunoassays by overcoming hepcidin
(25-amino acids) detection specificity, reproducibility, and
accuracy [18-22]. In addition, absolute concentrations of hep-
cidin can be measured with synthetic hepcidin labeled with
heavy stable isotopes in SRM assay [23, 24].

Further improvement of MS detection sensitivity for hep-
cidin would increase its clinical utility. Peptide MS ionization
capability is mainly dependent on its amino acid composition,
such as hydrophilicity or hydrophobicity, presence or absence
of a chemical modification, and protonation capability.
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Intradisulfide bonds of hepcidin interrupt the proton acces-
sibility to the peptide, which decreases the peptide ionization
efficiency in MS analysis [25, 26]. Reduction of disulfide bonds
unfolds the protein/peptide structure and allows more proton
accessibility to the peptides for protonation, which increases
the peptide charge states.

In this study, we improved the ionization efliciency of
intact hepcidin by reducing intradisulfide bonds in hepcidin.
To validate the sensitivity enhancement of reduced form of
hepcidin, we performed SRM assay with optimized peptide
transitions and determined its LOD, thus validating the
method for measurement of hepcidin.

2. Materials and Methods

2.1. Materials. Human hepcidin-25 peptide (DTHFPI-
CIFCCGCCHRSKCGMCCKT, SMLI1118, Sigma-Aldrich,
purify >95%, 4 disulfide bonds; C7-C23, C10-C13, C11-19,
and C14-C22), stable isotope- (SI-) labeled human hepcidin-25
peptide, (['*Co/'*N]Phe4,9,['*N]Gly12, PLP-3405-v, Peptide
Institute Inc., Osaka, Japan), dithiothreitol (DTT), iodoaceta-
mide (IAA), and ammonium bicarbonate were purchased from
Sigma-Aldrich (St. Louis, MO, USA). C18 spin column (Cat
no. #89870) was purchased from Pierce (Rockford, IL, USA).
HPLC-grade water and acetonitrile were purchased from
Burdick & Jackson (Philipsburg, NJ, USA).

2.2. Reduction and Alkylation of Hepcidin. For reducing the
intradisulfide bonds in hepcidin peptide, the peptide was
incubated with 10mM DTT in 50 mM ammonium bi-
carbonate (pH 7.5) for 30 min at 37°C, and cysteine alkyl-
ation was performed with 55 mM IAA for 30 min at RT in
dark. Peptides were purified using a C18 spin column prior
to LC-MS/MS analysis.

2.3. Extraction of Serum Hepcidin Peptides. Two 100 uL of
human serum samples containing 50 pmol of SI-hepcidin
were prepared. Hepcidin peptides were extracted with 90%
ACN in 0.1% formic acid in water after incubation for
20min at 4°C. After drying the supernatants, one of the
extracted hepcidin peptide samples was reduced and alky-
lated with DTT and IAA. Hepcidin peptides were desalted
prior to the SRM assay, and only 1/10 of desalted sample was
used for analysis. The serum hepcidin was extracted from the
serial serum samples (100, 200, 400, and 800uL) with
100 pmol of SI-hepcidin spiked-in.

2.4. LC-MS/MS Analysis. Both intact and modified hepcidin
peptides were analyzed using Q Exactive™ mass spectrometer
(Thermo Fisher Scientific Inc., Germany) interfaced with
easy-nLC1000 (Thermo Fisher Scientific, Waltham, MA,
USA) as described previously [27]. Equal amount hepcidin
peptides were loaded onto a precolumn (PepMap, 75 ym ID
pms2cm 3 ym, 164535, Thermo Fisher Scientific, USA) and
separated using an analytic column (PepMap, 75 ym ID*50 cm
3 um, ES803, Thermo Fisher Scientific, USA). The sample was
eluted by solvent A (0.1% formic acid in water) and solvent B
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(0.1% formic acid in acetonitrile). The mobile phase gradient
parameter was set follow as: time (B%) 0~3 min (5% solvent B),
50 (40%), 55 (80%), 57 (80%), 60 (5%), and 70 (5%) at a flow
rate of 300 nL/min. LC-MS/MS data were acquired on a mass
resolution of 70K at 200m/z using Q Exactive mass spec-
trometer. The instrument was operated in data-dependent
mode; top 10 intensity precursor ions were selected for sub-
sequent MS/MS analysis by HCD with a normalized collision
energy (NCE) value of 27 and, resolution of MS/MS was set as
17K at 200 m/z.

2.5. SRM Analysis. SRM analysis was performed using an
Agilent 6490 triple quadrupole mass spectrometer (Agilent
Technologies, USA) interfaced with an Agilent 1290 In-
finity System (Agilent Technologies, USA). Peptides were
eluted by reverse-phase UPLC on a Zorbax Eclispse Plus
C18 column (150 x2.1 mm, 1.8 um particle size, Agilent
Technologies, USA) at 0.25mL/min over a 30 min ACN
gradient. The column temperature was maintained at 50°C.
The gradient was set as follows using mobile phases A (0.1%
formic acid in water) and B (0.1% formic acid and 5% water
in ACN): linear 0-40% B for 20 min, 40~90% B for
20.1 min, isocratic 90% B for 5min, linear 90-0% B for
0.1 min, and isocratic 0% B for 5 min. The AJS ESI voltage
was set as 3500V with a gas flow of 12L/min, source
temperature of 250°C, and fragmentor voltage of 5. Each
scan was collected by dwell time of 20 ms.

3. Results

3.1. Characterization of the Modified Hepcidin. To improve
MS detection sensitivity of hepcidin, the disulfide bonds of
intact hepcidin peptide (hepcidin-I) was reduced, and the
resulting free thiols were subsequently modified by alkyl-
ation to linearize the peptide (hepcidin-M) as described in
Materials and Methods. To verify the thiol modification of
hepcidin-I, a mixture of equal amounts (10 pmol) of both
peptides were analyzed by LC-MS/MS. As shown in Figure 1,
a series of y ions that are corresponding to peptide fragments
of nonreduced cysteine residues are observed (Figure 1(a)),
whereas the MS/MS spectrum of hepcidin-M shows a series
of b and y ions that are matched to the reduced forms of
cysteine residues, indicating that all the disulfide bonds were
reduced and alkylated (Figure 1(b)).

MS ionization efficiencies of both peptides were ver-
ified by comparing their signal intensities at different
charge states of Hepcidin-I (m/z, 2787.0258 Da) and
hepcidin-M (m/z, 3251.2602 Da). This experiment was
conducted to select the most intense signal intensities of
peptide charge states for the purpose of the hepcidin
LC/MS assay development. Figure 2 shows extracted ion
chromatograms (XIC) for relative abundances of different
charge states of Hepcidin-I (z=2, 3, 4, and 5) (Figure 2(a)) and
of Hepcidin-M (z=3, 4, 5, and 6) (Figure 2(b)). Among these
charge states, it appears that the +4 charge state of Hepcidin-I
shows the highest peptide signal intensity, whereas hepcidin-
M shows the most intense peptide signal when it is in the +5
charge state. Hepcidin-M tends to give more intense signal
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FIGURE 1: MS/MS spectrum of hepcidin-I and hepcidin-M. (a) is the MS2 spectrum for 558.6 m/z (z=>5) derived from the hepcidin-I, and
(b) is for 651.8 m/z (z=5) derived from the hepcidin-M. The cysteine (C) amino acid sequence of red color indicates disulfide bond and

carbamidomethylation position in (a) and (b).

intensities with higher charge states, indicating that its line-
arization may increase the proton accessibility. The reduced
form of hepcidin decreases the peptide hydrophobicity, which
exhibits its reversed-phase HPLC elution time of about 4
minutes faster than hepcidin-I in the given HPLC
condition.

3.2. Ionization Efficiency of Hepcidin-M. Typically, ionization
efficiency of peptides under ESI condition is affected by the
proton accessibility and hydrophobicity of peptide analytes

[28, 29]. As shown in Figure 2, cysteine reduction and alkylation
of hepcidin peptide modify the property such as reduction of
hydrophobicity and leading to increased proton accessibility of
native form of hepcidin peptide. To quantitatively compare
ionization efficiencies of both hepcidin related to their charge
states and relative ionization (RI) of the peptide at each charge
state is calculated by the following equation: RI (n) = XIC area of
Hepcidin -M"™*/XIC area of Hepcidin -I"* (1 = 2 ~ 6), where n is
a charge state, and XIC area is obtained from ESI mass spec-
trometry analysis (Q Exactive).
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FIGURE 2: Extracted ion chromatograms of hepcidin-I and hepcidin-M according to charge state. (a) A hepcidin-I. (b) A hepcidin-M.

TaBLE 1: Relative ionization value of hepcidin-M to hepcidin-I according to charge state.

Charge state Hepcidin-I Hepcidin-M Relative ionization
m/z Area m/z Area value (hepcidin-M/I)
2 1394.52 9.7E+07 1626.64 3.8E+08 3.92
3 930.02 1.3E+09 1084.76 3.0E+09 2.34
4 697.76 9.0E + 09 813.82 8.4E+ 09 0.93
5 558.41 8.7E+09 651.26 2.3E+10 2.69
6 465.51 8.9E+07 542.88 3.7E+09 41.76
Sum of area 1.9E+10 39E+10 2.03

As shown in Table 1, the relative ionization efficiency of
hepcidin-M is higher than hepcidin-I (2-fold to as high as
40-fold) in most of their charge states, except the +4 charge
states, indicating that the relative ionization efficiency of
hepcidin enhanced by the derivatization.

3.3. SRM Assay Optimization. To further demonstrate
quantitative assessment of hepcidin by a targeted MS ap-
proach, peptide transitions of hepcidin-I and hepcidin-M
were optimized for SRM assay using triple quadrupole mass
spectrometer (Agilent 6490 QQQ). “Full scan mode” was
performed to identify peptide precursor (MS') ions for both
hepcidin peptides. Similar charge state-dependent peptide
ionization was observed between the two MS platforms
(QQQ and Q Exactive). Both hepcidin-I and hepcidin-M
produced intense MS1 peptide signals when they were at +4
and +5, respectively (data not shown). To select the optimal
fragment (MS?) ions for both peptides, “product ion scan”
was performed by varying m/z having different charge states
and collision energy (Supplementary Materials Figure 1).
Although the hepcidin-I showed the highest signal intensity
of MS' ions at +4 charge state, the +5 charge state of MS1 of
the peptide generated more intense MS® ion intensities
(5.3x10E4 (y19""", at collision energy 15V) and 1.3 x 10E4
(y21"*", at 15 V)) than the +4 charge state peptide (1.2 x 10E4
(y1o™", at 25V) and 8x10E3 (y5;""", 25V)). The two

+++

highest y ions of hepcidin-M were 2.6 x10E5 (y;;

at 15V) and 1.6 x10E5 (y;6" ", at 15V) at the +5 charge
state. These MS” ions were selected for the SRM assay op-
timization. Further collision energy optimization was au-
tomatically selected using “Peptide Optimizer” software. The
optimized peptide transitions are summarized in Table 2.
To evaluate the detection sensitivity in SRM assay for
both hepcidin-I and hepcidin-M with optimized peptide
transition ions, three replicate analysis for both peptides
were conducted in the concentration ranges from 1 fmol to
Ipmol (1, 5, 10, 50, 100, and 500 fmol and 1 pmol) using
Agilent 6490 QQQ. Peptide transitions (peak area) were
calculated using Skyline (MaCcoss lab software) [30].
Among all the peptide transitions, the highest peptide
transition values were selected and the average value of three
replications was calculated. Quantitative linearity curves
(concentration vs calculated peak area ratios) for both
peptides are quantitatively linear. As shown in Figure 3(a),
R® values were obtained from each linear curve and esti-
mated for hepcidin-I and -M as 0.9991 and 0.9993, re-
spectively. At concentration of 50 and 100 fmol, peak area of
hepcidin-M (1.95 x 10° and 3.77 x 10°) is at least twice more
than that of hepcidin-I (9.00 x 10° and 1.86 x 10°). At lower
concentration, the peak area of 10, 50, and 100 fmol of
hepcidin-M were 6.31 x 10%, 1.16 x 10, and 3.36 x 10° and of
hepcidin-I were 3.90 x 107, 2.94x10% and 1.05x10°, sug-
gesting that the detection sensitivity of hepcidin-M is better
than hepcidin-I. The limit of detection (LOD) of each
peptide was determined by S/N (signal-to-noise ratio) value
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TABLE 2: A transition list for SRM assay of each of the hepcidin-I and -M containing precursor ion, product ion, and CE values.
Peptide sequence Precursor ion ~ Product ion = Dwell time  Collision energy =~ Fragment
DTHFPICIFCCGCCHRSKCGMCCKT 558.6 763.3 20 16 y213+
DTHFPICIFCCGCCHRSKCGMCCKT 558.6 693.3 20 14 yl93+
DTHFPIC#+IFC#C*GC#C+HRSKC*GMC#*C+KT 651.6 757.1 20 14 yl73Jr
DTHFPIC*IFC#CxGC*C+HRSKC+GMC#+C#KT 651.6 708.4 20 14 yl63+
Hepeidln-T: |y = 1:.9139x | 56285 (= p.9ohn) | |
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F1GURE 3: The graph shows the peak area for hepcidin amount ranging from 1 fmol to 1 pmol (1, 5, 10, 50, 100, and 500 fmol and 1 pmol). The
graph of hepcidin-I and -M were presented using 558.6 > 693.3 and 651.6 > 757.1 of transitions, respectively. (a) R2 of hepcidin-I and -M
were obtained by the equations of y = 1.9139x-56285 and y = 3.8228x-26727, respectively. (b) An enlarged graph of the red box portion in
(a), showing the peak area according to the amount of 1fmol to 50 fmol and S/N value of LOD for both hepcidin-I and hepcidin-M.

of 10 or more. As shown in Figure 3(b), the LODs of hepcidin-
Iand -M were 10 and 1 fmol, respectively. Hepcidin-I showed
the S/N value of 10 more (S/N: 69) at 100 fmol but showed 10
less at 10 and 50 fmol (data not shown), while hepcidin-M
showed the S/N value of greater than 10 at 1 fmol (S/N: 58).
These results also indicate that the LOD of hepcidin peptide
improved 10-fold after reduction and alkylation modification
in SRM assay optimization.

The improved hepcidin peptide detection sensitivity by the
reduction/alkylation modification was further verified with
human serum samples. Extracted serum hepcidin peptides
spiked with equal amounts of SI-hepcidin were quantitatively
measured by the SRM analysis. The results of the SRM analysis
showed that the relative peak ratio between the endogenous
hepcidin-M and SI-hepcidin-M was 0.01 (50 fmol of serum
hepcidin in the 10 4L of serum sample), whereas the relative
peak ratio for hepcidin-I could not be determined, indicating
that serum hepcidin was detected only with the reduced hep-
cidin form (Table 3). Endogenous hepcidin-I and hepcidin-M
levels were quantitatively measured in the serial serum samples
(100, 200, 400, and 800 L) with 100 pmol of SI-hepcidin spiked-
in. Equal of amount of SI-hepcidin (100 pmol) were spiked
into the serum samples (100 to 800 #L). Endogenous hepcidin-I
and -M levels were calculated based on the ratio between en-
dogenous- and SI-hepcidin showing the quantitative correlation
(Figure 4 and Supplementary Materials Figure 2).

4. Discussion

Hepcidin has shown to have an important clinical utility
for the diagnosis and management of a wide range of iron-
related disorders, the diagnostic value for various iron-
related disorders. Although many analytical methods
including antibody-based assays have been developed to
measure the hepcidin p level, quantitative assessment of
hepcidin using SRM-MS has emerged as a promising
quantitative technique to measure the hepcidin level owing
to the numerous advantages of mass spectrometry-based
analytical method. In order to improve the hepcidin de-
tection sensitivity SRM assay, we derivatized the intra-
disulfide bonds in hepcidin using the DTT and IAA reagents,
which are the most common chemical reactions to reduce
the disulfide bonds. In this experiment, modification of the
hepcidin showed a substantial increase in ionization effi-
ciency of more than 2 times. The LOD value is 10 times lower
than that of the conventional one by the modification.
Spiking of human serum samples with a known amount of
stable isotope-labeled synthetic hepcidin peptide allows
measurement of the corresponding hepcidin peptide present
in the serum sample.

In blood and urine, hepcidin is present as the form of
hepcidin-25 as well as in truncated form of hepcidin iso-
forms, hepcidin-20, and hepcidin-22 [31]. These truncated



TaBLE 3: Relative ratio of peak area between serum hepcidin-M and
SI-hepcidin-1.
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FIGURE 4: The graph shows correlation between serum amount (L)
and endogenous hepcidin (pmol). Hepcidin amount was calculated
using the peak area of SI-hepcidin (100 pmol) acquired from SRM
analysis.

hepcidin isoforms are mainly in the blood of patients with
sepsis-induced acute kidney failure; however, it is difficult to
detect because the amount of those hepcidin isoforms is
much less than that of hepcidin-25. Although biological
samples such as blood and urine are noninvasive sample
sources, collecting large quantities is still a burden on pa-
tients. Hence, we anticipate that hepcidin measurement
using the improved SRM assay may require an ample
amount of samples from patients than the current methods
of hepcidin measurement.

5. Conclusion

In this study, we demonstrate the developmental SRM assay for
hepcidin. By simply reducing disulfide bond in hepcidin,
ionization efficiency has been increased at least 2 folds more.
Modified hepcidin also has been shown that sensitivity in SRM
assay increased 10 folds more than unmodified form. We also
further demonstrated the improvement of serum hepcidin
peptide detection sensitivity by the reduction/alkylation mod-
ification and quantitative similarity with hepcidin-I in the SRM
assay. This study provides improved detection sensitivity for
hepcidin, which may increase its clinical utility for the diagnosis
and management of a wide range of iron-related disorders.
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Supplementary Materials

Supplementary 1. Figure 1: MS/MS spectra according to
different collision energy (CE) values. The red lettering in the
spectral figure represented the y fragment ion selected for
MRM assay. (a) and (b) are the MS/MS spectra of the 698.0
and 558.6 m/z derived from hepcidin-1. (c) and (d) are
MS/MS spectra of 543.0 and 651.8m/z derived from
hepcidin-M.

Supplementary 2. Figure 2: the graphs show the extracted ion
chromatography (EIC) of hepcidin-I (a) and hepcidin-M (b)
obtained from SRM assay using 800 uL of serum sample.
Each EIC shows the peak intensity of endogenous- and SI-
hepcidin (left) and also shows the peak intensity according
to transitions (right).
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