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Abstract

Motivation: Mathematical models of cellular processes can systematically predict the phenotypes

of novel combinations of multi-gene mutations. Searching for informative predictions and prioritiz-

ing them for experimental validation is challenging since the number of possible combinations

grows exponentially in the number of mutations. Moreover, keeping track of the crosses needed to

make new mutants and planning sequences of experiments is unmanageable when the experi-

menter is deluged by hundreds of potentially informative predictions to test.

Results: We present CrossPlan, a novel methodology for systematically planning genetic crosses

to make a set of target mutants from a set of source mutants. We base our approach on a generic

experimental workflow used in performing genetic crosses in budding yeast. We prove that the

CrossPlan problem is NP-complete. We develop an integer-linear-program (ILP) to maximize the

number of target mutants that we can make under certain experimental constraints. We apply our

method to a comprehensive mathematical model of the protein regulatory network controlling cell

division in budding yeast. We also extend our solution to incorporate other experimental condi-

tions such as a delay factor that decides the availability of a mutant and genetic markers to confirm

gene deletions. The experimental flow that underlies our work is quite generic and our ILP-based

algorithm is easy to modify. Hence, our framework should be relevant in plant and animal systems

as well.

Availability and implementation: CrossPlan code is freely available under GNU General Public

Licence v3.0 at https://github.com/Murali-group/crossplan

Contact: murali@cs.vt.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mathematical models of gene and protein regulatory networks are

widely used to investigate cellular processes (Le Novere, 2015). A

standard approach used in mathematical modeling is to start by con-

structing the model of a specific cellular process, e.g. the cell cycle,

from relevant experimental data. Subsequently, we simulate the

model in a new scenario, e.g. a combination of gene knockouts that

has not been characterized experimentally. Next, we design and per-

form an experiment to validate the model’s prediction in this scenario.

Finally, we modify or expand the model to reconcile any differences

between the prediction and experiment and continue this cycle.

The motivation for this paper is to dramatically scale-up this

build-simulate-test cycle. First, we simulate the model to make sys-

tematic predictions of the system’s behavior under various
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perturbations, e.g. all single gene, double gene, triple gene knock-

outs and so on. Next, we analyze these predictions to select a subset

that are likely to be the most informative about the model and the

process under study. Finally, we seek to perform the experiments

that can test these informative predictions. The last step can be very

challenging, since planning experiments to make the genetic mutants

to test these predictions becomes unmanageable and daunting, even

for more than a dozen or so mutants. Therefore, we focus in this

paper on developing new algorithms that can automatically synthe-

size efficient experimental plans to make the desired mutants.

Previous research has focused mainly on prioritizing the next-

best or a small number of experiments, e.g. to distinguish between

Boolean network models that fit the available data equally (Atias

et al., 2014; Barrett and Palsson, 2006; Ideker et al., 2000; Szczurek

et al., 2009; Yeang et al., 2005), to estimate the kinetic parameters

of an ordinary differential equation (ODE) model (Bandara et al.,

2009; Kreutz and Timmer, 2009; Pauwels et al., 2014) or to resolve

model ambiguity (Apgar et al., 2008; Harrington et al., 2012;

Kremling et al., 2004; Melykuti et al., 2010).

The problem we are addressing has several unique characteris-

tics that render existing techniques inapplicable. Our primary chal-

lenge is that we desire to plan a set of experiments that can test

several (hundreds or thousands) promising predictions made by

the model. Testing each prediction requires making a multi-gene

mutant by performing genetic crosses. Additional challenges arise

because we must account for several criteria that are potentially in

conflict with each other: (i) there may be many sequences of

crosses that can make a mutant, (ii) a strain to be generated may

be parental to multiple mutants and (iii) some parental mutants

may be known or predicted to be inviable. Further, we need tech-

niques that can operate under cost-effective experimental work-

flows and efficiently utilize mutant strains that are available in the

lab. Therefore, we focus on the novel problem of computationally

synthesizing an optimal sequence of experiments to be performed

in order to produce multiple mutant strains carrying multi-gene

knock-outs of interest.

More specifically, we develop a novel methodology, CrossPlan,

to compute a sequence of genetic cross experiments organized into

batches such that we can perform the crosses in each batch in paral-

lel. CrossPlan takes as input a source set S of mutants that are avail-

able in the lab, a set T of target mutants whose phenotypes we are

interested in characterizing experimentally, and the number k of

batches (which reflects the experimental budget). The plan com-

puted by CrossPlan maximizes the number of target mutants that

can be made from the source set in k batches.

We design an integer-linear program (ILP) that captures all the

constraints we have stated earlier and can solve the problem opti-

mally. We apply our method to a comprehensive ODE-based math-

ematical model of the budding yeast cell cycle (Kraikivski et al.,

2015). We use this model to simulate the phenotypes of mutants car-

rying mutations in up to 4 genes. We analyze the model predictions

to identify rescued mutants: a mutant is rescued if the model predicts

it to be viable, but there is a strain with one fewer gene deletion is

known or predicted to be inviable. We apply CrossPlan to generate

experimental designs that can produce the maximum number of res-

cued mutants starting from single gene mutations.

We also consider two important extensions mandated by experi-

mental requirements. First, we account for a delay factor that

decides when a newly synthesized mutant strain is available for sub-

sequent crosses. Second, each gene deletion in a mutant strain carries

a marker that we can use to verify that the gene has indeed been

deleted in that strain. Our analysis shows that incorporating delays

or the requirement that each gene mutation be associated with a

unique marker has only a marginal effect on the number of planned

mutants. We also suggest other time-efficient ILP formulations that

are nearly optimal in terms of the number of target mutants that can

be made. The Supplementary Material provides additional insights

into our results and a case study where we compare the results of

CrossPlan to a manual plan created by an expert yeast geneticist.

2 Materials and methods

In this section, we first describe our experimental methodology

(Section 2.1). Next, we define the CrossPlan problem and its vari-

ants (Section 2.2). Finally, we design and describe the ILPs that we

use to solve these problems (Sections 2.3 and 2.4).

2.1 Experimental workflow
Our strategy for making mutants uses the genetic cross, a standard

and widely used technique in budding yeast and several other

model organisms (Forsburg, 2001; Page and Grossniklaus, 2002; St

Johnston, 2002). In this experiment, we start with two mutants that

are already available e.g, aDB and AbD in Fig. 1a) and cross them to

produce a new mutant (aDbD in this case). The process of crossing

strains, sporulating the heterozygous diploids, performing tetrad dis-

section (micromanipulation of the four haploid meiotic products

from each diploid) and analyzing these tetrads takes about 3 weeks

(Fig. 1a).

We base CrossPlan on a generic experimental workflow in which

we perform multiple genetic crosses in parallel in batches. Each

batch included s genetic crosses (Fig. 1b). Each cross in a batch in-

volves two viable mutant strains that must have either been made in

an earlier batch or are already available to the experimenter (i.e.

they are members of source set, S). In this workflow, the experi-

menter performs all s crosses and characterizes their phenotypes in

parallel. In the case of budding yeast, each batch consists of a set of

12 crosses (i.e. s¼12); by sporulating batches of 12 crosses, we can

perform tetrad analysis on all cultures before spore viability is

reduced. Each batch uses approximately the same resources (sup-

plies and labor). Thus, the number of batches we plan to perform

determines the experimental cost.

With some modifications, this workflow can be applied to gen-

etic crosses of other model organisms, for combinatorial siRNA

(gene silencing) or CRISPR (genome editing) experiments, or even

for testing combinations of bioactive molecules/drugs (Cipriani and

Piano, 2011; Shen et al., 2017). For example, for genetic crosses in

diploid organisms such as Drosophila melanogaster or mice, we

would need to add backcrosses between offspring and parents in

order to obtain homozygous mutations (Supplementary Section S1).

For combinatorial siRNA, CRISPR or drug experiments, the work-

flow would be simpler, involving single-step co-introduction of

(a) (b)

Fig. 1. (a) Steps required to genetically cross two mutants to create new mu-

tants. Each genetic cross requires three weeks to complete and (b) a batch of

genetic crosses that can be performed in parallel. Each batch takes 3 weeks to

complete. Costs of labor and supplies are fixed from one batch to another
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RNAs, expression vectors or drugs to obtain the desired perturbing

combinations.

2.2 Problem formulation
We introduce a useful abstraction for organizing mutants and the

crosses needed to make them. Let G be a set of genes in an organism.

A mutant m contains a combination of mutations (e.g. deletions) in

multiple genes. We use G(m) to denote the set of genes mutated in

m. The genetic cross graph G ¼ M;X;Eð Þ is a bipartite directed

graph where M is a set of mutant nodes, X is a set of cross nodes

and E is a set of edges. Each node in M corresponds to a mutant.

Each node in X corresponds to a genetic cross experiment. Each

edge e in E is either directed from a node in M to a node in X or

vice-versa. More specifically, each node in X has two incoming

edges (from nodes in M) and one or more outgoing edges (to other

nodes in M). The incoming edges reflect the two mutants involved in

a cross, while the outgoing edges reflect all the mutants that are

products of the cross. Edges incident on a cross node must satisfy

two rules. If there are edges incoming to a cross node x from mutant

nodes m1 and m2, then

(i) the corresponding mutants must contain distinct single gene

deletions, i.e. G m1ð Þ \G m2ð Þ ¼ / and

(ii) there is an outgoing edge from x to every mutant in

2G m1ð Þ[G m2ð Þ, since due to Mendelian inheritance, the cross

produces every mutant involving some combination of the

genes mutated in m1 or m2.

For example, Figure 2a illustrates three genetic crosses. The first cross

produces aDBcDD from the strains aDBCD and ABcDD, while the se-

cond cross produces AbDCdD from AbDCD and ABCdD. Each cross

also produces the original single mutants and the wild-type strain

(shown as ABCD). The third cross combines the double mutants

aDBcDD and AbDCdD to produce one quadruple mutant aDbDcDdD,

four triple mutants, six double mutants, four single mutants and the

wild type strain. For the sake of clarity and brevity, Figure 2b illu-

startes a simplified version (used for graphical purposes only) of the

same set of crosses as in Figure 2a. In Figure 2b, only the mutated

genes are shown for each of the mutants, and the only outgoing edges

are from a cross to the new mutants that are produced as a result of

that cross. In general, this graph represents all possible ways in which

we can make new mutants from previously made mutants. Note that

we can construct a mutant using several alternative crosses, which

correspond to multiple incoming edges to the corresponding mutant

node. Further, we delete from the genetic cross graph any edges that

leave mutants that we know are inviable from previous experimental

evidence or from model predictions.

Next, we use the terminology of the genetic cross graph to define

a batch in the workflow illustrated in Figure 1. A batch is simply a

set W of s cross nodes, i.e. W � X and jWj ¼ s. We also define the

input and output mutant nodes for a batch. The inputs In Wð Þ to W

are the mutant nodes with incoming edges to the cross nodes in W,

i.e. In Wð Þ ¼ fmj m;wð Þ 2 E;w 2Wg. Informally, we need these

mutants in order to perform the crosses in W. Analogously, the out-

puts Out Wð Þ of W are the mutant nodes with incoming edges from

the cross nodes in W, i.e. OutðWÞ ¼ fmj w;mð Þ 2 E;w 2Wg.
Informally, these are the mutants produced by the crosses in W.

Figure 3 illustrates the inputs In Wð Þ and outputs Out(W) to a batch

W. Note that the number of mutant nodes in Out(W) may be larger

than the number of cross nodes in W since each genetic cross can

produce more than one mutant. Moreover, a single mutant in

Out(W) may be the product of more than one cross in W. With these

definitions, we can now formulate the CrossPlan problem.

2.2.1 CrossPlan problem

Given the genetic cross graph G ¼ M;X;Eð Þ, a set S �M of source

mutants, a set T �M of target mutants, the batch size s and the

number of batches k, compute k s-batches fWi; 1 � i � kg such

that

i. for each 1 � i � k; In Wið Þ � S [ [1� j� i�1 Out Wj

� �� �
; and

ii. the size of T \ [1� j� k Out Wj

� �� �
is maximized over all possible

sets of k s-batches.

The first condition states that for the set Wi of crosses being per-

formed in batch i, every input in In Wið Þ should be one of the source

mutants or have been constructed in one of the earlier batches.

The second condition states that the union of the outputs of the k

s-batches should contain as many target mutants as possible.

We now define two extensions of CrossPlan. The first problem

supports a modification to the experimental workflow where we

allow multiple batches to be executed in parallel, e.g. by starting a

(a) (b)

Fig. 2. Illustration of three crosses in a genetic cross graph. Each rectangle is a mutant. Each circle is a genetic cross with two incoming edges (brown) and mul-

tiple outgoing edges (purple). (a) The figure illustrates three crosses: aDBCD with ABcDD, AbDCD with ABCdD, and aDBcDD with AbDCdD. (b) Simplified version

of the genetic cross graph (for illustrative purposes only). See the text for more details

Fig. 3. An example of a batch W. The input mutants InðW Þ are the set of

mutants required to perform the crosses in batch W; every mutant in this set

is viable (green rectangles). The output mutants Out(W) are the mutants that

are produced by performing crosses in the batch; the mutants here may be

viable or inviable (red rectangles) (Color version of this figure is available at

Bioinformatics online.)
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new batch every week. Hence, the mutants we make in a specific

batch will not be available for the very next batch but only after a

certain delay. We use a positive integer d � 1 to model this scenario

and require that for every batch i, the mutants made in it are avail-

able only for batch iþ j, where j � d.

2.2.2 CrossPlanDelay problem

The definition of CrossPlanDelay is exactly the same as CrossPlan it-

self with an additional parameter d � 1 and the following modifica-

tion to the first condition:

(i) for each 1 � i � k; In Wið Þ � S [ [1� j� i�d Out Wj

� �� �
When d¼1, this condition is identical to the one for CrossPlan,

i.e. a mutant made in a batch is available for use in the next batch.

The second extension is specific to budding yeast and takes

into consideration the markers used to verify gene deletions. Each

gene deletion construct in a mutant strain must have a unique se-

lectable marker that can confirm the deletion, e.g. aD:: kanR repre-

sents a deletion of gene A replaced by the kanR G418 resistance

gene. Only strains with gene A deleted will grow in the presence of

the antibiotic G418, which normally kills budding yeast cells. No

two genes participating in a specific cross can share the same

marker. We enforce this constraint as follows. Suppose K is the set

of possible markers. We associate three sets with a mutant m: the

set P(m) of gene-marker pairs in m, the set G(m) of genes mutated

in m, and the set K mð Þ of markers associated with these genes. We

define the genetic cross graph with markers H ¼ M0;X0;E0ð Þ as

follows:

i. each node in M0 is a subset of G0 ¼ G� K with the property

that jG mð Þj ¼ jK mð Þj, i.e., each gene in G(m) has a distinct

marker,

ii. each node in X0 is a genetic cross,

iii. if a cross node in X0 has two incoming edges from two nodes m

and m0 in M0, then

(a) both the genes and the markers associated with m1 and m2

are disjoint, i.e., G m1ð Þ \G m2ð Þ ¼ / and K m1ð Þ \ K m2ð Þ ¼
/, and

(b) the outgoing edges from the cross are to the mutants in

2P m1ð Þ[P m2ð Þ.

2.2.3 CrossPlanMarkers problem

The definition of CrossPlanMarkers is similar to CrossPlan except

we use the genetic cross graph with markers.

2.3 An ILP for CrossPlan
We can prove that CrossPlan is NP-complete (see Supplementary

Section S2). Therefore, we solve it using an ILP. An attractive fea-

ture of the ILP is that it is easy to state and extend. The ILP contains

three sets of variables.

(i) The first set of variables records in which batch we perform a par-

ticular genetic cross experiment. Specifically, for each cross node

x 2 X, we introduce k 0-1 variables cx;i where 1 � i � k. We

set cx;i ¼ 1 iff we perform that cross experiment in batch i.

(ii) The second set of variables records in which batch we make a

particular mutant. Specifically, for each mutant m 2M, we

introduce k þ 1 0-1 variables bm;i where 0 � i � k. We set

bm;i ¼ 1 iff we make mutant m in batch i. Over the course of

several batches of experiments, we may make mutant m mul-

tiple times. Hence, bm;i may be set to 1 for multiple values of i.

(iii) The third set of variables records if we make a target mutant

m in any batch. For each mutant m 2 T, we introduce one

0-1 variable am, which we set to 1 iff bm;i ¼ 1 for at least one

value of i. We use the variables am to define the function we

optimize below.

The ILP contains five sets of constraints.

(i) Source mutants constraints: Since the mutants in the source set S

are already available, we can set their (and only their) b values in

batch 0 to be unity:

bm;0 ¼
1; for all m 2 S

0; for all m 62 S

(
(1)

There are a total of jMj such constraints, one for every mutant.

(ii) Batch size constraints: We can perform at most s crosses in any

batch. X
x2X

cx;i � s; for each 1 � i � k (2)

There are a total of k such constraints, one for every batch.

(iii) Cross input constraints: If we perform a genetic cross x in batch

i, then we must have made both the mutants being crossed in x

in one of the earlier batches.

cx;i �
Xi�1

j¼0

bm;j for every m such that m; xð Þ 2 E;

and for every 1 � i � k

(3)

Note that each cx;i variable appears in two cross input constraints,

one for each of the mutants that are inputs to cross x, i.e. one con-

straint for each mutant m such that (m, x) is an edge in E. The value

on the right hand size is zero only if the mutant m is not made in any

of the batches between 0 and i–1. There are a total of 2kjXj of these

constraints, two for every cross in every batch.

(iv) Mutant input constraints: If we make a mutant m in batch i,

then we must also perform at least one of the genetic crosses

that produces m in that batch.

bm;i �
X

x;mð Þ2Ex2X

cx;i; for every 1 � i � k (4)

Note that (x, m) is an edge in the genetic cross graph iff m is one of

the mutants that are the outputs of the cross x. If the right-hand side

is zero, then we cannot make mutant m in batch i. There are kjMj
such constraints, one for every mutant in every batch.

(v) Making target mutant constraints: For a target mutant m, am ¼ 1

only if we make m in at least one batch.

am �
Xk

i¼0

bm;i; for each m 2 T (5)

There are jTj such constraints, one for every target mutant.

In total, the ILP contains kjXj þ kþ 1ð ÞjMj þ jTjð Þ variables and

2kjXj þ kþ 1ð ÞjMj þ jTj þ kð Þ constraints.

Our objective is to maximize the number of target mutants in T

that we can make in k s-sized batches. In other words, our objective

function is the following:

max
X
m2T

am (6)

Note that if some cx;i is set to 1 in a solution to this ILP, then it is not

necessary that bm;i is set to 1 for every mutant m such that x;mð Þ 2 E,

i.e. m is a product of x. The solution will set such a bm;i to 1 only if m
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is ‘on the path’ to some target mutant l for which al¼1. Hence, in

any solution to this ILP, for each 1 � i � k, batch i is given by

Wi ¼ fxjcx;i ¼ 1g

In Supplementary Section S3, we prove that maximizing this object-

ive function under the specified constraints solves the CrossPlan

problem correctly.

2.4 Extensions and alternate approaches
In this section, we describe how to solve CrossPlanDelay and

CrossPlanMarkers. We also introduce an alternative algorithm.

2.4.1 ILP for CrossPlanDelay

In the CrossPlanDelay problem, we impose the requirement that for

every batch i, every cross in that batch can only use mutants made in

batches i – j, where j � d. To solve this problem, we modify

Equation (3) in the ILP for CrossPlan as follows:

cx;i � bm;0 þ
Xi�d

j¼1

bm;j for every m such that m; xð Þ 2 E (7)

Note that we can use the mutants in the source set S in any batch

irrespective of the value of d.

2.4.2 ILP for CrossPlanMarkers

We simply apply the ILP for CrossPlan to the genetic cross graph

with markers.

2.4.3 Planning with limited horizons

Suppose we want to solve CrossPlan for k batches. In the ‘limited

horizon’ approach, we select a horizon h<k, solve the ILP for h

batches add the mutants made in the solution for h batches to S,

solve the ILP for h batches again and repeat this process until we

have a obtained a solution for k or more batches. In practice, this

approach is likely to be faster but may be sub-optimal since we do

not plan all k batches simultaneously.

3 Results

We start by describing how we simulate the dynamical model of the

cell cycle and compute target mutants (Section 3.1.1) and how we

construct the genetic cross graph (Section 3.1.2). Next, we perform

a detailed analysis of CrossPlan results for these data (Section 3.2

and Supplementary Section S4) before discussing CrossPlanDelay

(Section 3.3). We also compare the results of CrossPlan and

CrossPlanMarkers using their limited horizon counterparts (Section

3.4). In Supplementary Section S5, we discuss a case study where we

compare CrossPlan’s results to a manually created plan for 13 target

mutants.

3.1 Datasets
3.1.1 Using the ODE model to identify target mutants

We used a dynamic model of the budding yeast cell cycle (Kraikivski

et al., 2015) for our analyses. This model addresses the detailed

phenotypic properties of more than 250 yeast strains carrying muta-

tions that interfere with the G1–S and/or the FINISH transition (meta-

phase-anaphase-telophase-cell division). The model consists of 59

species (proteins, their modified forms, and complexes) and 60 dif-

ferential and algebraic equations, involving 133 adjustable param-

eters (e.g., rate constants and binding constants). These 59 species

correspond to 29 unique genes. We simulated this model for muta-

tions in all combinations of up to 4 genes, ignoring combinations

that contained redundant pairs of deletions, e.g. two different ways

to knock out Cdc14. For each mutant strain, we recorded whether

the simulation predicted the phenotype as ‘viable’ or ‘inviable’.

A strain is ‘viable’ if simulated cells grow and divide with a stable

cell size at division and ‘inviable’ otherwise. We defined a mutant b

to be a parent of mutant a if a carried one additional single gene mu-

tation than b. We defined a mutant a to be rescued if a is predicted

to be viable but had a parent b that is either experimentally known

or predicted by the cell cycle model to be inviable, e.g. cln3Dbck2D
is inviable and cln3Dbck2Dwhi5D is rescued. We noted that a res-

cued mutant may be redundant. For example, whi5D rescues the in-

viable mutants cln3Dbck2D and cln3Dbck2Dpds1D. Since pds1D is

itself a viable strain, the loss of Pds1 is irrelevant to the rescue

phenotype. Hence, we considered only non-redundant rescued mu-

tants. Rescued mutants are highly informative because converting

an inviable strain to a viable strain usually occurs only by combining

mutations in genes that have opposite functions within the same es-

sential biochemical network. Thus, the prediction of new rescue mu-

tants can assist in generating hypotheses about gene function and

the architecture of the regulatory network.

Table 1 summarizes our results. Only 20% of all up-to-four gene

deletions of the 54 576 mutants we simulated were viable. The per-

centage of viable combinations decreased with an increase in the

number of genes deleted. Of these viable mutants, the number of res-

cued ones were 3528, of which 700 (nearly 20%) were non-

redundant. We designated all non-redundant rescued mutants as the

target set T. For the source set S, we used 35 strains that have been

studied in the literature carrying mutations in one of the genes in the

model. Note that this number is greater than the number of genes in

the model, since some genes have been mutated in different ways.

3.1.2 Constructing the genetic cross graph

To construct the genetic cross graph G input to the CrossPlan prob-

lem, we needed to define the set G of single gene mutations, the set

M of mutant nodes, the set X of cross nodes and the input and out-

put edges for each cross in X. We set G to be the set of 35 single

gene deletions. Each mutant node in M corresponded to one of the

gene mutation combinations we simulated with the cell cycle model

(Table 1). For every pair of mutants m1 and m2 such that G m1ð Þ and

G m2ð Þ are disjoint, we created a cross node x in X. We added edges

from m1 and from m2 to x and from x to each of the mutants corres-

ponding to the power set of G m1ð Þ [G m2ð Þ.
We further pruned G as follows: consider the set G(T) of genes

that are deleted in at least one target mutant, i.e. G Tð Þ ¼ [l2TG lð Þ.
We deleted every mutant m that contained at least one gene not pre-

sent in G(T). An alternative way of phrasing this step is that we re-

tained a mutant m in T iff (the set of genes mutated in) m was a

subset of G(T). We also deleted any cross nodes that were

Table 1. Statistics on simulations

#Mutations #Mutants #Viable #Rescued #Rescued

non-redundant

1 35 26 (74%) — —

2 586 285 (49%) 14 14

3 6250 1896 (30%) 344 170

4 47 705 8872 (18%) 3170 516

Total 54 576 11 079 (20%) 3528 700
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disconnected as a result. After these modifications, G contained

2064 mutant nodes, 4958 cross nodes and 59 040 edges.

For the CrossPlanMarkers problem, we constructed the genetic

cross graph with markers H as follows. Recall that K is the set of

markers. We used a set of four markers (hph, kan, nat and ura). For

every mutant m 2M carrying mutations in one gene, we created jKj
copies of m, pairing it with each marker in turn. In general, for every

mutant m, we created
jKj
jG mð Þj

� �
jG mð Þj! copies of m, one for each

of the ways to assign distinct markers to the genes mutated in m. For

example, for single gene mutants, we created
jKj
1

� �
1! ¼ jKj copies

for each mutant, one for each marker. We created cross nodes as we

did for G but with the added condition that the two mutants being

crossed should not share any markers. We pruned this graph as

described earlier and retained 43 648 mutant nodes, 112 720 cross

nodes and 1 383 192 edges.

3.2 Results for CrossPlan
First, we investigated the number of target mutants we could plan

with s¼12 (we provided a rationale for this value in Section 2.1)

and with different values of k. In the solution for each value of k,

we identified four sets of mutants made across all the batches: (i)

target mutants, (ii) inviable mutants that are rescued by one of the

target mutants made, (iii) (viable) intermediate mutants that we

make in order to produce a target mutant and (iv) other mutants

that result from the crosses but are not used in any cross in any

batch. Note that any cross that produces a target mutant m (which

must be viable by our construction of T) will also automatically

produce all inviable parents that m rescues. In constructing these

sets, we ignored the source mutants in S and counted each other

mutant only once.

Figure 4a summarizes these results for 1 � k � 12. For every

value of k, we succeeded in planning exactly sk crosses (the dashed

line in Fig. 4a). When k¼1, we only planned 12 double mutants, all

of which rescued inviable single gene deletions. For k>1, we

planned about 1.4 times as many target mutants (light gray bars in

Fig. 4a) as the number of crosses. For every value of k, the number

of inviable mutants (dark gray bars in Fig. 4a) rescued by the target

mutants we planned was almost the same as the number of crosses.

We also noted that the number of intermediate mutants (black bars

in Fig. 4a) we needed to produce was approximately 0.4 times the

number of target mutants. The figure also displays other mutants

that we planned (white bars); these mutants result from the planned

crosses but are not used to make any other mutants. Figure 2b illus-

trates why the number of target mutants may be larger the number

of crosses: when we cross aDcD with bDdD, we simultaneously pro-

duce the target mutants aDbDcD, aDbDdD and aDbDcDdD.

The trends in Figure 4a suggest that most crosses yield at least

one target mutant (e.g. the cross between aDcD and bDdD in Fig. 2b)

and very few crosses produce only intermediate mutants (e.g. the

cross between aD and cD in Fig. 2b). To investigate this further, we

counted the number of crosses of each type for each value of k.

Figure 4b shows that when k¼1, all 12 crosses we plan result in tar-

get mutants (light gray bars). In contrast, for 2 � k � 12, at most

11 crosses did not yield any target mutants (black bars). For k¼12,

we further analyzed each cross in the computed plan. We observed

that not only did the majority of crosses produce at least one target

mutant, but the entire plan depended on finding an appropriate set

of double gene mutants to make in batch one. Complete details of

this analysis are in Supplementary Section S4.1.

Finally, we investigated how many more batches we could plan

if we started with the CrossPlan solution for k batches. Accordingly,

we solved a simpler version of CrossPlan: we solved the ILP for k

batches, added all the mutants in the solution to S, set s ¼ 1 (i.e.

made the batch size unlimited) and then re-solved the ILP for one

batch. Our analysis showed that starting from the CrossPlan solu-

tion for 12 batches, we could make as many as 315 additional target

mutants simply by crossing pairs of mutants in S, a number enough

to occupy 26 batches of size 12. Additional details of this analysis

are in Supplementary Section S4.2.

3.3 Results for CrossPlanDelay
We solved the ILP for CrossPlanDelay for s¼12, the same values

of k, i.e. 1 � k � 12 and for different values of the delay d.

Figure 5a summarizes our results. Here, we compare the number

of target mutants planned for different numbers of batches as we

varied d from 1 to 5; the plot labeled ‘Original’ corresponds to

d¼1. For any value of k, increasing the delay by unity decreased

the number of planned target mutants by 12 on average, which is

the size of a batch. Even with d¼5, with 12 batches, we could

plan 149 target mutants, which is more than 75% of 197 mutants

we could plan with d¼1 in the same number of batches. The most

(a)

(b)

Fig. 4. CrossPlan results for different number of batches planned
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striking difference occurred for batches 1 � k � d (nearly hori-

zontal lines in Fig. 5a). There are 14 target mutants in T that are

double gene deletions. Since all single gene deletions are present in

S, for all values of d, we planned 12 of these double gene deletions

in the first batch. When d>1, we could plan only the last two dou-

ble gene deletions in the second batch. We had to wait till k>d to

plan any other target mutants.

3.4 CrossPlan and CrossPlanMarkers with

limited horizon
We compared the performance of planning experiments for all k

batches together with solutions obtained for the limited horizon

approach with 1 � h � 4. Figure 5b displays the ratio of the

total number of unique target mutants we could plan with differ-

ent horizons with the number planned with an unlimited horizon

(i.e. CrossPlan). Clearly, when we plan experiments only for

one batch at a time h¼1, we obtain very inefficient solutions.

The most striking difference occurs for k � 4. Surprisingly, the

best solutions for h>1 are quite close to the results for

CrossPlan, with h¼3, 4 being virtually indistinguishable from

CrossPlan.

When we attempted to solve CrossPlanMarkers with k � 5, we

found that ILP sizes were too large, causing the solvers (CPLEX and

Gurobi) to use up all the available RAM (32GB). Rather than use a

computer with more RAM, we used the limited horizon approach to

solve CrossPlanMarkers as well. In Figure 5c, for different values of

k, we compare the number of target mutants planned by this version

of CrossPlanMarkers to the number planned by CrossPlan (with no

limit on the horizon). Remarkably, other than for h¼1, we could

plan at least 85% as many target mutants as CrossPlan for all other

values of h. However, for h¼3, 4, CrossPlan succeeded in planning

more target mutants than CrossPlanMarkers (compare orange and

red curves between Fig. 5b and c). The primary reason is that

CrossPlan is not constrained by the requirement that each gene in a

cross be associated with a unique marker. For example, for k¼3,

CrossPlan made 53 target mutants, which was one more than

CrossPlanMarkers. Figure 6 illustrates the point with a set of crosses

suggested by CrossPlan that require more than four markers or an

additional cross.

An advantage of the limited horizon approach is that the sizes

of the ILPs are much smaller than for CrossPlan (Table 2).

Additionally, the time taken to solve the planning problem with

a Limited Horizon is much lower than for CrossPlan. For ex-

ample, it takes 58 min to solve the ILP for CrossPlan for 12

batches, where as it takes only 24 min to solve three problems

with h¼4.

4 Discussion

We have introduced the novel problem of efficiently synthesizing ex-

perimental plans to produce a desired set of mutant strains. Our meth-

odology uses a generic experimental workflow in which we can make

mutants using genetic crosses that are organized into batches. We de-

velop an integer linear program to optimally solve the problem of con-

structing the largest possible number of target mutants given the batch

size and number as inputs. Our results show the effectiveness of our

approach. We were easily able to generalize our method to handle

natural experimental constraints such as delays and genetic markers.

There are several interesting avenues for future research. The size

of the genetic cross graph can be exponential in the maximum number

of mutations in a single target mutant. Since CrossPlan took the gen-

etic cross graph as an input, the resulting ILPs were very large, e.g. the

ILP for CrossPlanMarkers contained 780 K variables and 11M con-

straints. We would like to design more compact ILPs or develop alter-

native ways of formulating and solving the problem that do not

(a) (b) (c)

Fig. 5. Variation with k of (a) number of mutants planned by CrossPlanDelay, (b) the ratio of the number of target mutants planned by the limited horizon strategy

and the number planned by CrossPlan and (c) the ratio of the number of target mutants planned by the CrossPlanMarkers with the limited horizon strategy and

the number planned by CrossPlan

Fig. 6. A set of crosses suggested by CrossPlan that require>4 markers

Table 2. Statistics on ILP sizes and running times for CrossPlan and

CrossPlan with Limited Horizon

k #Variables #Constraints Time (in min.)

CrossPlan

1 9744 14 703 0.01

4 30 810 50 646 10.21

12 86 986 146 494 58.34

CrossPlan, h ¼ 4

4 30 810 50 646 10.21

12 30 810 50 646 24.63
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directly use the genetic cross graph. Since the problem is NP-complete,

we would also like to ascertain the fixed parameter tractability of the

problem, e.g. develop polynomial-time algorithms if k or s is fixed.

We also plan to apply this methodology to other organisms

where siRNA or CRISPR-based screens are effective. Our method

can also be applied to Boolean models (Steinway et al., 2015) and to

other approaches that can predict the phenotypes of combinatorial

perturbations (Yu et al., 2016). Ultimately, we seek to complete the

entire modeling cycle by performing the experiments that we plan,

studying the discrepancies with model predictions and using them to

improve and extend the mathematical models themselves.
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