
Protein threading using residue co-variation and

deep learning

Jianwei Zhu1,2,3, Sheng Wang1, Dongbo Bu2,3,* and Jinbo Xu1,*

1Toyota Technological Institute, Chicago, IL 60637, USA, 2Key Lab of Intelligent Information Process, Institute of

Computing Technology, Chinese Academy of Sciences, Beijing 626011, China and 3University of Chinese Academy

of Sciences, Beijing 100049, China

*To whom correspondence should be addressed.

Abstract

Motivation: Template-based modeling, including homology modeling and protein threading, is a

popular method for protein 3D structure prediction. However, alignment generation and template

selection for protein sequences without close templates remain very challenging.

Results: We present a new method called DeepThreader to improve protein threading, including

both alignment generation and template selection, by making use of deep learning (DL) and resi-

due co-variation information. Our method first employs DL to predict inter-residue distance distri-

bution from residue co-variation and sequential information (e.g. sequence profile and predicted

secondary structure), and then builds sequence-template alignment by integrating predicted

distance information and sequential features through an ADMM algorithm. Experimental results

suggest that predicted inter-residue distance is helpful to both protein alignment and template

selection especially for protein sequences without very close templates, and that our method out-

performs currently popular homology modeling method HHpred and threading method CNFpred

by a large margin and greatly outperforms the latest contact-assisted protein threading method

EigenTHREADER.

Availability and implementation: http://raptorx.uchicago.edu/

Contact: dbu@ict.ac.cn orjinboxu@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Computational protein structure prediction remains one of the most

challenging problems in structural bioinformatics and has been ex-

tensively studied in the past decades (Baker and Sali, 2001; Bowie,

et al., 1991; Dill and MacCallum, 2012; Jones, et al., 1992).

Template-based modeling (TBM), including homology modeling

and protein threading, is a popular method for protein 3D structure

prediction, enjoying increasing success as both protein sequence and

structure databases expand (Cheng, 2008; Ma, et al., 2013; Peng

and Xu, 2010; Yang, et al., 2011). TBM is based upon the observa-

tion that many proteins share similar structures even if their sequen-

ces diverge (Kinch and Grishin, 2002; Zhang and Skolnick, 2005).

The quality of TBM critically depends on accurate sequence-

template alignment and correct template recognition, both of which

are challenging when only distantly-related templates are available

for a protein sequence under prediction (Cozzetto and Tramontano,

2004; Hou, et al., 2018; Jo, et al., 2015; Jones, 1997; Peng and Xu,

2011a; Peng and Xu, 2011b; Zhu, et al., 2017).

The accuracy of homology modeling and protein threading relies

on a scoring function composed of sequence and structure features

(Xu, et al., 2003; Zhou and Zhou, 2004). Existing methods such

as HHpred (Soding, 2005), SPARKS-X (Yang, et al., 2011),

BoostThreader (Peng and Xu, 2009) and CNFpred (Ma et al., 2012;

Ma et al., 2013) employ a scoring function mainly composed of se-

quential information such as sequence profile, secondary structure

and solvent accessibility. Pairwise information such as contact po-

tential and predicted contacts/distance have been attempted by a

few methods including PROSPECT (Xu and Xu, 2000), RAPTOR

(Xu et al., 2003), MRFalign (Ma et al., 2014), EigenTHREADER

(Buchan and Jones, 2017) and map_align (Ovchinnikov, et al.,

2017). Specifically, PROSPECT and RAPTOR make use of contact

potential; MRFalign makes use of inter-residue distance predicted

by a shallow neural network from mutual information and sequence

profile (Zhao and Xu, 2012); EigenTHREADER makes use of con-

tacts predicted by MetaPSICOV (Jones, et al., 2015) from direct co-

evolution and sequential information; map_align makes use of

VC The Author(s) 2018. Published by Oxford University Press. i263

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34, 2018, i263–i273

doi: 10.1093/bioinformatics/bty278

ISMB 2018

http://raptorx.uchicago.edu/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty278#supplementary-data
https://academic.oup.com/


contacts derived from pure direct co-evolution analysis.

Nevertheless, since they are very noisy, the pairwise information

used by PROSPECT, RAPTOR and MRFalign only yield incremen-

tal improvement. The predicted contacts used by EigenTHREADER

and map_align are less noisy, but the accuracy improvement by

EigenTHREADER and map_align over existing methods is not very

significant due to: (i) their predicted contacts are not accurate

enough especially when query proteins do not have many sequence

homologs, and (ii) they do not make good use of sequential informa-

tion, which are important even for threading on distantly-related

templates. Neither EigenTHREADER nor map_align has been sys-

tematically tested on proteins without many sequence homologs.

Very recently, deep learning (DL) has greatly improved inter-

residue contact prediction by integrating residue co-evolution infor-

mation, contact occurrence patterns and sequential features (Wang

et al., 2017). This DL-based method works well for contact predic-

tion and contact-assisted folding even if query proteins do not have

many sequence homologs. Inspired by this, we would like to study if

we can improve protein threading by a similar strategy. More specif-

ically, we will first adapt the DL method to predict inter-residue dis-

tance for query proteins and then employ the predicted inter-residue

distance to protein threading by integrating it with ‘classical’ se-

quential features. To fulfill this, we developed a new protein thread-

ing method called DeepThreader that adopts both sequential

features and predicted inter-residue distance in building sequence-

template alignment and selecting templates. Experimental results

show that this new method generates better protein alignment and

recognizes better templates than currently popular threading and

homology modeling methods such as HHpred and CNFpred.

DeepThreader greatly outperforms the latest contact-assisted

protein threading method EigenTHREADER, regardless of the simi-

larity between query protein and templates and the number of se-

quence homologs available for the query protein.

2 Materials and methods

2.1 Protein features and distance labels
We use both sequential features and pairwise features for query pro-

tein and templates. More specifically, for a template, the sequential

features include sequence profile, native secondary structure and

solvent accessibility, whereas the pairwise feature is its native inter-

residue distance. For a query protein, we use sequence profile, pre-

dicted secondary structures and solvent accessibility, and predicted

inter-residue distance. Here inter-residue distance is defined as the

Euclidean distance between two Cb atoms and discretized into 12

intervals:<5 Å, 5-6 Å, . . ., 14-15 Å, and>15 Å.

2.2 Predicting inter-residue distance for query proteins
We use the same DL method described in (Wang et al., 2017) to pre-

dict inter-residue distance distribution for a query sequence. The

only difference is that the goal in (Wang et al., 2017) is to predict

the probability of two residues forming a contact while here we pre-

dict the distance distribution of any two residues. In particular, for

contact prediction only 2 labels are involved while for distance pre-

diction 12 labels (intervals) are involved. The DL model for distance

prediction is trained using exactly the same training procedure,

training set and validation data as that for contact prediction. We

also use the same input features for this DL model, including se-

quential features (e.g. sequence profile and predicted secondary

structure) and direct co-evolution information generated by

CCMpred (Seemayer et al., 2014). Summing up the predicted

probability values of the first four distance intervals [falling into (0,

8 Å)] and using the resultant summation as contact probability, our

DL method for distance prediction has the same contact prediction

accuracy as reported in (Wang et al., 2017). This verifies that pre-

dicted distance has at least the same accuracy as predicted contacts.

Nevertheless, predicted distance provides a finer-grained informa-

tion than predicted contacts. See the Supplementary Material

for more detailed evaluation of distance prediction. This DL algo-

rithm is implemented with Theano and Python and runs on GPUs

while the other components of DeepThreader is implemented with

C/Cþþ and runs on CPUs.

2.3 Scoring a sequence-template alignment
Let T denote a template protein with solved structure and S a

query protein sequence. Let M, It and Is be the three alignment

states where M indicates that two residues are aligned, It and Is

indicate insertion at the template and the query sequence, respect-

ively. As shown in Figure 1, each alignment corresponds to a

path in an alignment matrix, where each vertex at i; jð Þ in the

path is associated with an alignment state u. We may describe

an alignment using the a set of 3N1N2 binary variables

fzu
ijj1 � i � N1; 1 � j � N2;u 2 fM; It; Isgg, where N1 and N2

are the lengths of the two proteins. The binary variable zu
ij is equal

to 1 if the alignment passes i; jð Þ with state u, and 0 otherwise.

We score a sequence-template alignment as follows.

S ¼ Ssingleton þ Spairwise ¼
X

i;j;uð Þ2Z

hu
ijz

u
ij þ

1

L

X

i; j;uð Þ 2 Z;
k; l; vð Þ 2 Z

huv
ijklz

u
ijz

v
kl

(1)

Here, hu
ij and huv

ijkl are pre-computed constants, representing the

singleton and pairwise alignment potentials, respectively. These two

potentials are derived from sequential features and predicted inter-

residue distance distribution, respectively. L is the alignment length

and 1/L is used to balance the accumulative singleton and pairwise

potentials.

2.3.1 Singleton alignment potential

Singleton alignment potential quantifies how well to align a sequence

residue to a template residue, which is derived from the sequential fea-

tures of the query sequence and template. Given an alignment path,

its singleton potential is the accumulative potential of all the vertices

along the path. We use exactly the same singleton potential employed

by CNFpred, the threading program underlying the RaptorX server

(Kallberg et al., 2012). Please see (Ma et al., 2012, 2013) for more

details about CNFpred and its scoring function.

2.3.2 Pairwise alignment potential

Pairwise alignment potential quantifies how well to align a pair of

sequence residues j and l to a pair of template residues i and k. Let

dT
ik denote the distance between two template residues i and k, which

is true distance calculated from native structure. Let dS
jl be the dis-

tance bin between sequence residues j and l, which is a probability

distribution predicted by our DL method. We measure inter-residue

distance similarity using the following pairwise potential.

huv
ijkl ¼ log

p dS
jl ¼ dT

ik

� �

pref dT
ik

� � (2)

Here, p dS
jl ¼ dT

ik

� �
denotes the predicted probability of dS

jl being

equal to dT
ik and pref dT

ik

� �
denotes the background probability of dT

ik

i264 J.Zhu et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty278#supplementary-data


in native protein structures. The background distance probability is

calculated by simple counting on a set of non-redundant protein

structures PDB25.

2.4 Optimizing scoring function by ADMM
It is computationally hard to optimize the scoring function in

Equation (1) because it has pairwise potential and gaps are allowed

in alignment. Therefore, we find a sub-optimal solution to this prob-

lem by using the ADMM algorithm described in (Ma et al., 2014).

Here, we briefly describe this algorithm and for more details please

see the paper. First, we formulate the sequence-template alignment

problem as the following integer quadratic programming problem.

max
Z

X
i;j;u

hu
ijz

u
ij þ

1

L

X
i;j;k;l;u;v

huv
ijklz

u
ijz

v
kl

s:t:
X
j;u

zu
ij ¼ 1 for any i

3ð Þ

Equation (3) is also subject to the constraint that a feasible solution

of zu
ij shall form a valid alignment path. To apply ADMM, we make

a copy of z and reformulate Equation (3) into a new quadratic

problem.

max
z;y

X
i;j;u

hu
ijz

u
ij þ

1

L

X
i;j;k;l;u;v

huv
ijklz

u
ijy

v
kl �

q
2

X
i;j;u

zu
ij � yu

ij

� �2

4ð Þ

where q is a constant, and y is a copy of z. The above optimization

problem is subject to the constraint that z ¼ y.

Next we split Equation (4) into two sub-problems, and solve

them iteratively using the Viterbi algorithm (Forney, 1973). Briefly,

the whole algorithm has the following main steps:

i. Use the Viterbi algorithm to build an initial sequence-template

alignment without using pairwise potential and apply such an

alignment to initialize z and L.

ii. Fixing z, Equation (4) can be represented as a linear function of

y [noticing that ðyu
ijÞ

2 ¼ yu
ij�. Use the Viterbi algorithm to maxi-

mize Equation (4) to update y. This will generate a new align-

ment formed by y.

iii. Fix y and similarly use the Viterbi algorithm to maximize

Equation (4) to update z. This will generate a new alignment

formed by z.

iv. If z and y are very close to each other, stop and use z as the

final alignment. Otherwise, update L as the length of the latest

alignment and repeat steps (ii) and (iii).

Empirically, this algorithm converges within 10 iterations in most

cases.

2.4.1 K-band Viterbi algorithm

The Viterbi algorithm used in steps 2 and 3 has a running time pro-

portional to the product of protein lengths. In order to speed up, we

restrict the search space in these steps by a band of size K.

Specifically, in step 2, we restrict the search space of y within a

neighborhood of z. Supposing zM
ij ¼ 1, i.e. in alignment z, template

residue i is aligned to query residue j, we enforce that in y, residue i

can only be an insertion or aligned to one of the query residues:

j�K, j� Kþ 1, . . ., j, . . ., jþ K� 1, jþ K. Let i0 be the non-

insertion template residue that is the closest to i along the template

primary sequence. When template residue i is an insertion in z, we

enforce that in y, i can only be an insertion or aligned to the same

set of query residues that can be aligned by i0. Similarly, we restrict

the search space of z within a neighborhood of y in step iii. When K

is relatively small, we can greatly speed up steps (ii) and (iii) and

thus the whole algorithm. See Sub-Section 3.6 for the impact of

band size on the model quality and running time.

2.5 Training and test data
2.5.1 Training data

The threading algorithm itself does not need training; however, we

need to train a DL model to predict inter-residue distance from se-

quential features and co-evolution information. We train such a DL

model using exactly the same way described in (Wang et al., 2017).

In particular, the training and validation data are subsets of PDB25

generated by PISCES (Wang and Dunbrack, 2003) in 2015. Any two

proteins in PDB25 share less than 25% sequence identity. In total,

we use �6300 proteins for training and 400 for validation.

2.5.2 Test data

We used two sets of query proteins to test our threading algorithm.

The first set (denoted as Test500) consists of 500 proteins randomly

sampled from PDB25, in which any protein has sequence identi-

ty<25% and BLAST E-value>0.1 with both training and validation

proteins. Since we generated multiple sequence alignments for pro-

teins in Test500 using an NR sequence database dated in 2015,

about 40% of the proteins in Test500 have fewer than 500 effective

sequence homologs. In contrast, most of the 150 test protein families

used by EigenTHREADER have more than 1000 effective sequence

homologs.

The second test set consists of 86 officially-defined CASP12 tar-

get domains released in 2016. The CASP12 data are divided into

three groups by difficulty level: FM, FM/TBM and TBM. FM targets

are hard to predict while TBM targets are easier. We used the uni-

prot20 sequence database (dated in 2015 and 2016) to generate

multiple sequence alignments for the CASP12 proteins. About 63%

of the CASP12 domains have fewer than 500 effective sequence

(0,0,Dummy)

(5,5,M)

(1,1,M)

(2,1,Is)

(3,2,M)

(4,3,M)

(4,4,It)

L P S R E

S

A

L

L

Q

M

M

M

M

Is

It

Dummy

M M M MIs It

L
|
S

-
|
A

P
|
L

S
|
L

R
|
-

E
|
Q

Template

Sequence
CNF

Co-variation+Deep Learning

NativeA B C

Fig. 1. Illustration of sequence-template alignment. (A) Alignment can be represented as a sequence of three states (M, Is, It). Both sequential (through CNF) and

pairwise information (through co-variation and DL) are used in generating alignment. (B) An alignment corresponds to a path in the alignment matrix. (C) An

alignment path is a set of triples consisting of two residue indices and one alignment state

DeepThreader i265



homologs. Further, the median number of effective sequence homo-

logs for the FM domains is only 58. See our paper (Wang et al.,

2018) for the detailed analysis of the contacts predicted by our DL

method for the CASP12 domains. Among the 86 domains, 64 have

BLAST E-value>0.1 with our training and validation proteins for

distance prediction. These 64 domains form a new test set.

To test DeepThreader, we use PDB40 created before CASP12 as the

template database, which has 30 874 proteins with solved structures.

Any two proteins in PDB40 share less than 40% sequence identity.

Test data for alignment accuracy. For each query protein in

Test500, we use a structure alignment program DeepAlign (Wang

et al., 2013) to identify top 30 similar templates in PDB40 (exclud-

ing the query protein itself), from which we randomly select two

templates and match each of them with the query protein to form a

sequence-template pair. Overall, we obtain 1000 sequence-template

pairs to test the alignment accuracy.

Test data for threading performance. The proteins in both

Test500 and CASP12 are used as query proteins for threading test.

We align each query protein to the template database PDB40 and se-

lect top sequence-template alignments by alignment score and build

corresponding 3D models by MODELLER (Webb and Sali, 2014).

2.6 Evaluation method
2.6.1 Programs to compare

To evaluate alignment accuracy, we compare our new method

DeepThreader with several popular methods including HHpred

(Soding, 2005) and CNFpred (the threading method underlying

RaptorX; Ma et al., 2012, 2013), as well as EigenTHREADER

(Buchan and Jones, 2017), a new threading method built upon con-

tacts predicted by MetaPSICOV (Jones et al., 2015). We do not

evaluate map_align because we failed to run it correctly. Here,

HHpred was run with the option ‘-mact 0.1’. EigenTHREADER

produces three kinds of alignment scores: contact map overlap

(CMO), t-statistic and logistic regression score. We use CMO to

rank templates since it is the best among the three. Besides the

CNFpred itself, we also benchmark its variant CNFpredDL, which

re-ranks the sequence-template alignments generated by CNFpred

using the alignment scoring function described in this paper [i.e.

Equation (1)]. CNFpredDL generates the same alignment as

CNFpred, but has different threading performance due to the new

template selection strategy. To be fair, we use the same template

database and the same nr sequence database for profile generation

and contact (distance) prediction.

2.6.2 Evaluating alignment accuracy

We calculate the reference-independent alignment accuracy instead

of reference-dependent accuracy. This is because (i) our final goal is

to predict 3D models for a query protein, and (ii) this avoids gener-

ating reference alignments, which are not unique since they depend

on structure alignment tools. In particular, for each sequence-

template pair, we first generate an alignment by our threading

method (and the competing methods), then build a 3D model for the

query sequence by MODELLER (Webb and Sali, 2014) based on

the alignment and finally use the quality of the generated 3D model

to evaluate alignment accuracy. Here, we evaluate the quality of a

3 D model by TM-score (Zhang and Skolnick, 2004), GDT (Zemla,

2003) and uGDT (i.e. unnormalized GDT) as the model quality.

TM-score ranges from 0 to 1 with 1 indicating the best. GDT ranges

from 0 to 100, but here we divide it by 100 so that it has scale be-

tween 0 and 1. uGDT is equal to the scaled GDT times the sequence

length, which works better than GDT when a large query protein is

only partially covered by its templates (e.g. only one domain is cov-

ered). uGDT can also be interpreted as the number of correctly mod-

elled residues weighted by the modeling quality at each residue.

2.6.3 Evaluating threading performance

We evaluate threading performance by measuring the quality of 3D

models built by MODELLER from the first-ranked and the best of

top five templates. That is, for each query protein in Test500 and

CASP12, we thread it onto all the templates in PDB40, select the top

five sequence-template alignments (by alignment score) and then

build five 3D models for the query by MODELLER from the top

five alignments. Finally, we measure the quality of the top 1 and the

best of top five 3D models by TM-score, GDT and uGDT.

2.6.4 Remark

In evaluating a threading method, we shall not simply look at the

overall average accuracy on the whole test sets with both easy and

hard test cases. For easy cases, almost all existing methods can do

well, so there is no need to develop new methods. It is not that

meaningful to evaluate a threading method on very hard cases either

since they do not have reasonable templates and TBM is not sup-

posed to work at all. That is, we shall focus on those query proteins

with templates having TM-score between 0.4 and 0.7.

3 Results

3.1 Alignment accuracy
As shown in Table 1, on Test500, our method DeepThreader out-

performs all the other competing methods including HHpred,

CNFpred and EigenTHREADER in generating sequence-template

alignments. On average, the alignments produced by DeepThreader

have TM-score, GDT and uGDT of 0.54, 0.45 and 89.82, respect-

ively. In terms of TM-score, DeepThreader outperforms HHpred,

Table 1. Alignment accuracy measured by TM-score, GDT and uGDT on Test500

HHpred CNFpred EigenTHREADER DeepThreader

TM-score GDT uGDT TM-score GDT uGDT TM-score GDT uGDT TM-score GDT uGDT

(0.00, 1.00] 0.47 0.39 79.57 0.50 0.42 83.96 0.42 0.33 64.74 0.54 0.45 89.82

(0.00, 0.25] 0.13 0.10 37.21 0.17 0.11 42.62 0.17 0.09 31.48 0.19 0.13 47.52

(0.25, 0.40] 0.18 0.14 32.63 0.22 0.16 37.82 0.20 0.13 29.55 0.24 0.18 42.09

(0.40, 0.65] 0.36 0.30 60.76 0.41 0.34 66.24 0.34 0.26 49.50 0.47 0.38 74.36

(0.65, 0.80] 0.64 0.54 105.0 0.66 0.56 108.3 0.53 0.42 82.10 0.70 0.59 114.1

(0.80, 1.00] 0.80 0.72 140.9 0.82 0.74 143.4 0.70 0.61 117.1 0.83 0.75 145.2

Notes: We measure the difficulty of a sequence-template pair by the structure similarity (measured by TM-score) of two proteins in the pair and split all the

pairs into five groups:<0.25, 0.25–0.4, 0.4–0.65, 0.65–0.8 and 0.8–1.0.

i266 J.Zhu et al.



CNFpred and EigenTHREADER by 15%, 8% and 28%, respective-

ly. Since DeepThreader and CNFpred share identical singleton po-

tential (and CNFpred uses only singleton potential), this result

indicates that pairwise alignment potential indeed helps improve

alignment accuracy. The advantage of DeepThreader over the others

is the largest when the sequence-template similarity falls into (0.4,

0.65), which may indicate that pairwise potential is the most useful for

protein pairs at such a similarity level. EigenTHREADER does not

fare as well as expected. It outperforms HHpred in terms of TM-score

on difficult cases (TM-score<0.4), but significantly underperforms in

other cases. The possible reasons might be: (i) the predicted contacts

used by EigenTHREADER are not very accurate on Test500; and (ii)

EigenTHREADER does not make use of sequential features, although

they are important for even distantly-related proteins.

In terms of TM-score and GDT, DeepThreader generates align-

ments better than HHpred for 811 and 780 pairs, whereas HHpred is

better than DeepThreader for only 177 and 199 pairs, respectively.

In addition, DeepThreader performs better than CNFpred for 743

and 710 pairs, while worse for 220 and 245 pairs, respectively.

DeepThreader significantly outperforms EigenTHREADER on more

than 890 pairs. Figures 2 and 3 show the head-to-head comparison

between DeepThreader and HHpred and between DeepThreader and

CNFpred in terms of TM-score on Test500. These figures confirm

that DeepThreader produces better alignments than CNFpred and

HHpred for many more sequence-template pairs, especially when the

query protein is not very close to template.

In order to assess the statistical significance for accuracy im-

provement, we conduct a statistical t-test to calculate P-value be-

tween our methods with CNFpred, HHpred and EigenTHREADER.

On the 1000 sequence-template pairs, the P-values between our

method and HHpred, CNFpred and EigenTHREADER (in terms of

TM-score) are 2.7e–11, 3.6e–04 and 1.2e–34, respectively.

Specifically, when the TM-score is in (0.4, 0.65], DeepThreader is

better than CNFpred and HHpred by at least 0.05 with correspond-

ing P-values being 6.5e–08 and 2.2e–20, respectively. In summary,

the advantage of DeepThreader in building alignments over the

others is statistically significant (P<0.05). See the Supplementary

Material for all the detailed P-values.

3.2 Threading performance on Test500
As shown in Table 2, our method outperforms the others by a large

margin in terms of the accuracy of the 3D model built from the first-

ranked and the best of top five templates. We measure the difficulty

of a test protein by its structure similarity (measured by TM-score)

with its best template. In Table 2, ‘TM-score<x’ means that when

doing threading we exclude all the templates whose structure simi-

larity (measured by TM-score) with the test protein is larger than x.

As shown in this table, the harder the test protein are, the larger

advantage our method has over the other methods. Our method sig-

nificantly outperforms the others when the best templates have TM-

score<0.65 with the test protein. When the best templates have

TM-score<0.50, our method produces 3D models with average

TM-score 0.39, which is 50%, 22% and 62% better than HHpred,

CNFpred and EigenTHREADER, respectively. We also calculate the

P-value between our method with HHpred, CNFpred, CNFpredDL

and EigenTHREADER. When TM-score<0.7, the P-values are

9.1e–12, 6.7e–05, 4.5e–02 and 9.5e–128, respectively. That is, the

advantage of DeepThreader is statistically significant (P<0.05).

EigenTHREADER performs badly no matter whether good tem-

plates are available or not. This is because it does not make good

use of sequential features and the predicted contacts used by

EigenTHREADER are not very accurate. Figure 4 shows the number

of test proteins for which DeepThreader and CNFpred perform bet-

ter, respectively, in terms of the quality of the models built from the

first-ranked templates. Similar to Table 2, in this figure, ‘<x’ indi-

cates that the templates with TM-score>x are excluded from con-

sideration in doing threading. This figure further confirms that the

harder the test protein, the more advantage DeepThreader has over

CNFpred.

Figure 5 shows the head-to-head comparison between

DeepThreader and CNFpred in terms of quality of the models built

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

H
H
pr
ed

eroc s-
MT

DeepThreader TM-score

Fig. 2. The alignment quality comparison between DeepThreader and HHpred

on Test500. Each point represents two alignments generated by DeepThreader

(x-axis) and HHpred (y-axis), respectively

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
N
Fp
re
d

erocs -
MT

DeepThreader TM-score

Fig. 3. The alignment quality comparison between DeepThreader and CNFpred

on Test500. Each point represents two alignments generated by DeepThreader

(x-axis) and CNFpred (y-axis), respectively

DeepThreader i267

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty278#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty278#supplementary-data


from the first-ranked templates. In generating this figure, all the

templates which have TM-score>0.5 with the test proteins are

excluded from threading. This figure shows that our method signifi-

cantly outperforms CNFpred. In particular, for 137 test proteins

that CNFpred can only predict a 3D model with TM-score<0.4,

our method can produce models with TM-score between 0.4 and

0.6. It is worthy pointed out that for some test proteins, CNFpred or

DeepThreader generated 3D models with TM-score>0.5 even if

structure alignment tools DeepAlign and TMalign cannot generate

alignments with TM-score>0.5.

3.3 Threading performance on CASP12 data
We further evaluate the threading performance of our method on

the 86 CASP12 domains released in 2016 (Moult et al., 2018).

Among the 86 domains, 38, 13 and 35 domains belong to the cate-

gories of FM, FM/TBM and TBM, respectively. Here, all competing

methods use the same set of templates (i.e. PDB40) and the same nrT
a
b

le
2
.
T

h
re

a
d

in
g

p
e

rf
o

rm
a

n
ce

o
f

d
if

fe
re

n
t

m
e

th
o

d
s

o
n

T
e

st
5

0
0

T
M

-s
co

re
<

0
.5

0
T

M
-s

co
re
<

0
.5

5
T

M
-s

co
re
<

0
.6

0
T

M
-s

co
re
<

0
.6

5

T
M

-s
co

re
G

D
T

u
G

D
T

T
M

-s
co

re
G

D
T

u
G

D
T

T
M

-s
co

re
G

D
T

u
G

D
T

T
M

-s
co

re
G

D
T

u
G

D
T

H
H

p
re

d
0
.2

6
/0

.3
3

0
.2

1
/0

.2
6

4
4
.5

4
/5

4
.0

2
0
.3

1
/0

.3
7

0
.2

5
/0

.3
1

5
2
.6

3
/6

2
.4

8
0
.3

7
/0

.4
3

0
.3

0
/0

.3
5

6
3
.5

1
/7

2
.5

2
0
.4

2
/0

.4
8

0
.3

5
/0

.4
0

7
2
.5

3
/8

1
.8

5

C
N

F
p
re

d
0
.3

2
/0

.3
6

0
.2

5
/0

.2
8

5
0
.0

2
/5

6
.4

8
0
.3

5
/0

.3
9

0
.2

8
/0

.3
1

5
7
.4

8
/6

3
.3

3
0
.4

1
/0

.4
5

0
.3

3
/0

.3
6

6
7
.9

7
/7

3
.8

9
0
.4

6
/0

.5
0

0
.3

8
/0

.4
1

7
6
.8

9
/8

3
.1

5

C
N

F
p
re

d
D

L
0
.3

5
/0

.3
9

0
.2

9
/0

.3
1

5
7
.3

8
/6

2
.7

4
0
.3

9
/0

.4
3

0
.3

2
/0

.3
5

6
4
.9

9
/6

9
.7

8
0
.4

5
/0

.4
8

0
.3

7
/0

.3
9

7
4
.6

9
/7

9
.0

9
0
.4

9
/0

.5
2

0
.4

0
/0

.4
3

8
2
.4

3
/8

7
.6

5

E
ig

en
T

H
0
.2

4
/0

.2
8

0
.1

7
/0

.2
0

2
9
.9

0
/3

5
.5

7
0
.2

5
/0

.2
9

0
.1

8
/0

.2
1

3
1
.5

2
/3

7
.6

4
0
.2

6
/0

.3
1

0
.1

9
/0

.2
3

3
3
.2

1
/4

0
.3

6
0
.2

8
/0

.3
3

0
.2

0
/0

.2
4

3
6
.2

0
/4

3
.3

8

D
ee

p
T

h
re

a
d
er

0
.3

9
/0

.4
3

0
.3

2
/0

.3
4

6
3
.0

9
/6

8
.4

6
0
.4

3
/0

.4
6

0
.3

5
/0

.3
8

7
0
.3

1
/7

5
.3

9
0
.4

7
/0

.5
1

0
.3

9
/0

.4
2

7
8
.9

6
/8

4
.1

2
0
.5

1
/0

.5
5

0
.4

2
/0

.4
5

8
6
.1

2
/9

2
.0

1

T
M

-s
co

re
<

0
.7

0
T

M
-s

co
re
<

0
.7

5
T

M
-s

co
re
<

0
.8

0
T

M
-s

co
re
<

0
.8

5

T
M

-s
co

re
G

D
T

u
G

D
T

T
M

-s
co

re
G

D
T

u
G

D
T

T
M

-s
co

re
G

D
T

u
G

D
T

T
M

-s
co

re
G

D
T

u
G

D
T

H
H

p
re

d
0
.4

8
/0

.5
4

0
.4

0
/0

.4
5

8
4
.1

0
/9

2
.2

8
0
.5

4
/0

.5
9

0
.4

5
/0

.5
0

9
5
.1

4
/1

0
3
.0

0
.5

9
/0

.6
4

0
.5

0
/0

.5
5

1
0
6
.2

/1
1
3
.6

0
.6

3
/0

.6
8

0
.5

5
/0

.5
9

1
1
7
.0

/1
2
4
.9

C
N

F
p
re

d
0
.5

2
/0

.5
5

0
.4

3
/0

.4
6

8
8
.1

5
/9

3
.8

3
0
.5

7
/0

.6
0

0
.4

8
/0

.5
1

9
9
.4

2
/1

0
4
.8

0
.6

2
/0

.6
5

0
.5

2
/0

.5
5

1
0
9
.5

/1
1
4
.9

0
.6

6
/0

.6
9

0
.5

7
/0

.6
0

1
2
0
.9

/1
2
6
.6

C
N

F
p
re

d
D

L
0
.5

4
/0

.5
7

0
.4

5
/0

.4
7

9
1
.9

5
/9

7
.1

5
0
.5

9
/0

.6
2

0
.5

0
/0

.5
2

1
0
2
.4

/1
0
7
.6

0
.6

3
/0

.6
6

0
.5

4
/0

.5
7

1
1
2
.1

/1
1
7
.2

0
.6

8
/0

.7
0

0
.5

8
/0

.6
1

1
2
2
.9

/1
2
8
.0

E
ig

en
T

H
0
.2

9
/0

.3
4

0
.2

2
/0

.2
6

3
8
.7

0
/4

6
.5

5
0
.3

1
/0

.3
7

0
.2

4
/0

.2
8

4
2
.1

9
/5

0
.9

0
0
.3

3
/0

.3
9

0
.2

5
/0

.3
1

4
5
.6

2
/5

5
.2

8
0
.3

5
/0

.4
1

0
.2

7
/0

.3
3

4
8
.8

7
/6

0
.0

8

D
ee

p
T

h
re

a
d
er

0
.5

6
/0

.5
9

0
.4

6
/0

.4
9

9
5
.4

3
/1

0
1
.0

0
.6

1
/0

.6
4

0
.5

1
/0

.5
4

1
0
5
.2

/1
1
0
.8

0
.6

4
/0

.6
8

0
.5

5
/0

.5
8

1
1
4
.4

/1
1
9
.7

0
.6

9
/0

.7
1

0
.5

9
/0

.6
2

1
2
4
.6

/1
3
0
.1

N
o
te

s:
‘T

M
-s

co
re
<

x
’

m
ea

n
s

th
a
t

w
h
en

d
o
in

g
th

re
a
d
in

g
w

e
ex

cl
u
d
e

a
ll

th
e

te
m

p
la

te
s

w
h
o
se

st
ru

ct
u
re

si
m

il
a
ri

ty
(m

ea
su

re
d

b
y

T
M

-s
co

re
)

w
it

h
th

e
te

st
p
ro

te
in

is
la

rg
er

th
a
n

x
.

E
a
ch

ce
ll

in
th

e
ta

b
le

sh
o
w

s
th

e
q
u
a
li
ty

o
f

th
e

m
o
d
el

s
b
u
il
t

fr
o
m

th
e

fi
rs

t-
ra

n
k
ed

a
n
d

th
e

b
es

t
o
f

to
p

fi
v
e

te
m

p
la

te
s.

V
a
lu

es
in

b
o
ld

fo
n
t

in
d
ic

a
te

s
th

e
b
es

t
p
er

fo
rm

a
n
ce

.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

C
N
Fp
re
d

erocs-
M T

DeepThreader TM-score

Fig. 5. The head-to-head comparison between DeepThreader and CNFpred

on Test500 in terms of the TM-score of the models built from the first-ranked

templates. Each point represents the TM-score of the two models generated

by DeepThreader (x-axis) and CNFpred (y-axis), respectively

Fig. 4. Each red (blue) bar shows the number of test proteins in Test500

for which DeepThreader (CNFpred) perform better in terms of the quality

(TM-score) of the models built from the first-ranked template. ‘<x’ indicates

that the templates with TM-score>x are excluded from consideration in

doing threading

i268 J.Zhu et al.



sequence database, both of which were created before CASP12

started.

As shown in Table 3, on FM and FM/TBM targets

DeepThreader outperforms all the competing methods by a good

margin no matter whether the models are built from the first-ranked

or the best of top five templates. On the whole CASP12 set, our

method produces the top 1 models with average TM-score 0.54,

which is about 20%, 10% and 64% better than HHpred, CNFpred

and EigenTHREADER, respectively. On the FM/TBM domains our

method shows the largest advantage, outperforming HHpred,

CNFpred and EigenTHREADER by 45%, 34% and 83%, respect-

ively. The improvement of our method over CNFpred on the FM

targets is not as big as that on the FM/TBM targets. This is possibly

because: (i) most FM targets have few sequence homologs (Wang

et al., 2018) and our predicted inter-residue distance may not be ac-

curate enough; and (ii) the FM targets have no reasonable templates

and TBM is not supposed to work. Again EigenTHREADER does

not fare better than HHpred even for FM targets, possibly because

that the predicted contacts used by it have low accuracy (Wang

et al., 2018). EigenTHREADER does not fare well on TBM targets

either because it does not use sequential features.

Table 4 shows that when we exclude the targets whose BLAST

E-value with the training and validation set<0.1, the advantage of

our method is even more significant. For example, our method

produces the top 1 models with average TM-score 0.47, which is

about 31%, 17% and 74% better than HHpred, CNFpred and

EigenTHREADER, respectively. On the FM/TBM domains, our

method shows a very large advantage, outperforming HHpred,

CNFpred and EigenTHREADER by 53%, 38% and 104%,

respectively.

Tables 3 and 4 show that DeepThreader is better than CNFpred

by 0.14 on the CASP12 TBM/FM targets. DeepThreader is better

than CNFpred by 0.05 TM-score on the CASP12 FM targets be-

cause most of these targets do not have reasonable templates and

TBM is not supposed to work. We conducted the statistical test

using all the 51 FM and FM/TBM targets. The P-values between

DeepThreader and HHpred and EigenTHREADER are 9.5e–04 and

4.7e–07 on the 51 domains, respectively, which indicates that the

advantage of DeepThreader on CASP12 hard targets is statistically

significant.

Tables 3 and 4 also list results of 5 top CASP12 servers.

On the FM and FM/TBM targets, DeepThreader outperforms

MULTICOM, RaptorX and Baker-Rosetta in terms of TM-score

and is comparable to QUARK and Zhang-Server. DeepThreader is

much worse than the top CASP12 servers on the TBM targets main-

ly because DeepThreader uses a much smaller template database.

In CASP12, RaptorX used PDB70 instead of PDB40 to construct

the template database. We shall be very careful in interpreting the

comparison between DeepThreader and the top CASP12 servers.

DeepThreader is only a threading method while almost all the

CASP12 top servers (or human groups) used a hybrid method. For

example, our own TBM server RaptorX first used CNFpred to gen-

erate sequence-template alignments, then employed an unpublished

DL method to rank all the alignments, and finally used Rosetta to

build 3D models from a single template or multiple similar tem-

plates. In contrast, DeepThreader simply selects alignments by their

alignment scores and use MODELLER to build 3D models from in-

dividual templates. On average, DL for template selection works

better than the raw alignment score, Rosetta builds better 3D mod-

els than MODELLER and multi-template modeling works better

than single-template modeling. Our in-house test shows that from

the same DeepThreader alignment (with TM-score<0.8), the 3DT
a
b

le
3
.
T

h
re

a
d

in
g

p
e

rf
o

rm
a

n
ce

o
n

8
6

C
A

S
P

1
2

d
o

m
a

in
s

A
L

L
F
M

F
M

/T
B

M
T

B
M

T
M

-s
co

re
G

D
T

u
G

D
T

T
M

-s
co

re
G

D
T

u
G

D
T

T
M

-s
co

re
G

D
T

u
G

D
T

T
M

-s
co

re
G

D
T

u
G

D
T

H
H

p
re

d
0
.4

5
/0

.5
0

0
.4

0
/0

.4
4

7
4
.8

3
/8

1
.2

4
0
.2

4
/0

.3
0

0
.2

3
/0

.2
8

2
9
.8

4
/3

5
.3

1
0
.3

8
/0

.4
4

0
.3

5
/0

.4
1

5
3
.9

6
/5

9
.0

9
0
.6

9
/0

.7
3

0
.5

9
/0

.6
3

1
3
1
.4

/1
3
9
.3

C
N

F
p
re

d
0
.4

9
/0

.5
3

0
.4

3
/0

.4
7

7
8
.8

1
/8

5
.9

7
0
.3

0
/0

.3
4

0
.2

7
/0

.3
1

3
6
.5

0
/4

0
.9

1
0
.4

1
/0

.4
8

0
.4

0
/0

.4
6

5
0
.9

2
/6

4
.5

4
0
.7

2
/0

.7
4

0
.6

2
/0

.6
5

1
3
5
.1

/1
4
2
.9

C
N

F
p
re

d
D

L
0
.5

1
/0

.5
5

0
.4

6
/0

.4
9

8
3
.6

2
/8

8
.7

8
0
.3

2
/0

.3
7

0
.3

0
/0

.3
3

3
8
.8

3
/4

3
.2

0
0
.4

9
/0

.5
5

0
.4

7
/0

.5
2

6
3
.6

0
/6

9
.3

6
0
.7

3
/0

.7
5

0
.6

4
/0

.6
5

1
3
9
.7

/1
4
3
.3

E
ig

en
T

H
0
.3

3
/0

.3
9

0
.2

7
/0

.3
3

4
8
.5

1
/5

9
.2

6
0
.2

3
/0

.2
8

0
.2

0
/0

.2
4

2
4
.8

5
/3

0
.3

4
0
.3

0
/0

.3
4

0
.2

9
/0

.3
3

3
2
.5

9
/3

6
.2

8
0
.4

5
/0

.5
4

0
.3

5
/0

.4
3

8
0
.1

2
/9

9
.1

9

D
ee

p
T

h
re

a
d
er

0
.5

4
/0

.5
7

0
.4

8
/0

.5
0

8
5
.9

8
/8

9
.6

8
0
.3

5
/0

.3
9

0
.3

1
/0

.3
5

4
1
.2

4
/4

5
.2

6
0
.5

5
/0

.5
6

0
.5

3
/0

.5
4

6
9
.2

8
/7

0
.9

7
0
.7

4
/0

.7
6

0
.6

4
/0

.6
6

1
4
0
.8

/1
4
4
.9

M
U

L
T

IC
O

M
0
.4

9
/0

.5
2

0
.4

4
/0

.4
7

8
1
.7

2
/8

6
.3

5
0
.2

6
/0

.2
9

0
.2

3
/0

.2
6

3
1
.3

3
/3

5
.2

9
0
.4

6
/0

.5
1

0
.4

4
/0

.4
9

6
0
.3

9
/6

4
.5

4
0
.7

5
/0

.7
8

0
.6

6
/0

.6
9

1
4
4
.4

/1
4
9
.9

R
a
p
to

rX
0
.5

3
/0

.5
3

0
.4

8
/0

.4
8

8
8
.1

8
/8

8
.1

8
0
.3

2
/0

.3
2

0
.2

8
/0

.2
8

3
7
.9

3
/3

7
.9

3
0
.5

0
/0

.5
0

0
.4

8
/0

.4
8

6
9
.4

3
/6

9
.4

3
0
.7

8
/0

.7
8

0
.6

9
/0

.6
9

1
4
9
.7

/1
4
9
.7

B
A

K
E

R
-R

O
S

0
.5

4
/0

.5
8

0
.4

9
/0

.5
3

9
1
.7

8
/9

7
.1

8
0
.3

3
/0

.3
7

0
.2

9
/0

.3
3

4
0
.5

6
/4

5
.8

2
0
.5

0
/0

.5
7

0
.4

8
/0

.5
6

6
8
.3

2
/7

5
.5

0
0
.7

9
/0

.8
1

0
.7

0
/0

.7
3

1
5
6
.1

/1
6
1
.0

Q
U

A
R

K
0
.5

5
/0

.5
9

0
.5

0
/0

.5
3

8
9
.8

2
/9

4
.1

4
0
.3

4
/0

.3
9

0
.3

0
/0

.3
5

4
0
.2

8
/4

6
.1

3
0
.5

3
/0

.5
8

0
.5

1
/0

.5
7

6
8
.3

8
/7

3
.7

8
0
.8

0
/0

.8
1

0
.7

0
/0

.7
1

1
5
1
.6

/1
5
3
.8

Z
h
a
n
g
-S

er
v
er

0
.5

6
/0

.6
0

0
.5

0
/0

.5
3

9
1
.1

4
/9

5
.3

2
0
.3

4
/0

.4
0

0
.3

0
/0

.3
6

4
1
.0

5
/4

7
.0

2
0
.5

5
/0

.5
9

0
.5

3
/0

.5
6

7
1
.0

3
/7

4
.6

7
0
.8

0
/0

.8
1

0
.7

1
/0

.7
2

1
5
3
.0

/1
5
5
.4

N
o
te

s:
E

a
ch

ce
ll

sh
o
w

s
th

e
a
v
er

a
g
e

q
u
a
li
ty

o
f

th
e

3
D

m
o
d
el

s
b
u
il
t

fr
o
m

th
e

fi
rs

t-
ra

n
k
ed

a
n
d

th
e

b
es

t
o
f

to
p

fi
v
e

te
m

p
la

te
s.

DeepThreader i269



models built by Rosetta are better than MODELLER by 0.014 in

terms of TM-score. That is, by simply combining DeepThreader and

Rosetta, we can predict better 3D models than the others on the FM

and FM/TBM targets.

Figure 6 shows the number of test proteins for which

DeepThreader and CNFpred perform better, respectively, in terms

of the quality of the models built from the first-ranked templates.

This figure further confirms that DeepThreader is better than

CNFpred on FM/TBM and TBM targets. Figure 7 shows head-to-

head comparison between DeepThreader and CNFpred in terms of

TM-score of the 3D models built from the first-ranked templates.

For some quite hard targets for which CNFpred produces models

with TM-score<0.40, DeepThreader generates much better 3D

models.

3.4 Contribution of predicted inter-residue distance
To evaluate the contribution of predicted inter-residue distance in-

formation, we examine the difference among DeepThreader,

CNFpredDL and CNFpred in terms of alignment accuracy and

threading performance. Table 1 shows that DeepThreader

Fig. 6. Each red (blue) bar shows the number of CASP12 test proteins for which

DeepThreader (CNFpred) perform better in terms of the quality (TM-score) of

the models built from the first-ranked templates. The number of targets in ALL,

FM, FM/TBM and TBM groups is 86, 38, 13 and 35, respectively

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
N
Fp
re
d
TM
-s
co
r e

DeepThreader TM-score

Fig. 7. Head-to-head comparison between DeepThreader and CNFpred on

CASP12. Each point represents the quality (TM-score) of two models gener-

ated by DeepThreader (x-axis) and CNFpred (y-axis), respectively

T
a
b

le
4
.
T

h
re

a
d

in
g

p
e

rf
o

rm
a

n
ce

o
n

6
4

C
A

S
P

1
2

d
o

m
a

in
s

A
L

L
F
M

F
M

/T
B

M
T

B
M

T
M

-s
co

re
G

D
T

u
G

D
T

T
M

-s
co

re
G

D
T

u
G

D
T

T
M

-s
co

re
G

D
T

u
G

D
T

T
M

-s
co

re
G

D
T

u
G

D
T

H
H

p
re

d
0
.3

6
/0

.4
2

0
.3

3
/0

.3
8

5
4
.7

8
/6

0
.1

1
0
.2

3
/0

.2
9

0
.2

2
/0

.2
7

2
8
.3

2
/3

3
.5

2
0
.3

6
/0

.4
2

0
.3

4
/0

.4
1

5
0
.4

7
/5

5
.7

6
0
.6

0
/0

.6
5

0
.5

2
/0

.5
6

1
0
7
.6

/1
1
3
.3

C
N

F
p
re

d
0
.4

0
/0

.4
5

0
.3

6
/0

.4
1

5
7
.9

4
/6

5
.6

7
0
.2

9
/0

.3
3

0
.2

6
/0

.3
0

3
4
.7

8
/3

9
.6

1
0
.4

0
/0

.4
7

0
.3

9
/0

.4
6

4
7
.3

8
/6

1
.5

0
0
.6

3
/0

.6
6

0
.5

4
/0

.5
8

1
0
8
.7

/1
1
7
.7

C
N

F
p
re

d
D

L
0
.4

4
/0

.4
8

0
.4

0
/0

.4
4

6
3
.5

7
/6

8
.2

2
0
.3

1
/0

.3
6

0
.2

9
/0

.3
3

3
7
.3

8
/4

2
.1

2
0
.4

9
/0

.5
4

0
.4

8
/0

.5
3

6
1
.1

1
/6

6
.6

4
0
.6

5
/0

.6
7

0
.5

6
/0

.5
8

1
1
4
.7

/1
1
8
.6

E
ig

en
T

H
0
.2

7
/0

.3
3

0
.2

3
/0

.2
8

3
3
.9

2
/4

1
.9

0
0
.2

3
/0

.2
8

0
.2

0
/0

.2
4

2
4
.9

3
/3

0
.4

1
0
.2

7
/0

.3
1

0
.2

8
/0

.3
2

2
7
.6

3
/3

1
.6

3
0
.3

6
/0

.4
4

0
.2

7
/0

.3
4

5
5
.0

9
/7

0
.4

8

D
ee

p
T

h
re

a
d
er

0
.4

7
/0

.5
0

0
.4

2
/0

.4
5

6
6
.2

8
/7

0
.0

6
0
.3

4
/0

.3
8

0
.3

1
/0

.3
4

4
0
.0

0
/4

4
.3

0
0
.5

5
/0

.5
6

0
.5

3
/0

.5
5

6
7
.2

9
/6

8
.5

8
0
.6

6
/0

.6
9

0
.5

7
/0

.5
9

1
1
5
.2

/1
1
9
.7

M
U

L
T

IC
O

M
0
.4

1
/0

.4
5

0
.3

7
/0

.4
1

6
0
.6

3
/6

5
.6

1
0
.2

6
/0

.2
9

0
.2

2
/0

.2
6

3
0
.4

4
/3

4
.0

9
0
.4

5
/0

.5
1

0
.4

5
/0

.5
0

5
7
.6

7
/6

2
.1

7
0
.6

7
/0

.7
1

0
.6

0
/0

.6
3

1
1
9
.6

/1
2
7
.4

R
a
p
to

rX
0
.4

6
/0

.4
6

0
.4

2
/0

.4
2

6
7
.4

4
/6

7
.4

4
0
.3

1
/0

.3
1

0
.2

8
/0

.2
8

3
6
.4

6
/3

6
.4

6
0
.4

9
/0

.4
9

0
.4

8
/0

.4
8

6
6
.2

4
/6

6
.2

4
0
.7

3
/0

.7
3

0
.6

4
/0

.6
4

1
2
6
.8

/1
2
6
.8

B
A

K
E

R
-R

O
S

0
.4

7
/0

.5
2

0
.4

3
/0

.4
8

7
1
.8

6
/7

7
.5

2
0
.3

3
/0

.3
7

0
.3

0
/0

.3
4

4
0
.4

9
/4

5
.9

0
0
.4

8
/0

.5
6

0
.4

8
/0

.5
6

6
4
.9

4
/7

2
.7

2
0
.7

4
/0

.7
7

0
.6

6
/0

.6
9

1
3
5
.7

/1
4
0
.5

Q
U

A
R

K
0
.4

9
/0

.5
3

0
.4

4
/0

.4
8

7
0
.1

0
/7

4
.5

8
0
.3

4
/0

.3
9

0
.3

0
/0

.3
5

3
9
.6

2
/4

5
.3

4
0
.5

2
/0

.5
8

0
.5

2
/0

.5
7

6
6
.2

7
/7

1
.0

0
0
.7

5
/0

.7
7

0
.6

5
/0

.6
7

1
3
0
.2

/1
3
2
.2

Z
h
a
n
g
-S

er
v
er

0
.5

0
/0

.5
4

0
.4

5
/0

.4
8

7
1
.8

0
/7

5
.7

3
0
.3

5
/0

.4
0

0
.3

0
/0

.3
5

4
0
.5

0
/4

6
.1

7
0
.5

4
/0

.5
8

0
.5

4
/0

.5
7

6
9
.0

5
/7

2
.0

5
0
.7

5
/0

.7
7

0
.6

6
/0

.6
7

1
3
2
.8

/1
3
4
.0

N
o
te

s:
E

a
ch

ce
ll

sh
o
w

s
th

e
a
v
er

a
g
e

q
u
a
li
ty

o
f

th
e

3
D

m
o
d
el

s
b
u
il
t

fr
o
m

th
e

fi
rs

t-
ra

n
k
ed

a
n
d

th
e

b
es

t
o
f

to
p

fi
v
e

te
m

p
la

te
s.

i270 J.Zhu et al.



outperforms CNFpred, indicating that predicted inter-residue indeed

can improve sequence-template alignment. Tables 2 and 3 show that

DeepThreader outperforms CNFpred too, indicating that predicted

inter-residue distance is helpful to threading performance. In

summary, inter-residue distance predicted from DL can improve

both alignment accuracy and threading performance. Tables 2 and 3

also show that CNFpredDL performs better than CNFpred.

Since CNFpredDL only re-ranks the alignments generated by

CNFpred, this implies that CNFpredDL can select better templates

than CNFpred. That is, predicted inter-residue distance can help

rank alignments generated by the other methods. However, there is

still a non-trivial gap between CNFpredDL and DeepThreader,

which indicates that the best way to use predicted inter-residue

distance is to apply it to both alignment generation and template

selection.

3.5 Accuracy improvement versus homologous

information
The alignment accuracy and threading performance relies on the ac-

curacy of predicted inter-residue distance, which in turn relies on

residue co-variation information. The co-variation information is

very noisy when the protein under prediction has a small number of

effective sequence homologs. We measure this by Meff (Wang and

Xu, 2013), which can be roughly interpreted as the number of non-

redundant sequence homologs in multiple sequence alignment when

70% sequence identity is used as cutoff to remove redundancy. As

shown in Figure 8, our method can improve alignment accuracy

(measured by TM-score) across all Meff values, but the improve-

ment is small when lnðMeff Þ < 2, i.e. Meff <7.39. We have simi-

lar observation on threading performance, as shown in Figures 9

and 10. In summary, there is a weak correlation between improve-

ment and Meff.

3.6 Selection of hyper-parameters
DeepThreader has two independent tunable hyper-parameters:

the number of iterations in ADMM and the band for the Viterbi

algorithm. We ran a grid search to study their impact on align-

ment accuracy. In particular, we tested the number of iterations

from 0 to 40 with stride 1 while fixing the band to 64. We also

tested the band 4 and from 8 to 128 with stride 8 while fixing the

number of iterations to 10. Figure 11A shows that both the run-

ning time and alignment quality increase along with the number

of iterations. In fact, the alignment accuracy is already very good

after two or three iterations. Figure 11B shows that the running

time and alignment quality increase with respect to the band used

by the Viterbi algorithm. Initially, the model quality rapidly

increases along with the band and then slows down when the

band>64. By default, we set the number of iterations to 10 and

the band to 64 to achieve a good balance between accuracy and

running time.

3.7 Running time
Figure 12 shows the running time of four methods building

sequence-template alignment with respect to protein length.

Note that all the methods were tested on the same Linux machine

of 128 G RAM and 32 CPUs (AMD Opteron(tm) Processor 6376,

1400 MHz, 2 M cache). It is expected that DeepThreader is

slower than the other programs, but DeepThreader is less than

5 times slower than EigenTHREADER and CNFpred, and about

10 times slower than HHpred except when the proteins are

too long. Overall, the average running time of DeepThreader is

acceptable.

A B

Fig. 11. The running time and alignment quality (on Test500) with respect to

(A) the number of iterations in the ADMM algorithm, and (B) the band used in

the Viterbi algorithm
Fig. 8. The relationship between alignment accuracy improvement and the

number of sequence homologs (measured by Meff), tested on Test500. The

471 sequence-template pairs with TM-score�0.60 are used

Fig. 9. The relationship between threading accuracy improvement and the num-

ber of sequence homologs (measured by Meff), tested on Test500. We exclude all

the templates whose structure similarity with the test protein is larger than 0.60

Fig. 10. The relationship between threading accuracy improvement and the

number of sequence homologs (measured by Meff), tested on CASP12 FM

and FM/TBM targets

DeepThreader i271



4 Conclusion

This paper presents DeepThreader, a distance-assisted protein

threading method that can greatly improve protein threading by

making use of inter-residue distance predicted from residue co-

variation information and DL. Experimental results show that

DeepThreader works particularly well for proteins without close

templates as long as the query protein has 10 sequence homologs,

owing to its effective integration of sequential features and pair-

wise information. Our predicted inter-residue distance is useful for

both protein alignment and template selection regardless of the

number of sequence homologs available for the query protein.

DeepThreader outperforms not only currently popular homology

modeling and threading methods such as HHpred and CNFpred

but also the latest contact-assisted threading methods such as

EigenTHREADER.

Different from EigenTHREADER that works only on some

hard targets with many sequence homologs, our method works

well on both hard and easy targets (even if they do not have many

sequence homologs) because our predicted distance is more

accurate and informative and we use a combination of sequential

and pairwise features while EigenTHREADER uses mainly

pairwise features. EigenTHREADER does not fare as well as

described in (Buchan and Jones, 2017) on our (more realistic) test

data, which is much more challenging than those tested by the

EigenTHREADER developers. Most of the EigenTHREADER

test proteins have more than 1000 effective sequence homologs

and thus, reasonable contact prediction. However, this kind of

proteins (except membrane proteins) are likely to have good

templates in PDB and thus, may not benefit too much from

contact-assisted threading. Given that map_align employs con-

tacts predicted from a pure co-evolution analysis method (which

requires a large number of sequence homologs to be accurate), we

expect that DeepThreader shall greatly outperform map_align on

query proteins without many sequence homologs.

Although slower than the other methods, DeepThreader has an

acceptable running time. We may speed up DeepThreader by run-

ning it on a computing cluster, which can be done easily by splitting

the template database. We may also speed up DeepThreader by

first running ADMM with only 2–3 iterations to choose top 1000

templates and then realigning the query sequence to the top tem-

plates with more iterations. Another speedup strategy is to run

DeepThreader on a GPU card, which may greatly speed up the tem-

plate search process.

Acknowledgement

The authors greatly appreciate the financial support from National Institutes

of Health, National Science Foundation and the National Natural Science

Foundation of China.

Funding

This work was supported by National Institutes of Health grant

R01GM089753 to JX and National Science Foundation grant DBI-1564955

to JX. This work is also supported by National Natural Science Foundation

of China grant 31770775, and 31671369 to JZ and DB. The funders had no

role in study design, data collection and analysis, decision to publish, or prep-

aration of the manuscript.

Conflict of Interest: none declared.

References

Baker,D. and Sali,A. (2001) Protein structure prediction and structural genom-

ics. Science, 294, 93–96.

Bowie,J. et al. (1991) A method to identify protein sequences that fold into a

known three-dimensional structure. Science, 253, 164–170.

Buchan,D.W.A. and Jones,D.T. (2017) EigenTHREADER: analogous protein

fold recognition by efficient contact map threading. Bioinformatics, 33,

2684–2690.

Cheng,J. (2008) A multi-template combination algorithm for protein com-

parative modeling. BMC Struct. Biol., 8, 18.

Cozzetto,D. and Tramontano,A. (2004) Relationship between multiple se-

quence alignments and quality of protein comparative models. Proteins, 58,

151–157.

Dill,K.A. and MacCallum,J.L. (2012) The protein-folding problem, 50 years

on. Science, 338, 1042–1046.

Forney,G.D. (1973) The viterbi algorithm. Proc. IEEE, 61, 268–278.

Hou,J. et al. (2018) DeepSF: deep convolutional neural network for mapping

protein sequences to folds. Bioinformatics, 34, 1295–1303.

Jo,T. et al. (2015) Improving protein fold recognition by deep learning net-

works. Sci. Rep., 5, 17573.

Jones,D.T. (1997) Progress in protein structure prediction. Curr. Opin. Struct.

Biol., 7, 377–387.

Jones,D.T. et al. (1992) A new approach to protein fold recognition. Nature,

358, 86–89.

Jones,D.T. et al. (2015) MetaPSICOV: combining coevolution methods for ac-

curate prediction of contacts and long range hydrogen bonding in proteins.

Bioinformatics, 31, 999–1006.

Kallberg,M. et al. (2012) Template-based protein structure modeling using the

RaptorX web server. Nat. Protoc., 7, 1511–1522.

Kinch,L.N. and Grishin,N.V. (2002) Evolution of protein structures and func-

tions. Curr. Opin. Struct. Biol., 12, 400–408.

Ma,J. et al. (2012) A conditional neural fields model for protein threading.

Bioinformatics, 28, i59–i66.

Ma,J. et al. (2013) Protein threading using context-specific alignment poten-

tial. Bioinformatics, 29, i257–i265.

Ma,J. et al. (2014) MRFalign: protein homology detection through alignment

of Markov random fields. Plos Comput. Biol., 10, e1003500.

Moult,J. et al. (2018) Critical assessment of methods of protein structure pre-

diction (CASP)-Round XII. Proteins, 86, 7–15.

Ovchinnikov,S. et al. (2017) Protein structure determination using metage-

nome sequence data. Science, 355, 294–298.

Peng,J. and Xu,J. (2009) Boosting protein threading accuracy. Lect. Notes

Comput. Sci., 5541, 31–45.

Peng,J. and Xu,J. (2010) Low-homology protein threading. Bioinformatics,

26, i294–i300.

Peng,J. and Xu,J. (2011a) A multiple-template approach to protein threading.

Proteins, 79, 1930–1939.

Peng,J. and Xu,J. (2011b) RaptorX: exploiting structure information for pro-

tein alignment by statistical inference. Proteins, 79, 161–171.

Seemayer,S. et al. (2014) CCMpred–fast and precise prediction of protein

residue-residue contacts from correlated mutations. Bioinformatics, 30,

3128–3130.

Soding,J. (2005) Protein homology detection by HMM-HMM comparison.

Bioinformatics, 21, 951–960.

Wang,G. and Dunbrack,R.L. Jr. (2003) PISCES: a protein sequence culling

server. Bioinformatics, 19, 1589–1591.

Fig. 12. The running time of four programs building alignments for Test500.

The x-axis is the geometric mean of protein lengths in a pair, and y-axis is the

running time in seconds

i272 J.Zhu et al.



Wang,S. et al. (2013) Protein structure alignment beyond spatial proximity.

Sci. Rep., 3, 1448.

Wang,S. et al. (2017) Accurate de novo prediction of protein contact map by

ultra-deep learning model. Plos Comput. Biol., 13, e1005324.

Wang,S. et al. (2018) Analysis of deep learning methods for blind protein con-

tact prediction in CASP12. Proteins, 86, 67–77.

Wang,Z. and Xu,J. (2013) Predicting protein contact map using evolutionary

and physical constraints by integer programming. Bioinformatics, 29,

i266–i273.

Webb,B. and Sali,A. (2014). Protein structure modeling with MODELLER.

In: Kihara, D. (ed.) Protein Structure Prediction. Humana Press, New York,

NY, pp. 1–15.

Xu,J. et al. (2003) RAPTOR: optimal protein threading by linear program-

ming. J. Bioinform. Comput. Biol., 1, 95–117.

Xu,Y. and Xu,D. (2000) Protein threading using PROSPECT: design and

evaluation. Prot. Struct. Func. Genet., 40, 343–354.

Yang,Y. et al. (2011) Improving protein fold recognition and template-based

modeling by employing probabilistic-based matching between predicted

one-dimensional structural properties of query and corresponding native

properties of templates. Bioinformatics, 27, 2076–2082.

Zemla,A. (2003) LGA: a method for finding 3D similarities in protein struc-

tures. Nucleic Acids Res., 31, 3370–3374.

Zhang,Y. and Skolnick,J. (2004) Scoring function for automated assessment

of protein structure template quality. Proteins, 57, 702–710.

Zhang,Y. and Skolnick,J. (2005) The protein structure prediction problem

could be solved using the current PDB library. Proc. Natl. Acad. Sci. USA,

102, 1029–1034.

Zhao,F. and Xu,J. (2012) A position-specific distance-dependent statistical

potential for protein structure and functional study. Structure, 20,

1118–1126.

Zhou,H. and Zhou,Y. (2004) Single-body residue-level knowledge-based en-

ergy score combined with sequence-profile and secondary structure informa-

tion for fold recognition. Proteins, 55, 1005–1013.

Zhu,J. et al. (2017) Improving protein fold recognition by extracting

fold-specific features from predicted residue-residue contacts.

Bioinformatics, 33, 3749–3757.

DeepThreader i273


	bty278-TF1
	bty278-TF2
	bty278-TF3
	bty278-TF4

