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Abstract

Motivation: Alternative splice site selection is inherently competitive and the probability of a given

splice site to be used also depends on the strength of neighboring sites. Here, we present a new

model named the competitive splice site model (COSSMO), which explicitly accounts for these

competitive effects and predicts the percent selected index (PSI) distribution over any number of

putative splice sites. We model an alternative splicing event as the choice of a 30 acceptor site

conditional on a fixed upstream 50 donor site or the choice of a 50 donor site conditional on a fixed

30 acceptor site. We build four different architectures that use convolutional layers, communication

layers, long short-term memory and residual networks, respectively, to learn relevant motifs from

sequence alone. We also construct a new dataset from genome annotations and RNA-Seq read

data that we use to train our model.

Results: COSSMO is able to predict the most frequently used splice site with an accuracy of 70%

on unseen test data, and achieve an R2 of 0.6 in modeling the PSI distribution. We visualize the

motifs that COSSMO learns from sequence and show that COSSMO recognizes the consensus

splice site sequences and many known splicing factors with high specificity.

Availability and implementation: Model predictions, our training dataset, and code are available

from http://cossmo.genes.toronto.edu.

Contact: contact@deepgenomics.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA splicing has long been known as a main driver of transcrip-

tional diversity and a large number of regulatory mechanisms have

been described. More recently, efforts have shifted from describing

isolated regulatory mechanisms to building computational models,

known as splicing codes (Wang and Burge, 2008), which can predict

splice site usage from sequence directly or from a library of hand-

engineered, sequence-derived features. Mis-splicing is also one of the

leading mechanisms for genetic disease (Scotti and Swanson, 2016 ),

which creates an important need for algorithms to accurately predict

splicing in-silico, for example, to score the splicing effect of variants

or design splicing-modulating therapies.

The first practical splicing code was introduced by Barash et al.

(2010) and predicted tissue differences of cassette splicing events

in mouse. Subsequent versions of the splicing code introduced a

Bayesian neural network and predicted absolute splicing levels

(Xiong et al., 2011). Since then, Bayesian neural networks

(Xiong et al., 2015) and deep neural networks (Leung et al., 2014)

have further improved on the state-of-art in predicting exon skipping.

These splicing codes have so far all modeled cassette splicing

events. Busch and Hertel (2015) presented a model that uses support

vector machines to predict whether an exon is constitutively spliced,

undergoes alternative 50 or 30 splice-site selection, or is an alternative

cassette-type exon. However, their model only predicts the class of

an exon, not the isoform or splice site utilization levels.

Splice sites are often seen as belonging to discrete categories such

as constitutive and alternative sites. However, these are functional

descriptors rather than properties of the splice site itself. For ex-

ample, a constitutive splice site may be close to a cryptic splice site

that is normally not recognized. However, a variant may activate

the cryptic site such that the previously constitutive splice site is now

alternatively used (Vaz-Drago et al., 2017). There are therefore two

aspects that may affect the utilization of a splice site: The inherent

strength of the splice site itself, determined by, for example, nearby
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binding motifs for splicing enhancers. But the utilization also

depends on the strength of neighboring splice sites that could be

used alternatively and compete with each other for recognition by

the spliceosome. We therefore believe it is necessary to model the

competitive aspect of splice site selection in addition to modeling the

splice site itself.

Another development in the field is the use of “deep learning” to

learn features from sequence directly rather than constructing fea-

tures by hand. Constructing feature sets by hand can be extremely

laborious and computational constraints may limit the size of the

dataset that can be used for training. Convolutional networks that

learn from sequence directly have already been used successfully in

learning transcription factor binding motifs (Alipanahi et al., 2015),

predicting the function of non-coding DNA (Quang and Xie, 2016)

and predicting a large number of epigenetic and transcriptional pro-

files (Kelley et al., 2018).

In this paper, we present a new splicing code that we call the com-

petitive splice site model (COSSMO). COSSMO is more general than

previous splicing models and is capable of predicting a usage distribu-

tion of multiple splice sites, conditional on a constitutive opposite site.

In particular, we can model the usage distribution of multiple alterna-

tive acceptor sites conditional on a constitutive donor site or vice versa.

We train two versions of this model, one for alternative acceptor

sites and one for alternative donor sites. Figure 1a shows an example

of an alternative acceptor event. In the case of alternative acceptors

we always condition on a constitutive donor site. In this example,

there are four alternatives, but the model can dynamically adapt to

any number of sites; we have experimented with as many as 100.

COSSMO uses these alternative sites along with the constitutive site

as input and predict a discrete probability distribution over the alter-

native sites indicating the frequency with which they are selected.

Figure 1b shows an analogous case of alternative donor selec-

tion, where multiple donor sites are selected amongst to be spliced

to a constitutive acceptor site.

2 Dataset construction

In this section, we describe how we constructed a genome-wide

dataset of quantified percent selected index (PSI) values of splicing

events from genome annotations and RNA-Seq data from the geno-

type-tissue expression project (GTEx) (Lonsdale et al., 2013). An

event, in this context, means a training example consisting of mul-

tiple putative splice sites that can be used alternatively. The PSI

value is the frequency with which each splice-site is selected versus

all other splice sites in the same event with PSI values for each event

summing up to one.

We create two datasets: one of alternative acceptor events condi-

tional on constitutive donor sites and one of alternative donor sites

conditional on constitutive acceptor sites.

We mine an initial set of splicing events from genome annota-

tions and then expand it with de-novo splicing events detected from

the aligned GTEx RNA-Seq data. We further augment this set with

non-splice sites. This is to increase the variability of features seen by

the model and to help train the model to discriminate between splice

and non-splice sites.

Each example in the alternative acceptor dataset consists of mul-

tiple putative acceptor splice sites and a constitutive donor splice site.

In the alternative donor dataset, each example consists of multiple pu-

tative donor splice sites and a constitutive acceptor splice site.

Following the construction of these events, we quantify the PSI

distribution for each example from RNA-Seq junction reads using

the Bayesian bootstrap estimation method from Xiong et al. (2016).

This allows us to quantify the uncertainty of our PSI values by esti-

mating a posterior distribution.

2.1 Genome annotations
We use the Gencode v19 annotations (Harrow et al., 2012) to con-

struct our initial dataset. We start with a dataset of all exon-exon

junctions by creating a training example for each annotated donor

site and adding all acceptor sites that splice to this donor to the

training example as alternative acceptors of type annotated.

Then we construct the initial alternative donor dataset analo-

gously by finding the set of donors that splice to each acceptor site.

Figure 2 shows histograms of the number of alternative accept-

ors per donor and alternative donors per acceptor, respectively. As

can be seen from the histogram, we do not only include splice sites

that are annotated as alternatively spliced but also constitutive

exons. We do this to learn a general model of splice site strength.

Summary statistics of the dataset are given in Table 1.

2.2 De-novo splice sites from gapped RNA-seq

alignments
Genome annotations provide us with an initial set of alternative

splicing events to form the core of our dataset. Next, we add

(a) (b)

Fig. 1. Illustration of alternative acceptor and donor events modeled by COSSMO

Fig. 2. Histogram showing the complexity of annotated splicing events. For

each annotated donor we count how many acceptors splice to it (left) and for

each annotated acceptor we count how many donor sites are spliced to it

(right)
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de-novo splice sites from the GTEx RNA-Seq data. We start by

aligning the GTEx RNA-Seq reads to the genome using the HISAT2

aligner (Kim et al., 2015). Next, we iterate through the dataset we

built in Section 2.1. For the alternative acceptor dataset we iterate

through all donor sites and for each site, we add all junction reads in

GTEx that use this site as one end of a gapped alignment. We then

add the other side of the gapped alignment as an alternative

acceptor to the example. The procedure for adding de-novo splice

sites to the alternative donor dataset is analogous: we iterate over

all acceptor sites, find junction reads that use that acceptor site as

one side of a gapped alignment and add the other end of the gap as

an alternative donor site.

Some filtering of those de-novo sites is necessary both because

the RNA splicing process itself is noisy and because sequencing and

alignment introduce their own biases and artifacts, which would

otherwise result in large numbers of low-certainty splice sites. We

only utilize de-novo sites that are observed in at least two tissues

from at least two subjects. This procedure results in a large expan-

sion of possible splice sites, adding an average of 3.74 de-novo splice

sites to each acceptor event, and 3.70 de-novo sites to each donor

event (Table 1).

2.3 Negative splice site examples
The above procedure gives us a dataset of high-confidence anno-

tated and de-novo splice sites. However, we supplement this dataset

with additional, verified, non-splice sites. This is done to increase

the amount of variation in the features when training the model. For

example, the core dinucleotides GU at the donor site and AG at the

acceptor site are almost always a necessary feature for splicing to

occur and will, therefore, be present in all examples of real splice

sites (apart from examples using the minor spliceosome, Turunen

et al., 2013). If we trained a splicing model only on true splice sites,

the model might learn to ignore the core dinucleotide motif since it

will not provide any signal to the model. However, if we add some

examples of non-splice sites to the dataset, then the model has an

opportunity to learn that the presence of a core dinucleotide motif is

necessary for recognition of the site. We call examples like this nega-

tive sites and we select them by sampling random locations from a

region that (when constructing an alternative acceptor dataset)

starts 20 nt downstream of the donor site and ends 300 nt down-

stream of the most distant alternative acceptor site.

Secondly, the genome also contains a large number of decoy

splice sites. These are sites that look very similar to real splice sites

and in many cases have a core dinucleotide motif but are neverthe-

less not used as splice sites. For example, they may lack other neces-

sary features such as a polypyrimidine tract or a branch point or are

adjacent to a silencer motif. These cases are also beneficial to include

in our training set because they help the model detect the more sub-

tle signals beyond the consensus sequence that are necessary for a

splice site to be recognized by the spliceosome. We sample decoy

splice sites using MaxEntScan (Yeo and Burge, 2004) to scan the in-

tron and exon for any sites that have a score >3.0. We then remove

from this set all sites that are either annotated as splice sites or if

there are any junction reads aligned to them in the GTEx RNA-Seq

data. The remaining sites are, therefore, locations that are assigned a

high score by MaxEntScan and look very similar to true splice sites

but for which there is no evidence that they are ever used as splice

sites from annotations or GTEx.

On average, each acceptor event contains 22.45 decoy sites and

61.44 negative sites. Each donor event has, on average, 11.88 decoy

sites and 56.61 negative sites (Table 1).

2.4 PSI estimation
After building the datasets of alternative acceptors and donors, we

quantify the frequency with which these sites are used. Our method

for estimating PSI values is based on counting the number of junc-

tion reads that are aligned to a splice site pair.

Assuming we are interested in a constitutive donor site with mul-

tiple alternative acceptor sites, we could obtain a naive PSI estimate by

counting the number of junction reads spanning from the donor to

each alternative acceptor and normalizing those values to obtain a

probability distribution. In practice, it is well-known that RNA-Seq

alignments exhibit many biases such as read stacks and other position-

al biases that make such naive estimates unreliable. Many methods

have been developed to ameliorate these issues and to obtain confi-

dence estimates of PSI values. We use the positional bootstrap method

by Xiong et al. (2016). This method estimates a non-parametric poster-

ior distribution of PSI using a Bayesian positional bootstrap procedure.

For the purposes of this paper, we do not focus on tissue differences in

splicing and instead investigate splicing regulation more generally.

Therefore, to estimate PSI from the GTEx RNA-Seq data, we pool the

reads from all GTEx samples to estimate an average PSI across all sub-

jects and tissues, excluding cancer tissues and cell lines. This means for

any biological replicates and different tissues we simply use all avail-

able reads at any given position for our PSI estimates.

3 Model

3.1 Motivation
The primary design goal of COSSMO is to construct a model that

can dynamically predict the relative utilization of any number of

competing putative splice sites. We achieve this by a network archi-

tecture that uses the same weights to score all splice sites and uses a

dynamic softmax function at the output to adjust the size of the out-

put layer to the number of alternative splice sites in the example.

For each putative splice site, the inputs to the model are DNA

and RNA sequences from 80 nt wide windows around the alterna-

tive splice sites and the paired constitutive splice site, as well as the

intron length (distance between acceptor and donor sites). The mod-

el’s output is a PSI estimate for each putative splice site.

We first present the acceptor model, which predicts the PSI of

multiple acceptor sites conditional on a constitutive donor site, but

the donor model is constructed completely analogously by swapping

acceptor and donor, as well as 30 and 50 everywhere.

Given a constitutive donor splice site const and K alternative ac-

ceptor splice sites alt1; alt2; . . . ; altK, COSSMO is a function f that

Table 1. Dataset statistics

Acceptor Donor

Number of events 173 164 169 650

Average number of annotated sites/event 1.158 1.184

Average number of de-novo sites/event 3.744 3.696

Average number of decoy sites/event 22.451 11.877

Average number of negative sites/event 61.443 56.612

Note: Each splicing event or training example consists of multiple putative

splice sites each belonging to one of four types. Annotated sites are found in

the Gencode v19 genome annotations. De-novo are not annotated but have

RNA-Seq support in GTEx. Decoy sites have a MaxEntScan score greater

than 3.0 but are not annotated and have no read support. Negative sites are

random genomic locations.
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predicts the probability of selecting the k-th splice site conditional

on the donor site,

p altkjaltk0 6¼k; const
� �

¼ fk alt1; . . . ; altK; constð Þ; k 2 1; . . . ;K: (1)

3.2 Features
All sequence features are represented as one-hot encoding using four

channels that represent the four possible nucleotides.

For each splice site, we extract the following sequence inputs:

Alternative DNA sequence: This is the pre-splicing sequence

from a 80nt window around the alternative acceptor site.

Constitutive DNA sequence: This is the pre-splicing sequence

from a 80nt window around the constitutive donor site (and thus

it is the same for all splice sites in the same event).

mRNA sequence: This is the spliced mRNA sequence obtained

by concatenating 40 bp of exonic sequence upstream of the

donor site and 40 nt of exonic sequence downstream from the

acceptor site.

To these sequence inputs, we add a single feature representing

the intron length, obtained by computing the distance between the

constitutive donor and alternative acceptor site and normalizing this

distance by the mean and SD of the length of an intron in the human

genome (Hong et al., 2006) to make it more numerically stable.

COSSMO consists of two primary components. A scoring net-

work that produces a scalar unnormalized score for a single splice

site and a softmax layer that normalizes scores from multiple scoring

networks.

The requirements for the scoring network are that it takes a sin-

gle splice site’s sequence as input and produces a single scalar score.

The output layer simply accepts the scalar scores as input, normal-

izes them and then outputs the predicted PSI distribution over the al-

ternative splice sites. The high-level architecture is illustrated in

Figure 3.

While the scoring network’s task is to predict a scalar score for

each alternative splice site, we also need an output layer that nor-

malizes those scores to obtain a valid probability distribution over

the splice sites. The output layer applies a softmax function to the

splice site strength score from the scoring network. The softmax

layer itself does not contain any variables, so it is compatible with

any number of alternative splice sites.

3.3 Scoring network
The scoring network takes inputs derived from one alternative splice

site and outputs an unnormalized strength score. Let si denote the

strength of the k-th alternative splice site such that

si ¼ S alti; constjhð Þ; (2)

where S denotes the scoring network and h represents the parame-

ters of the scoring network S. Importantly, the parameters h do not

depend on k but are shared between all splice sites.

We implement four different architectures for the scoring net-

work and evaluate their performance carefully. The simpler archi-

tectures we evaluate use scoring networks that are independent,

such that the competitive behavior of the model is achieved only

through the requirement that the PSIk; k 2 1; 2; . . . ;K sum to 1.

However, we also evaluate a number of architectures in which

we allow lateral connections between the alternative splice sites

within the same event. In particular, we utilize communication net-

works (Sukhbaatar et al., 2016) and LSTMs, which are described in

Sections 3.3.2–3.3.4, respectively.

3.3.1 Independent scoring networks

These types of networks take as input a set of splice site sequences

and predict a scalar unnormalized score as in Equation (2) without

any lateral connections to the other scoring networks. We use an

architecture in which we use a stack of multiple convolutional layers

on each of the input sequences. The outputs of each stack are con-

catenated with the intron length feature and followed by multiple

fully connected layers.

Figure 4c shows the architecture of the independent convolution-

al scoring network. We use three columns of stacked convolutions

with independent parameters that each use one of the three sequence

windows described in Section 3.2 as input. A convolution module

contains the convolutional layer itself, followed by a ReLU non-

linearity, and a batch-normalization layer (Ioffe and Szegedy, 2015).

We do not use pooling, because some filters, like the core splice site

motif, can be highly sensitive to the precise location and are not in-

variant to shifts.

Following any number of convolution modules, the final filter-

maps from the three convolution columns are flattened and con-

catenated with the intron length feature. These activations are the

input to the following sequence of fully connected modules, each

consisting of a fully connected layer, a ReLU function and a batch-

normalization layer.

The final fully connected module, as in all other architectures,

has an output size of one to connect to the softmax output layer.

3.3.2 Communication networks

When the scoring networks for competing splice sites are independ-

ent, they can only interact linearly through the softmax layer in the

output network. We use an approach that is similar to

Communication networks (Sukhbaatar et al., 2016) to model more

complicated interactions between the splice sites, which we adapt to

convolutional layers.

In our version of communication networks, a convolutional layer

uses two sets of filters: one which operates on the current splice site

and one which operates on a shared buffer that contains the average

inputs of all splice sites. Each splice site’s consecutive hidden layer then

takes both the shared communication buffer’s activations and the acti-

vations from the splice site’s own previous hidden layer as input.

We apply communication to the convolutional layers in the fol-

lowing way: the output of a convolution layer with communication

Fig. 3. COSSMO architecture. A score is computed for each putative splice

site separately using identical sub-networks with weight sharing. The scores

are then normalized with a softmax layer, allowing the number of splice sites

to vary
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for a given splice site k is the sum of a global bias term, the response

of a filter to the k-th input and the response of a second set of filters

to the inputs averaged across all splice sites ~k ¼ 1; . . . ;K.

The output yk;g;j for splice site k, output filter g at position j is

yk;g;j ¼ bg þ
XF

f¼1

Xl

i¼1

wg;f ;ixk;f ;jþi þ vg;f ;i
1

K

XK

k0¼1

xk0 ;f ;jþi

 !
; (3)

where bg is the bias of the g-th filter, l is the filter width, wg;f ;i is

the filter value of the g-th filter to the f-th channel at position i,

xk;f ;jþi is the input value of splice site k in the f-th channel at

the jþ i-th position, vf ;i is the weight of the g-th communication

filter to the f-th channel, at position i, and 1
K

PK
k0¼1 xk0 ;f ;jþi is the in-

put averaged across all splice sites in channel f at the jþ i-th

position.

Figure 4a further illustrates the communication network

concept.

3.3.3 Output LSTM

Communication networks are one possibility for modeling the

interaction between splice sites. However, an alternative that

explicitly takes the ordering of the splice sites into account are

long short-term memory (LSTM) networks (Hochreiter and

Schmidhuber, 1997). LSTM networks are a type of recurrent

neural network architecture, which uses memory cells with gates

that control the flow of information and can be learned by

backpropagation.

LSTMs can be used on any kind of sequential or time-series data

such as strings of words in machine translation or frames of speech

Fig. 4. Model architectures. (a) Convolutional layer with communication: This is a variant of the typical 1-D convolutional layer in case we apply a convolution to

multiple sequences such as a set of alternative splice site. For a given sequence k ¼ 1; . . . ;K , the output of this layer is the sum of a bias term, the filter responses

to the sequence k, and the responses to a second set of filters applied to the average of all inputs across k. (b) Architecture of our bidirectional LSTM Model:

Features for splice site k are extracted from the DNA/RNA sequences using a series of convolutional modules. The filtermaps for the different sequences are con-

catenated with the intron length feature. The concatenated features are then further processed by several fully connected modules and two LSTM cells. The for-

ward cell is connected to splice site k – 1 and the backwards cell is connected to splice site kþ1. (c) Independent convolutional scoring network: Scoring

networks consist of several convolutional layers followed by fully connected layers and are not laterally connected
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recordings. For the purpose of alternative splicing prediction, we

apply LSTMs to the sequence of splice sites.

We implement a hybrid architecture in which we keep the lower

convolutional layers from the independent scoring networks

(Section 3.3.1) and replace the model’s fully connected layers with a

bidirectional LSTM which consists of one LSTM running from 30 to

50 and the other one from 50 to 30.

Figure 4b shows the architecture we have chosen. As in the

independent scoring network, three different sequence windows

from each splice site are first processed by a series of 1 D convolu-

tional modules before being concatenated with the intron length

and are further passed through several fully connected modules.

However, the signal from splice site k is now further processed

by two LSTM cells, which will connect to the adjacent splice sites

k – 1 and kþ1, allowing for propagation of information between

them.

3.3.4 Resnet 1 LSTM

Resnets (He et al., 2015) are a class of models that enable training

neural networks that are much deeper than previously possible by

explicitly reformulating the layers as learning residual functions

with reference to the layer inputs. Rather than learning a mapping

H(x) directly, a resnet implements the residual mapping

F xð Þ ¼ H xð Þ � x. The desired mapping H(x) can then be reformu-

lated as F xð Þ þ x. In practice, resnets add shortcut connections that

skip one or several layers. These shortcut connections can be added

almost anywhere; for example, around convolutional or fully con-

nected layers.

In our implementation, we replace the convolutional layers from

the LSTM model (Section 3.3.3) with the Resnet-26 model (He

et al., 2015), while keeping the higher level fully connected layers

and LSTM the same. Table 2 shows the parameters of the Resnet-26

architecture.

4 Results

4.1 Genome-wide performance
We trained each of the four models presented above on both our ac-

ceptor and donor datasets. We use 5-fold cross-validation by split-

ting our datasets according to the following method: using a

transcript database, we start with a set of intervals that each span

two consecutive genes initially. Then we iteratively merge all regions

that are <250 nt apart until merging is no longer possible. This

results in a set of 175 distinct genomic regions. We randomly split

the resulting genomic regions into 5-folds for cross-validation. Each

fold uses 135 regions for training, 5 regions for validation and 35

regions as the test set. When training each fold, we use the validation

set for early stopping and hyperparameter optimization. This pro-

cedure results in more balanced splits than splitting by entire chro-

mosomes, which have very different lengths.

Figure 5 plots the cross-entropy error over time during training.

It is evident that the LSTM and Resnet models are able to fit the

training data significantly better and achieve a lower final training

loss.

We compute the accuracy, loss and R2 on each fold and report

the mean score across the folds as well as the standard error. Table 3

shows the accuracy of the different COSSMO models, as well as

MaxEntScan, on the same data. We define the accuracy as the fre-

quency with which COSSMO correctly predicts the splice site with

the maximal PSI value.

It is not surprising that MaxEntScan, which can predict the

strongest splice site with a probability of 32.2% (acceptor), or

37.1% (donor), is outperformed by even the simple independent

COSSMO model (52.0% on acceptor and 56.9% on donor).

After all, MaxEntScan uses a smaller sequence window, is trained

on a smaller, different dataset and does not utilize the competitive

training procedure.

Our best model, which uses an LSTM, achieves 70.0% on the ac-

ceptor dataset and 71.1% on the donor. Despite being a deeper,

more powerful model, the resnet with an LSTM achieves slightly

worse performance than the ‘LSTM only’ model. Our interpretation

of this result is that the LSTM layer is critical for good performance,

but the convolutional subnetwork in the LSTM network is sufficient

to learn useful features. As a result, the deeper feature extraction

network in the LSTMþResnet does not achieve better performance

than the slightly simpler LSTM model.

Accuracy is intuitive to interpret, but it only takes into account

whether or not COSSMO predicts the strongest splice site in a large

set correctly. Accuracy does not take into account how well the pre-

dictions fit the PSI distribution overall. Table 4 shows the cross-

entropy error of the four different COSSMO models and Table 5

shows the coefficient of determination R2. While MaxEntScan per-

forms relatively well at predicting the dominant splice, as shown by

the accuracy, it performs much worse at predicting the PSI distribu-

tion in general. This should not be a surprise given that MaxEntScan

was designed to score splice sites in isolation. Still, this demonstrates

the need to model splice sites in their local context if predicting their

relative utilization is the goal.

Table 2. Resnet-26 architecture

Parameters

Bottleneck Block width out_dim oper_dim stride

1 24 8 1 1

2 8 32 8 1

3 8 64 16 2

8 64 16 1

4 8 128 32 2

8 256 64 1

5 8 256 64 1

8 256 64 1

Note: This residual network replaces the convolutional layers in the LSTM

model for the ResnetþLSTM model. Each bottleneck block can be skipped

with a residual connection. Within each bottleneck block, there are one or

more convolutional layers parametrized by width (the width of the convolu-

tional filter), out_dim (the number of output filters), oper_dim (the number of

filters in the middle of the bottleneck block) and stride (the stride of the con-

volution operation). Fig. 5. Training cross-entropy loss
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4.2 Performance on alternatively spliced events
The majority of the events in our dataset have only one annotated

splice site (Fig. 2). To gain a deeper understanding of COSSMO’s

performance, it also helps to stratify the dataset and only look at

events that are alternatively spliced (have more than one annotated

splice site). The performance of MaxEntScan and COSSMO on this

subset is shown in the right hand columns of Tables 3–5. This is a

much more challenging subset of the data and performance of

MaxEntScan and COSSMO is both impacted when more than one

annotated site is present. However, while MaxEntScan accuracy

drops by almost half on this subset, COSSMO’s relative drop in per-

formance is lower, with the more complicated models (‘LSTM’ and

‘LSTMþResnet’) seeing a smaller relative drop in accuracy than the

simpler models (‘Independent’ and ‘Comm-net’).

Table 5 shows that MaxEntScan breaks down on the alternative-

ly spliced subset. On the alternative acceptor dataset, MaxEntScan

explains less of the variance than simply predicting a uniform distri-

bution over splice sites, manifesting as a negative R2 score. The R2

of the COSSMO LSTM model drops from 61% to 43% on this

more difficult subset.

4.3 Error analysis
It is helpful to examine the types of errors our predictors make and

how the models differ in their mistakes. Figure 6 shows a break-

down of the types of splice site out of the different categories pre-

sented in Table 1. The bars show the proportions of the types of the

predicted dominant splice site. As expected, the annotated splice

sites almost always have greater true PSI than de-novo or decoy

splice sites in our dataset.

Our best model that uses an LSTM almost never mistakes a

negative site for real. However, it can be fooled by a decoy site �8%

of the time. The LSTM model also predicts a de-novo site to be

dominant �20% of the time. The simpler independent and commu-

nication network COSSMO models make the same errors more

often.

MaxEntScan incorrectly predicts a decoy splice site to be domin-

ant nearly 40% of the time. This is not surprising since the decoy

sites are chosen to be cases that MaxEntScan scores higher than they

should be according to our RNA-Seq data and the data are thus

Table 4. Cross-entropy error of COSSMO models and MaxEntScan

Model All events Alternatively spliced

Acceptor n¼ 172 940 Donor n¼ 175 000 Acceptor n¼ 22 564 Donor n¼ 25 865

MaxEntScan 2.836 2.244 3.819 3.043

Independent 1.583 (6 0.008) 1.401 (6 0.020) 2.384 (6 0.006) 2.253 (6 0.041)

Comm-net 1.490 (6 0.021) 1.107 (6 0.003) 2.254 (6 0.018) 1.777 (6 0.020)

LSTM 1.017 (6 0.012) 0.944 (6 0.006) 1.689 (6 0.021) 1.602 (6 0.012)

Resnet þ LSTM 1.014 (6 0.010) 0.955 (6 0.009) 1.688 (6 0.010) 1.603 (6 0.009)

Note: Loss is computed as the average of five cross-validation folds with standard errors given in brackets. The right columns show loss only for those events

that contain two or more annotated splice sites.

Table 3. Accuracy of COSSMO models and MaxEntScan

All events Alternatively spliced

Model Acceptor n¼ 172 940 Donor n¼ 175 000 Acceptor n¼ 22 564 Donor n¼ 25 865

MaxEntScan 0.322 0.371 0.181 0.210

Independent 0.520 (6 0.004) 0.569 (6 0.003) 0.331 (6 0.003) 0.376 (6 0.002)

Comm-net 0.540 (6 0.008) 0.653 (6 0.001) 0.350 (6 0.007) 0.482 (6 0.005)

LSTM 0.700 (6 0.004) 0.711 (6 0.002) 0.533 (6 0.006) 0.548 (6 0.005)

Resnet þ LSTM 0.698 (6 0.005) 0.701 (6 0.003) 0.526 (6 0.008) 0.540 (6 0.005)

Note: Accuracy is defined as the frequency at which the model correctly identifies the splice site with maximum PSI. Accuracies are computed as the average of

five cross-validation folds with standard errors given in parentheses. The right columns show accuracy only for those events that contain two or more annotated

splice sites.

Fig. 6. Type of splice site predicted by different models. This plot shows how

often each model predicts a splice site of each possible type to be the strongest

as opposed to the ground truth. The top plot uses real and non-splice sites as

alternatives, while the bottom plot uses only real splice sites, which is less a

challenging task for the model. Only the alternative acceptor data is shown

COSSMO i435



biased to producing wrong predictions from MaxEntScan. The

results, however, show that our dataset design is relatively successful

in producing models that are less likely to be fooled by cryptic splice

sites and other sequences that are not recognized by the spliceosome,

even though they look very similar to true splice sites.

To examine how much our dataset design disadvantages

MaxEntScan, we remove both decoy and negative sites from the test

set and use each model to predict the dominant site only from the

annotated and de-novo sites. This is a much easier prediction prob-

lem because in this setting, the model must only choose between an

average of five putative splice sites rather than around 80 sites in the

full setting.

Even in this scenario, MaxEntScan incorrectly predicts a de-

novo site to be dominant in about 44% of test cases, while the

LSTM COSSMO model has about half the error rate, demonstrating

that the performance gap persists even when we correct for possible

bias in the dataset design.

5 Model interpretation

To visualize the motifs COSSMO learns we follow a similar procedure

to Alipanahi et al. (2015). We run �2 M splice sites from our test set

through the model and extract the activations after each convolutional

layer, just after applying the ReLU function. We then threshold those

activations at the 99.9% percentile to keep only those input sequences

to which the filter responds the most strongly. Then, we align the input

sequences according to the position of the output unit and compute the

position probability matrix corresponding to each filter.

For both the acceptor and donor LSTM models, we extract motifs

learned for the alternative DNA, constant DNA and spliced RNA in-

put sequences by the first, second and third convolutional layer.

We then use TOMTOM (Gupta et al., 2007) to find matches of

the motifs learned by COSSMO in the RNAcompete database of

RNA-binding elements (Ray et al., 2013) and against the human ac-

ceptor and donor site consensus motifs (Zhang, 1998). We find that

COSSMO’s learned motifs match a large number of the most

Table 5. Coefficient of determination (R2) of COSSMO models and MaxEntScan

All events Alternatively spliced

Model Acceptor n¼ 172 940 Donor n¼ 175 000 Acceptor n¼ 22 564 Donor n¼ 25 865

MaxEntScan 0.080 0.195 �0.105 0.038

Independent 0.389 (60.003) 0.438 (60.005) 0.187 (60.003) 0.208 (60.009)

Comm-net 0.421 (60.007) 0.552 (60.001) 0.229 (60.003) 0.372 (60.008)

LSTM 0.614 (60.005) 0.628 (60.003) 0.430 (60.006) 0.453 (60.005)

Resnet þ LSTM 0.612 (60.006) 0.618 (60.004) 0.420 (60.007) 0.448 (60.004)

Note: The coefficient of determination is computed using the class prior 1=K (uniform distribution over alternative splice sites) as baseline. For COSSMO, R2 is

computed as the average of five cross-validation folds with standard errors given in parentheses. The right columns show loss only for those events that contain

two or more annotated splice sites.

(a) (d)

(b) (e)

(c) (f)

Fig. 7. Motif visualization. These are matches of motifs learned by the LSTM acceptor and donor models against known splicing regulators. Motifs are extracted

using the method by Alipanahi et al. (2015) and then referenced against the human splice site acceptor consensus motifs (Zhang, 1998) and RNA binding ele-

ments from RNAcompete (Ray et al., 2013) with TOMTOM (Gupta et al., 2007). Reference motifs are on the top and matching motifs learned by COSSMO are on

the bottom. The P-values are reported by the TOMTOM algorithm
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important known splicing factor binding sites as well as the acceptor

and donor consensus motifs.

Figure 7 shows several examples of high-certainty matches of

COSSMO’s motifs against known motifs. In particular, COSSMO

learns motifs that almost perfectly match the known acceptor and

donor site consensus motifs (a & b). TOMTOM produces a large

number of matches against the RNAcompete motifs, among them

many of the most important splicing factors (e.g. hnRNPA2B1,

hnRNPA1L2, hnRNPA1, hnRNPH2, PTBP1, QK1, SFPQ, SRSF1,

SRSF2, SRSF7, SRSF9, SRSF10, U2AF2, YBX1). In total we find 83

matches against RNAcompete motifs with P < 10�2 in the acceptor

model and 140 matches in the donor model. Figure 7 shows some

examples of strong matches to known splicing factors:

• hnRNPA1L2 (c, p ¼ 7:32e� 06), which is a member of the

hnRNP family of RNA-protein complexes that are involved in

splicing control (Martinez-Contreras et al., 2007),
• SFPQ (d, p ¼ 3:52e� 04), an essential pre-mRNA splicing factor

required early in spliceosome formation and for splicing catalytic

step II (Patton et al., 1993),
• U2AF2 (e, p ¼ 2:55e� 04), which is a necessary part of the spli-

ceosome and binds to the polypyrimidine tract (Zamore et al.,

1992), and
• DAZAP1 (f, p ¼ 1:52e� 05), which can activate weak exons by

neutralizing splicing inhibitors (Choudhury et al., 2014).

The full list of motif matches is available in the Supplementary

Material.

6 Discussion

In this work, we introduced COSSMO, a computational model that

enables accurate prediction of competitive alternative splice site selec-

tion from sequence alone. We describe how we generate a genome-

wide dataset for training and evaluation by combining positive splice

site examples from genome annotations and large-scale RNA-Seq data-

sets, as well as negative examples from random genomic background

sequences, and decoy splice sites that receive high scores from

MaxEntScan but lack evidence of splice site usage from RNA-Seq data.

We design four neural network architectures that adapt to a vari-

able number of alternative splice sites and carefully evaluate them

using genome-wide cross-validation. We find that all of our models

performed better than MaxEntScan, but we also find large perform-

ance differences between the different COSSMO architectures.

Independent scoring networks achieve good performance, but the

best performance depends on a communication mechanisms be-

tween the scoring networks. Of these models, the recurrent LSTM

model achieved better accuracy than the communication network,

which does not take the ordering of the splice sites into account.

We also demonstrate that COSSMO learns ab-initio, without

any feature engineering or built-in knowledge, a wide array of bind-

ing motifs that correspond to the splice site consensus sequences and

known splicing factors.

Our work demonstrates that it is possible to use deep learning to

predict splice site choice with high accuracy, which can be extended

to predict how genomic variation affects splice site choice through

mechanisms like splice site variants or cryptic splice site activation.
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