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Abstract

Motivation: Cross-species analysis of large-scale protein–protein interaction (PPI) networks has

played a significant role in understanding the principles deriving evolution of cellular organizations

and functions. Recently, network alignment algorithms have been proposed to predict conserved

interactions and functions of proteins. These approaches are based on the notion that orthologous

proteins across species are sequentially similar and that topology of PPIs between orthologs is

often conserved. However, high accuracy and scalability of network alignment are still a challenge.

Results: We propose a novel pairwise global network alignment algorithm, called PrimAlign, which

is modeled as a Markov chain and iteratively transited until convergence. The proposed algorithm

also incorporates the principles of PageRank. This approach is evaluated on tasks with human,

yeast and fruit fly PPI networks. The experimental results demonstrate that PrimAlign outperforms

several prevalent methods with statistically significant differences in multiple evaluation measures.

PrimAlign, which is multi-platform, achieves superior performance in runtime with its linear

asymptotic time complexity. Further evaluation is done with synthetic networks and results sug-

gest that popular topological measures do not reflect real precision of alignments.

Availability and implementation: The source code is available at http://web.ecs.baylor.edu/faculty/

cho/PrimAlign.

Contact: young-rae_cho@baylor.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Background

Recent high-throughput techniques have been exploring protein

functions and interactions with other proteins. Apart from experi-

mental studies, computational analyses over existing data are also

performed, as they are considerably faster, less expensive and their

predictions of interactions and functions can substantially expedite

new discoveries. These works have made genome-wide protein–

protein interaction (PPI) data publicly available, collectively referred

to as Interactome. (Koh et al., 2012; Rolland et al., 2014).

From the standpoint of comparative Interactomics, cross-species

comparison of the link patterns in PPI networks have played a sig-

nificant role in this field, since it increases our understanding of

principles deriving evolution of cellular organizations and functions

(Sharan et al., 2005). This type of computational analysis is called

network alignment. It is based on a formal view of PPI networks as

graphs, where proteins are represented as nodes and their interac-

tions as edges. PPI networks of two species are aligned together in

the sense that proteins with the identical function are mapped to

each other. This is possible, since many genes and proteins are

conserved in similar forms across different species; they are called

orthologs. Based on the alignment results, further topological and

functional analyses can be performed. Interactions in one network

can point towards possible interactions in the other network.

Similarly, functions of a protein in one network can predict func-

tions of another protein aligned to it from the other network if they

are true orthologs.

Various network alignment algorithms have been proposed over

the last decade so as to predict conserved interactions and functions

of proteins. Network alignment algorithms are divided into two

groups: global network alignment and local network alignment. The

former deals with aligning entire networks and aims at finding the

maximal set of mapped node pairs. On the other hand, the latter

searches for a set of sub-structures that represent conserved func-

tional components. Sometimes, this distinction is being simplified to

many-to-many mappings for local aligners and one-to-one mappings

with pairing all nodes from the smaller network for global aligners.

We follow the former distinction based on production of conserved

clusters, as we have observed that some global aligners produce
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many-to-many mappings and do not connect all proteins from the

smaller network. Earlier studies handled local alignment for aligning

small networks whereas most recent studies have proposed global

alignment algorithms for large-scale PPI networks.

One of the earliest local alignment tools was PathBLAST (Kelley

et al., 2004) which discovers conserved pathways by pairing interac-

tions between orthologous proteins. It takes a query pathway and

aligns it to a PPI network, outputting all matching paths from the

network which achieve a certain threshold score. The score of each

path is based on the BLAST (Altschul et al., 1990) e-value of each

aligned protein pair, as well as the ‘probability of a real interaction’

between proteins along the path, defined as the number of studies

which confirm each interaction. NetworkBLAST (Kalaev et al.,

2008), as an upgraded version of PathBLAST, allows for performing

alignment between multiple networks to identify two types of shared

sub-graphs: linear paths of interacting proteins (i.e. signaling path-

ways) and clusters of densely interacting proteins (i.e. protein com-

plexes). It searches for highly similar sub-networks and extends

them in a greedy manner. MaWISh (Koyuturk et al., 2006) is a

graph-theoretic optimization model to solve the maximum weight

induced sub-graph problem. It iteratively searches for a match, mis-

match and duplication of interactions between two PPI networks to

discover highly conserved groups of interactions, inspired by the du-

plication and divergence model for PPI network evolution. Recently,

PINALOG (Phan and Sternberg, 2012), AlignNemo (Ciriello et al.,

2012) and AlignMCL (Mina and Guzzi, 2014) have been introduced

as local aligners.

As for global alignment algorithms, IsoRank (Singh et al., 2008)

is the first algorithm that applies the concept of PageRank to net-

work alignment. It computes a score for each node based on the

principle that neighboring nodes of the nodes aligned to each other

should also be aligned to each other in the other network. It com-

putes a steady-state distribution combined with a personalized

PageRank vector. The upgraded version, IsoRankN (Liao et al.,

2009), uses a spectral clustering to efficiently produce a multiple

alignment, leaving the previous version obsolete. SMETANA

(Sahraeian and Yoon, 2013) and CUFID (Jeong et al., 2016) per-

form a Markov random walk in the joined network to compute a

steady-state distribution. Additional probabilistic consistency trans-

formations are executed on the results. In addition, CUFID calcu-

lates steady-state flow through the edges and applies a bipartite

matching to obtain one-to-one alignment. In contrast, SMETANA

allows for many-to-many alignment where one protein from one

network can be aligned to multiple proteins from the other network.

Most of the global alignment algorithms maximize alignment

score which is computed by a combination of sequence similarity

and topological similarity for protein pairs from two (or more) PPI

networks. Recently proposed global aligners include MI-GRAAL

(Kuchaiev and Pr�zulj, 2011), L-GRAAL (Malod-Dognin and Pr�zulj,

2015), SPINAL (Alada�g and Erten, 2013), NETAL (Neyshabur

et al., 2013), NetCoffee (Hu et al., 2014), HubAlign (Hashemifar

and Xu, 2014), MAGNA (Saraph and Milenkovi�c, 2014),

MAGNAþþ (Vijayan et al., 2015), WAVE (Sun et al., 2015) and

SANA (Mamano and Hayes, 2017).

In this paper, we propose a new global network alignment method

called PrimAlign––PageRank-Inspired Markovian Alignment. This al-

gorithm is built upon the idea of modeling the networks as a Markov

chain that is iteratively transited until convergence, combined with

the basic principles of the original PageRank algorithm and sparse

computations. The multi-platform source code in C# is provided. The

method is compared with several previous network alignment

algorithms introduced above while performing pairwise alignment of

human, yeast and fruit fly networks. The proposed method performs

superiorly to the other algorithms with respect to the alignment qual-

ity as well as computation time. Additional evaluation is performed

with 30 synthetic networks from the popular set, NAPAbench

(Sahraeian and Yoon, 2012).

2 Materials and methods

2.1 Markov chains
In computational modeling, Markov chains are well-established

models describing discrete sequences of stochastic processes, in

which the following state depends only on the current state. Markov

chains consist of possible states, in which the system under consider-

ation can be found and probabilities of transition from each state to

each other state when performing a step in the process sequence. As

the model is stochastic, the overall state of the system at each step is

described as a probability distribution over all possible states,

expressing the probability of the system being currently in each par-

ticular state.

Since the model topology is fixed and transition probabilities are

constant, a Markov chain can be defined by a constant transition

matrix T, in which the value at row i and column j represents the

probability of transition from state Si to state Sj at step t when being

in state Si:

T i: j½ � ¼ P S
tþ1ð Þ

j jS tð Þ
i

� �

The state distribution at step t can be represented as a vector p, where

the value at index i represents the probability of being in state Si:

pðtÞ½i� ¼ P S
tð Þ

i

� �

This formula allows for straightforward computation of subsequent

states:

pðtþ1Þ ¼ pðtÞT

pðtþ2Þ ¼ pðtþ1ÞT ¼ pðtÞTT

In Markov chain models, the usual task is to analyze the long-term

state distribution p, which can be stationary:

p ¼ lim
t! 1

pðtÞ

p ¼ pT

However, reaching the stationary distribution is not guaranteed un-

less the chain is ergodic, which requires the transition matrix to be

primitive.

2.2 PageRank
The original PageRank algorithm (Langville and Meyer, 2006) is

based on representation of web pages as a Markov chain. The pages

themselves are states while the links connecting them are possible

transitions with non-zero probabilities simulating random browsing.

The task is to find the stationary distribution. Due to the model top-

ology, web pages with multiple incoming links or with links coming

from important pages will be also important, i.e. they achieve a rela-

tively high probability in the stationary distribution. To overcome

the convergence problems, two modifications are incorporated into

the transition matrix: First, states with no transition (pages with no

links) are assigned with transitions to all other states with uniform
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probability. This step turns the transition matrix into a true right

stochastic matrix. Second, a damping factor a is introduced to simu-

late a chance of sudden ‘teleportation’ to a random state, which can

occur with the probability of (1–a). This change converts the transi-

tion matrix into a primitive stochastic matrix and its convergence

during the iterative traversal is guaranteed. The modifications are

not performed over the transition matrix directly, but rather the

transition step is adjusted to:

ptemp ¼ a pðtÞ T þ q e

n

� �
þ 1� að Þ e

Te

n

pðtþ1Þ ¼ ptemp

kptempk1

where: a ¼damping factor

q ¼ column vector (length n), for each row of T:

1 if the row is all-zero, 0 otherwise.

e ¼ row vector of 1 s (length n).

T ¼ transition matrix (size n� n).

n ¼number of states.

pðtÞ ¼ state probability distribution vector at step t (length n).

While qe=n represents the first modification, (1� aÞ eTe=n introdu-

ces the teleportation effect. The temporary variable ptemp is normal-

ized by its L1-norm, so that the result is a valid probability

distribution vector.

The smaller the damping factor is and the larger the probability

of the random teleportation is, the more affected the results are and

the probability distribution is smoothened although convergence is

faster. Nevertheless, every damping factors smaller than 1 guarantee

the convergence.

2.3 PrimAlign

Our new method searches for stationary-distributed transition probabil-

ities between two joined PPI networks forming a Markov chain with

PageRank-inspired modifications. While the idea of Markov random

walk was previously used in CUFID and a personalized PageRank vec-

tor was used in IsoRank, the proposed PrimAlign algorithm is built

upon both the Markovian representation and PageRank modifications

with sparse computations, nicely integrating similarity weights with the

network topology and guaranteeing the convergence and achieving lin-

ear time complexity (linear with respect to the number of edges on in-

put), which is the theoretical minimum for this task. Supplementary

Figure S1 shows individual steps in the data flow of PrimAlign.

Input: Three files are expected on input. The first two represent

PPI networks which are to be aligned. Any edges can be weighted to

specify the interaction confidence. The third file lists sequence simi-

larities of inter-network protein pairs, all of which are treated as

candidate orthologs. The recommended sequence similarity score is

either BLAST bit-score or -log of BLAST e-value. The fourth param-

eter is the output file path. Optionally, a threshold for selecting

orthologs can be provided, otherwise the program uses a default

threshold (0.75). The exact specification of input and all file formats

are detailed in Supplementary Text S1.

Edge reweighting: The sequence similarity scores are cubed.

Thanks to the normalization in the next phase, this exponentiation

amplifies the ratios between individual scores (large scores become

even larger and small scores become even smaller), while they still

sum up to 1. Different exponents were explored, and the effect is vis-

ible as long as any exponentiation occurs, so the exact exponent

could have been set differently with a little change in results

(Supplementary Fig. S2). The motivation behind this step is the

assumption that differences in sequence similarity are more relevant

than differences in network topology and protein interaction

weights, so the differences in sequence similarity are amplified.

Building transition matrix: The transition matrix is first built as

a symmetric square matrix with one row and one column for each

protein detected across the input files. The number at row r and col-

umn c represents a similarity weight between r-th and c-th protein

or zero if the protein pair is not defined in any input file. This weight

is either PPI similarity if the proteins come from the same network

(or 1, respectively, if PPI weights are not specified in the input file),

or reweighted sequence similarity if the proteins come from different

networks. Then, the matrix is normalized to form a valid transition

matrix by scaling each row to sum up to 1. If a protein can transit

both within its network and into the other network, its weights are

scaled so that the total probability of transiting within its network is

the same as the total probability of transiting into the other network.

Alternatively put, we can imagine the whole matrix as a compos-

ition of four partial transition matrices depending on whether the

source and destination of the transition is network A or B:

T ¼
TA!A TA!B

TB!A TB!B

" #

where: TA!A;TB!B ¼partial matrices with same-network transi-

tions built from PPI network weights.

TA!B;TB!A ¼partial matrices with inter-network transi-

tions built from sequence similarity weights.

In this view, the normalization can be done as row normalization of

the partial matrices with subsequent row normalization of the whole

matrix.

PageRank-inspired stationary distribution computation: Starting

with a uniformly-distributed probability vector over the proteins, the

transition matrix is repeatedly traversed and the probability vector is

updated. The iteration ends when a stationary distribution is reached

(1e–5 in L2-norm change of the vector p) or after a maximum number

of iterations (200, but in our experiments it typically converges within

20 iterations). The algorithm is inspired with PageRank by including

its two principles mentioned earlier: Proteins with no transitions

(which could occur when a protein is listed on input, but all its weights

and scores are 0) simulates transitions to all other proteins with uni-

form probability, and the damping factor a is included to simulate ran-

dom ‘teleportation’ from each protein. This change converts the

transition matrix into a primitive stochastic matrix and its convergence

during the iterative traversal is guaranteed. a was set to 0.85 as in the

original PageRank algorithm (Langville and Meyer, 2006). This par-

ameter seems to be robust as well (Supplementary Fig. S2).

As the number of proteins in both species can be relatively large,

resulting in matrix M with around 1 000 000 000 elements, and be-

cause of repeated vector-matrix multiplications, it is crucial to repre-

sent the matrices as sparse objects. Otherwise, the computation load

would be unfeasible for computation with real-world PPI networks

in a genomic scale. The formula stated above is in a form allowing

simple reading of the incorporated PageRank modifications, but

operates with full non-sparse matrices and the performance would

be degraded greatly. Therefore, the real equation used is based on a

form converted by regrouping the algebraic elements, so that the

sparse computations may be preserved:

ptemp ¼ a pðtÞT � a pðtÞqþ 1� a
� � e

n

Inter-network traversal probabilities extraction: Traversal probabil-

ity is computed for each inter-network protein pair (candidate
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ortholog) as the stationary probability for one protein multiplied by

the probability of selecting its paired protein as a transition target

out of other possible inter-network transitions (within-network

transitions are of no interest now), and summed symmetrically with

the probability computed in the same manner for the other protein

in the pair. As the probabilities rather dissolve with the increasing

number of proteins, the final score results from normalization of the

traversal probabilities by multiplication with the number of unique

proteins. This ensures that the values are comparable across align-

ments of networks of varied sizes. Formally, for a-th protein from

network A and b-th protein from network B:

score a;bð Þ¼ p a½ � TA!B a;b½ �
kTA!B a; 1 :nB½ �k1

þp nAþb½ � TB!A b;a½ �
kTB!A b; 1:nA½ �k1

� �
n

where: n;nB¼number of proteins in network A;B.

Thresholding: The cut-off threshold to apply to the final score to

select high-quality ortholog candidates is 0.75 by default and can be

user-defined on input. We recommend using a number between 0.5

[more permissive, more false positives (FPs)—likely to select pro-

teins that are not real orthologs] and 1 [more strict, more false nega-

tives (FNs)—likely to miss some real orthologs]. The effect of these

threshold values is shown in Supplementary Figure S3. Setting the

threshold to 0 outputs all ortholog candidates.

Output: Ortholog candidates with the scores greater or equal to

the threshold are written to a file specified on program input to-

gether with their scores in a tab-delimited format (Supplementary

Text S1).

3 Experiment design

3.1 Data acquisition
In this study, the PPI networks of human (Homo sapiens), yeast

(Saccharomyces cerevisiae) and fruit fly (Drosophila melanogaster)

were selected, as they are well-explored and of a reasonable size. All

the networks were acquired from BioGRID (Chatr-aryamontri et al.,

2017) and filtered for physical interactions. The interacting proteins

were paired with genes that they are produced by, and maintained

and treated as gene-to-gene interactions. This approach helps with

connecting information from multiple databases together.

Semantic information was provided through ontology annota-

tions. The annotation files were downloaded from GO (The Gene

Ontology Consortium, 2015) containing over 400 000 annotations

with GO terms for human, and over 100 000 GO annotations for

yeast. Only pairs, in which the genes have at least one GO annota-

tion, were considered. GO itself was used in the basic version to

guarantee safe propagation of annotations within the ontology hier-

archy and all types of GO relationships were treated equally for the

purpose of creating a parent-child hierarchy and subsequent annota-

tion propagation. Annotations marked as IEA (Inferred from

Electronic Annotation) were excluded.

The genes were further annotated with KEGG Orthology (KO)

functional annotations (Kanehisa et al., 2017), which describe mo-

lecular functions of genes and proteins and can be used for orthol-

ogy matching. Furthermore, two lists of high-confident orthologous

genes were obtained. The first was exported through ENSEMBL

BioMart (Kinsella et al., 2011) and the other was downloaded from

InParanoid (Sonnhammer and Östlund, 2015). While all of these

three sources partially rely on sequence similarity when finding

matching pairs, each method approaches the task differently. While

InParanoid employs a pairwise BLAST-based approach, ENSEMBL

uses a phylogeny-based method and KO functional annotations

undergo a comprehensive check against pathways of multiple spe-

cies in KEGG database and are partially manually reviewed. We as-

sume these sets contain true orthologs even though they may be

highly incomplete (there may be many orthologs undetected by these

methods).

To map individual datasets together, various types of identifiers

were connected via UniProt mapping service (The UniProt

Consortium, 2017). These include: UniProt KB protein IDs, UniProt

KB gene IDs, gene names and their synonyms, BioGRID protein IDs,

Saccharomyces Genome Database gene IDs, ENSEMBL gene IDs.

Synonyms were considered as long as they did not collide with other

names.

Overall, the transformations and filtering resulted in the net-

works of almost 270 000 interactions of 16 000 unique genes for

human, almost 90 000 interactions of 6000 unique genes for yeast

and more than 41 000 interactions of 14 000 unique genes for fruit

fly. KO annotations were available for over 12 000 human genes,

3000 yeast genes and almost 6000 fruitfly genes. ENSEMBL and

InParanoid lists contain almost 6000 and 2000 human-yeast ortho-

logs, 13 500 and 4500 human-fruit fly orthologs and 5000 and 2000

yeast-fruit fly orthologs.

3.2 Alignment task
All three pairwise combinations of the three networks were aligned

with PrimAlign as well as the following algorithms for comparison:

AlignMCL, AlignNemo, CUFID, HubAlign, IsoRankN,

MAGNAþþ, MI-GRAAL, NETAL, NetCoffee, NetworkBLAST,

PINALOG, SANA, SMETANA and WAVE. Thus, we do not avoid

comparison with both global and local aligners, since both catego-

ries attempt to discover correct functional orthologs at first, regard-

less of whether they additionally group them into conserved clusters

or not and whether they assume one-to-one mappings or not. We

compare them directly at the same size of output to avoid a possible

bias caused by isolation of high confidence pairs comparing to more

complete mappings as explained in Section 3.3.

On input, the algorithms accept a network file for each species

with a list of interacting pairs, either unweighted or weighted

according to the interaction strength. Another input is sequence

similarity of pairs between the networks as produced by BLAST ana-

lysis, or within each network as well for some algorithms. We com-

puted the PPI weights in two forms: (i) as semantic similarity scores,

called simGIC (Pesquita et al., 2008), and (ii) all set to 1, making

them effectively unweighted. This enables us assessing the effect of

weighting using semantic similarity.

Sequence similarity on input is an essential part of biological net-

work alignment. Without it, an algorithm could just optimize the

topological similarity, which is prone to overfitting and missing the

true functional matches, especially in incomplete networks. The in-

put BLAST information is either BLAST bit-score or BLAST e-value.

The main difference between them is that the e-value is adjusted

according to lengths of protein sequences, so the e-value and the bit-

score are not directly convertible without knowing the protein

lengths and the total size of the BLAST library. Nevertheless, the

algorithms accept a form of both except NetworkBLAST which is

strict in demanding e-values. Therefore, the e-value measure was

used for all the algorithms. The datasets bundled with NetCoffee

have been processed for this purpose. As a result, the BLAST files

contain the scores of over 60 000 human-yeast pairs, 40 000 human-

fruit fly pairs, 9000 yeast-fruit fly pairs, 200 000 human-human

pairs, 30 000 yeast-yeast pairs and 8000 fruit fly-fruit fly pairs.
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IsoRankN is applicable with weighted networks, but in fact, its

authors do not recommend inserting weights due to insufficient test-

ing of the algorithm for weighted data. Therefore, only unweighted

networks have been used for IsoRankN. Binaries available for

NetCoffee are not up-to-date and are marked as obsolete although

new source files are available. Therefore, the latest code from their

Git repository was compiled and used for comparison. It was discov-

ered that CUFID and SMETANA share a bug of rewriting network

weights: Although both algorithms read and store the weight values,

they are later ignored and replaced by 1s. As a result, the outputs

were identical when using either of the weighting methods. Be it a

bug or a feature, we have fixed the code to process the weights.

Additionally, we have restricted PrimAlign in two forms to pro-

cess either only sequence similarities without any network files on

input (PrimAlign-Seq), or only topology of unweighted networks

without sequence similarities (PrimAlign-Topo). These versions

serve for comparison of contribution of topology information and

sequence similarities to the final power of PrimAlign.

All the algorithms and their inputs are summarized in Table 1.

The parameters were selected according to recommendations from

provided manuals with respect to the size of the tasks or default

values were used. Processing of sequence similarities as well as multi-

threading was always enabled (if applicable). The log transformations

of e-values equal to 0 have been substituted by log of the smallest

positive value that a number of double precision could represent.

Computation times of the algorithms were also compared. To

guarantee a fair comparison, all algorithms were run on the same

machine, with 8 GB RAM and quad-core 3 GHz CPU; either in

Windows 10 environment (CUFID, SMETANA, PrimAlign) or

Ubuntu Server 16.10 (others) and without active usage of the ma-

chine for other tasks (after reboot). Both environments enable multi-

core processing. The time of start and end of runs was monitored

programmatically and rounded to seconds.

3.3 Evaluation metrics
The output of each algorithm is a list of putative orthologous pairs.

If an algorithm outputted a different structure, e.g. pairs in clusters

of conserved regions, we always transformed the results into aligned

pairs, the basic unit of alignment. Multiple measures were computed

over the pairs to see basic statistics of alignments and to assess the

alignment quality.

Four groups of evaluation measures are summarized and detailed

in Table 2. Informative measures are included for overall statistics

of the alignment: the size of the output (i.e. the number of aligned

pairs), gene coverage (number of genes that are aligned), the number

of conserved edges (an edge from one network that is aligned to an

edge in the other network) and the size of the largest conserved con-

nected component (LCCC). The first three measures are well-

defined. LCCC represents the lower number of edges in the largest

common connected sub-graph (LCCS) as defined in (Kuchaiev et al.,

2010). To avoid any ambiguity, we define it as the number of edges

in the largest connected component from one network consisting of

conserved edges that map to a connected component in the other

network (and then can be mapped back to itself), for which the net-

work with the smaller projection of the component is selected (due

to many-to-many mapping, the component in each network can

have a different number of edges). LCCS can be characterized by

both the number of edges and nodes. For simplicity, we chose only

the former variant, preferentially because it reflects the density of

LCCS and the number of conserved relationships. These informative

measures are not meant for evaluation of the alignment quality.

Note that here we included several topological measures that are

sometimes used directly for evaluation. However, we consider such

a usage pre-mature. Natural changes in topology (e.g. deletion), es-

pecially in the networks that are still incomplete, can result in func-

tional conservation which is topologically sub-optimal, in which

case topologically optimal alignment could have little biological

meaning. Therefore, topological evaluation measures can be

misleading.

The other three groups are computed to assess the alignment

quality. In all quality measures, the higher value implies the better

alignment. Annotation-based measures use either functional annota-

tions from KO to indicate how many aligned pairs are aligned func-

tionally correctly (share a KO annotation), or GO to evaluate how

Table 1. Summary of algorithms for comparison

Algorithm BLAST data Algorithm parameters Weights One-to-one Enforced

coverage

Type

AlignMCL -log2 (e-value) inter-network Yes No No Local

AlignNemo e-values inter-network Yes No No Local

CUFID -log2 (e-value) inter-network Yes Yes No Global

HubAlign -log2 (e-value) inter-network No Yes Yes Global

IsoRankN -log2 (e-value) intra & inter-network -K 10 –thresh 1e–5 –alpha

0.7 –maxveclen 2000000

No No No Global

MAGNAþþ -log2 (e-value) inter-network -p 15000 -n 2000 -a 0.5 -t 4 -m S3 No Yes Yes Global

MI-GRAAL -log2 (e-value) inter-network -p 19 No Yes Yes Global

NETAL -log2 (e-value) intra & inter-network -b 0.5 -c 0.5 No Yes No Global

NetCoffee e-values intra & inter-network No Yes No Global

NetworkBLAST e-values inter-network beta 0.9; blast_th 1e–30;

true_factor0 0.5; true_factor1 0.5

Yes No No Local

PINALOG -log2 (e-value) inter-network No Yes No Local

SANA -log2 (e-value) inter-network -s3 0.5 -sequence 0.5 No Yes Yes Global

SMETANA -log2 (e-value) inter-network Yes No No Global

WAVE -log2 (e-value) inter-network No Yes Yes Global

PrimAlign-Seq e-values inter-network No No No Global

PrimAlign-Topo unweighted inter-network No No No Global

PrimAlign -log2 (e-value) inter-network Yes No No Global

Note: Enforced coverage means that all proteins from the smaller network need to be aligned.
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big the shared semantic context is (in terms of Jaccard indices of

annotated GO terms). Ground-truth based measures consider the

lists of orthologous genes from ENSEMBL and InParanoid and ex-

press how many of them were identified among the aligned pairs.

Combined topological measures are derived from topological in-

formative measures but combined with the previous two groups:

Only either functionally correct aligned pairs (those sharing a KO

annotation) or ground-truth correct aligned pairs (those among the

lists of orthologs) are considered here. Combining topological meas-

ures with the other measures seems to be a more reasonable ap-

proach than using topological measures alone.

In order to evaluate alignments with various numbers of aligned

pairs, annotation-based and ground-truth-based evaluation meas-

ures are complemented with their cost forms, saying how many

aligned pairs on output are needed on average per one unit of the

given evaluation measure. Formally for each measure X,

cX ¼ # aligned pairs

X

The cost measures have the opposite semantic than the other meas-

ures: The higher the cost value is, the lower the performance.

However, these measures serve only as a hint for cross-algorithm

comparison, as the scores are adjusted only in a linear manner with

respect to the number of aligned pairs––and this assumption of lin-

earity is not valid as shown in the Results Section. Instead, algo-

rithms tend to produce more accurate pairs first and less accurate

predictions with the growing output. This is not surprising (it is fully

in the spirit of ROC curve), but it makes the comparison more diffi-

cult; e.g. accuracy of two algorithms with a distinct output size

should not be directly compared.

Therefore, PrimAlign was additionally run to produce the same

number of aligned pairs as the other algorithms for a fair individual

comparison at the same size of output. To achieve this, we set the

optional threshold parameter in PrimAlign to 0 to output all

candidate orthologs and their scores and then we always selected the

desired number of top pairs with the highest score, as if the thresh-

old was set to produce the right number of pairs.

Statistical evaluation of the performance differences between

Prim-Align and the other algorithms has been performed using

two-proportion two-tailed z-test for measures, where each pair or

edge can be marked as either positive or not (i.e. all evaluation

measures except for GO) and using two-tailed Welch’s t-test

for measures, where each edge contributes to a real value (only GO).

P-value�0.05 was considered significant.

3.4 Synthetic networks
Next, we have performed another set of tests with 30 synthetic net-

works NAPAbench, each time aligning networks with 4000 and

3000 proteins. The networks are constructed by applying three dif-

ferent evolutionary models, which incorporate common biological

events such as gene deletions, gene duplications, gene mutations and

new functional specialization, followed by adjusting similarity

scores. Although the models are based on certain assumptions, they

have been shown to reflect multiple statistical properties of real evo-

lution (Sahraeian and Yoon, 2012).

Comparing to real biological networks, synthetic networks have

the advantage that the functional assignments are known, i.e. we

know all true orthologs. Therefore, we can directly evaluate per-

formance of the algorithms in terms of true positives (TP), FPs and

FNs, consolidated as precision TP and recall TP. Thus, we do not

have to rely on estimating the performance based on topology meas-

ures or incomplete sets of orthologs. However, we compute other

measures designed for comparing local and global aligners (Meng

et al., 2016), namely generalized symmetric sub-structure score

(GS3) and node coverage combined with GS3 (NCV-GS3).

In this test, we compared PrimAlign with SANA and AlignMCL

at their size of output as well as using the default threshold. SANA

Table 2. Overview and classification of evaluation measures

Abbr. Measure Calculation

Informative measures AP Aligned Pairs # of aligned pairs

Cov Coverage # of unique aligned genes

CE Conserved edges # of edges from one network that are aligned to an edge

in the other network

LCCC Largest conserved connected

component

# of edges in the largest connected component

assembled from conserved edges

Annotation-based measures KO KO functionally correct

alignments

# of aligned pairs where both genes share KO functional

annotation

GO GO semantically correct

alignments

Sum of ratios of GO annotations shared by aligned

pairs (i.e. sum of Jaccard indices)

Ground-truth-based measures EN Discovered ENSEMBL orthologs # of ENSEMBL orthologs found among aligned pairs

IP Discovered InParanoid orthologs # of InParanoid orthologs found among aligned pairs

Combined topological measures CE-F Conserved edges of functionally

correct pairs

# of edges from one network that are aligned to an edge

in the other network with both aligned gene pairs

being functionally correct

CE-O Conserved edges of known

orthologs

# of edges from one network that are aligned to an edge

in the other network with both aligned gene pairs

being among ENSEMBL or InParanoid orthologs

LCCC-F Largest conserved connected

component from functionally

correct pairs

# of edges in the largest connected component

assembled from conserved edges between functional-

ly correctly aligned pairs

LCCC-O Largest conserved connected

component from known

orthologs

# of edges in the largest connected component

assembled from conserved edges between aligned

pairs also present among ENSEMBL or InParanoid

orthologs
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and AlignMCL were selected as superior global and local aligners,

respectively, based on the results in the first part of our evaluation.

4 Results

4.1 Overview of alignment results
As an overview of the produced outputs, the informative measures

and informative cost forms of the annotation-based and ground-

truth-based measures are summarized in Table 3. These results are

only descriptive and the highest or lowest values do not imply the

best or worst performance although the cost measures serve as a

hint for comparison.

For human-yeast network alignment, the number of aligned pairs

on output ranges between 2310 (NetCoffee) and 7904

(NetworkBLAST). Using the default threshold, PrimAlign produced

3801 pairs or 3752 pairs when using unweighted or weighted PPI

networks, respectively. The highest coverage of proteins was

achieved with MAGNAþþ, SANA, WAVE and HubAlign, as they

enforce full coverage of the smaller network (HubAlign actually

missed a few proteins lacking interaction). HubAlign also reached

the highest number of conserved edges and LCCC.

The cost measures point towards inefficiencies in MAGNAþþ,

SANA, WAVE, but also NetworkBLAST, which tend to produce

more aligned pairs, seemingly less confident pairs. On the other

hand, AlignMCL also produced a high number of aligned pairs, but

its cost measures are relatively lower, suggesting it performs qualita-

tively better than them. Aligners with smaller output achieved lower

costs except for NETAL.

Similar results were obtained for other alignment tasks and are

shown in Supplementary Information as Tables S1a and S1b.

IsoRankN did not align any proteins in human-fruit fly and yeast-

fruit fly tasks. NetworkBLAST did not align any proteins in the

yeast-fruit fly task. MI-GRAAL repeatedly failed during pre-proc-

essing human network, and for the smallest alignment task, even the

pre-processing time would take around 2 weeks (based on progress

after several hours). Therefore, no results were obtained for MI-

GRAAL.

4.2 Evaluation results
PrimAlign was compared with all the other algorithms individually

at their number of aligned node pairs. The results are captured for

each evaluation measure separately in Figure 1 (or Supplementary

Fig. S4a for higher resolution) for human-yeast alignment and

Supplementary Figures S4b and S4c for the other tasks. Notice that:

Table 3. Alignment overview with informative measures

Aligner Weighted AP Cov CE LCCC cKO cGO cEN cIP

AlignMCL No 7711 7064 19 528 7716 4.39 3.34 2.80 6.00

AlignMCL Yes 7711 7064 19 528 7716 4.39 3.34 2.80 6.00

AlignNemo No 4776 2826 9385 3936 4.37 3.24 3.09 6.46

AlignNemo Yes 4081 2515 8127 3425 4.43 3.28 3.21 6.38

CUFID No 5654 11 308 13 892 6664 4.54 4.34 4.03 5.30

CUFID Yes 5250 10 500 14 744 7070 4.14 3.78 3.69 4.85

HubAlign No 5926 11 852 50 016 24 978 5.19 4.36 4.50 5.99

IsoRankN No 2964 5065 8711 3945 2.18 2.80 1.93 2.53

MAGNAþþ No 5933 11 866 3388 1601 11.19 6.10 9.10 13.93

MI-GRAAL No NA NA NA NA NA NA NA NA

NETAL No 3100 6200 456 129 1 7.74 3100 1
NetCoffee No 2310 4620 3742 1654 2.94 2.85 2.62 3.68

NetworkBLAST No 7904 3185 12 552 5224 6.68 3.47 4.46 9.81

NetworkBLAST Yes 4008 2195 10 404 4432 5.37 3.47 4.06 7.68

PINALOG No 5317 10 634 32 792 16 285 4.19 4.01 3.76 4.70

PrimAlign No 3801 4883 16 518 6971 2.31 2.86 1.71 3.07

PrimAlign Yes 3752 4843 16 408 6934 2.29 2.86 1.70 3.04

SANA No 5933 11 866 43 524 21 738 9.11 5.14 7.43 11.03

SMETANA No 3487 5384 18 770 8981 2.83 2.97 2.31 3.46

SMETANA Yes 3854 5718 14 417 6320 2.86 3.03 2.28 3.55

WAVE No 5933 11 866 32 500 16 138 10.85 5.48 9.90 12.68

Fig. 1. Results of human-yeast alignment. Each chart shows one evaluation

measure (as detailed in Table 2). PrimAlign and its modifications were run to

output the same num-ber of aligned pairs as other algorithms for direct com-

parison. The red cross marks denote the level of aligned pairs for PrimAlign

using the default threshold (dark red––for U; light red––for W; they mostly

overlap). U––unweighted networks, W––weighted networks
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i. For seven out of eight evaluation measures, PrimAlign exhibits

a saturation curve typical for higher accuracy in more confi-

dent pairs for small outputs. This suggests that PrimAlign’s

confidence score correlates with accuracy.

ii. The semantical measure GO as the only one results in a linear

trend and is almost identical to other algorithms except for the

aligners with enforced coverage, which shows lower semanti-

cal content and NETAL. This suggests that more confident

pairs are not semantically more similar comparing to less con-

fident pairs. However, it points towards inefficiencies in align-

ers with enforced coverage and NETAL.

iii. NETAL is an outlier, for which none of its aligned pairs was

found among known orthologs, indicative of biologically in-

correct alignment.

iv. Apart from GO, aligners with enforced coverage achieve lower

scores across other evaluation measures as well. This is also an

indicator of their low biological quality.

v. Results for semantically weighted and unweighted networks

on input are almost identical for all algorithms supporting

weights except for NetworkBLAST, which shows a big differ-

ence in the number of aligned pairs (but similar cost measures).

This might mean that semantical weighting does not provide

valuable information for aligners.

vi. PrimAlign-Seq and PrimAlign-Topo also exhibit a saturation

trend, although none of them reaches the score of PrimAlign.

This suggests that both sequence similarity and network top-

ology contribute towards the final power of PrimAlign.

vii. The default threshold of PrimAlign produces a reasonable

number of aligned pairs across all three alignment tasks.

This suggests that the default threshold is good for alignment

of networks of various sizes and density. More detailed effects

of changing the threshold are shown in Supplementary

Information as Figure S3.

viii. PrimAlign outperforms other algorithms at their size of output

with a statistical significance across all categories of evaluation

measures, as shown in Table 4 for human-yeast alignment and

Supplementary Tables S2a and S2b for the other alignment tasks.

ix. However, for the smallest alignment task, aligners with

enforced coverage shows very high scores in combined topo-

logical measures although this is not accompanied with such

an increase in other measures and not replicated in other align-

ment tasks. This could mean that these algorithms are overfit-

ting with topological optimization and for such small

networks with relatively few known orthologs the combined

scores might be skewed towards the contribution of topologic-

al similarity.

x. Results of KO, IN and EN measures tend to correlate even

though their lists of orthologs differ and overlap only partially.

This is not surprising, as we expect that all of them provide

quality orthologs and that the measures should correlate with

algorithms accuracy regardless of which sub-set of quality

orthologs is used. Results of combined topological measures

also correlate with each other, suggesting that when filtered

for known orthologs, CE and LCCC are of similar evaluation

power.

4.3 Results with synthetic networks
Results of all 30 runs with unweighted synthetic networks in terms

of precision, recall, GS3 and NCV-GS3 are summarized in Figure 2.

For PrimAlign and AlignMCL, the results are very similar across the

measures at the same size of aligned pairs. By default, PrimAlign still

outputs more confident pairs with mean precision above 70%,

whereas AlignMCL produces pairs with precision around 55% in

exchange for higher recall. SANA achieves mean precision around

45% even though its recall is also low. On the other hand, SANA

scores well in topological measures GS3 and NCV-GS3. This corre-

sponds with our previous tests and confirms the suspicion that

SANA overfits alignment topology and produces biologically less

precise predictions. Figure 3 shows precision-recall curve for

PrimAlign together with locations of AlignMCL and SANA for the

first synthetic network. Unfortunately, data of neither of these algo-

rithms allow to construct their own precision-recall (p-r) curves,

which would be the ideal case for comparison and statistical evalu-

ation of their performance in terms of auPR (area under p-r curve).

Table 4. Statistical comparison of PrimAlign with the others

Aligner Weighted KO GO EN IP CE-F CE-O LCCC-F LCCC-O

AlignMCL No *** *** ** **

AlignMCL Yes *** *** ** **

AlignNemo No *** *** *** *** *** *** *** ***

AlignNemo Yes *** *** *** *** *** *** *** ***

CUFID No *** *** *** *** *** *** *** ***

CUFID Yes *** *** *** *** *** *** *** ***

HubAlign No *** *** *** *** *** *** *** ***

IsoRankN No *** *** *** *** *** ***

MAGNAþþ No *** *** *** *** *** *** *** ***

MI-GRAAL No NA NA NA NA NA NA NA NA

NETAL No *** *** *** *** *** *** *** ***

NetCoffee No *** *** *** *** *** *** *** ***

NetworkBLAST No *** *** *** *** *** *** *** ***

NetworkBLAST Yes *** *** *** *** *** *** *** ***

PINALOG No *** *** *** *** *** *** *** ***

SANA No *** *** *** *** *** *** *** ***

SMETANA No *** *** *** *** *** *** *** ***

SMETANA Yes *** *** *** *** *** *** *** ***

WAVE No *** *** *** *** *** *** *** ***

Notes: Statistical comparison of differences in evaluation measures between PrimAlign with unweighted networks on input and the other algorithms for

human-yeast alignment. (empty field) P > 0.05, *P � 0.05, **P � 0.01, ***P � 0.001. Green ¼ improvement.
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4.4 Runtime comparison
Runtimes of individual algorithms are listed in Supplementary Table

S5. NetCoffee is the fastest algorithm. However, its performance

was shown to be poor, mostly worse than both restricted versions

PrimAlign-Seq (which actually finishes within 1 second) and

PrimAlign-Topo. PrimAlign was the only other algorithm running

less than 1 minute for the largest alignment task, showing its great

scalability. On the other side of the spectrum with runtime more

than 1 hour are PINALOG, MAGNAþþ (more than 10 hours),

NetworkBLAST (more than 1 day), IsoRankN (more than 4 days)

and MI-GRAAL (estimated 2 weeks of pre-processing for the small-

est alignment task). As visible from runtime ratios between the tasks,

some algorithms are very difficult to scale.

5 Conclusion

Biological network aligners pursue the goal of finding pairs of func-

tionally matching proteins between the networks. This is still a task

with incomplete information and needs to be solved heuristically.

Some algorithms adopt the constraints of one-to-one alignment or

complete coverage of proteins from the smaller network. (Neither

one of them is biologically valid due to the gene duplications and

other evolutionary mechanisms.) Other algorithms may use more

subtle assumptions. Some of them perform subsequent grouping of

aligned pairs into highly conserved clusters (local aligners). In each

case, each algorithm has its own assumptions or heuristics to apply

to recognize correct orthologs.

In this paper, we introduced PrimAlign, a new algorithm for

pairwise global alignment of PPI networks, based on the Markovian

representation and PageRank technique. PrimAlign performs global

many-to-many alignment with asymptotic time complexity O(n),

which is the theoretical minimum for this task, guaranteeing high

scalability. The performance was evaluated on alignment tasks

with three model species and compared to 14 prevalent network

alignment algorithms. Various evaluation measures were used:

ground-truth-based measures with data from two different orthol-

ogy databases, annotation-based measures to evaluate functional

and semantic consistency and topology-based measures combined

with the previous measures. Adjusting the output size in terms of the

number of aligned pairs allowed a direct comparison between

PrimAlign and the other algorithms. Additional evaluation was per-

formed with 30 synthetic networks and high performing representa-

tives of global and local aligners.

As a result, the proposed method outperforms the other algo-

rithms on real networks with statistically significant differences

demonstrated for all evaluation measures except for the semantic

similarity measure. This measure exhibits approximately the same

trend across the algorithms, grows linearly with respect to the num-

ber of aligned pairs, and therefore, it seems to be of little value for

evaluation. Furthermore, weighting PPI networks with semantic

similarity seems to be of no benefit. The previous algorithm with

closest results was AlignMCL. In the task with smallest and least

dense networks, four other algorithms (SANA, WAVE, HubAlign

and PINALOG) achieved significantly higher scores in combined

topological evaluation measures. We speculated that this result

sourced from high topological optimization of these algorithms and

might not be biologically superior, indicated by non-superior scores

in other categories and non-replicability in the alignment of larger

networks.

Additional comparison with AlignMCL and SANA on synthetic

networks, where true functional assignments are known, confirmed

the case. Even though SANA achieved very high topological score,

its real performance was poor with a high ratio of FPs as well as

FNs. This result justifies our decision not to include topological

scores among evaluation measures because of the suspicion that

optimizing topology might easily result in overfitting and failing to

correlate with functional conservation. Furthermore, AlignMCL

performs very similarly to PrimAlign. However, AlignMCL pro-

duced relatively many aligned pairs, leading to lower precision in

compromise to achieve higher recall, and there is no parameter to

tune the confidence threshold, in contrary to PrimAlign. This also

means that while PrimAlign can be evaluated with auPR, we cannot

construct precision-recall curve for AlignMCL, even though auPR

would be probably the most reasonable measure to statistically

evaluate performance in synthetic networks.

The computation time of PrimAlign is excellent thanks to sparse

computations. On the test machine, it runs faster comparing to other

algorithms by 1–4 orders of magnitude, which makes it suitable

for alignment of complex biological networks. Only NetCoffee

was faster although it did not produce comparably good results.

Fig. 2. Results of tests with 30 synthetic networks. Comparing precision, recall

and topological measures of PrimAlign with SANA and AlignMCL at their size

of aligned node pairs

Fig. 3. Example of P-R curve. P-R curve of PrimAlign for the 1st synthetic

network compared with SANA and AlignMCL. The result of PrimAlign for the

default threshold is highlighted.
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The source code of the proposed method, written in C# language, is

available at http://web.ecs.baylor.edu/faculty/cho/PrimAlign. With

less than 70 lines of code, it is probably the most compact and light-

weight alignment algorithm available, it is easy to read and easy to

be extended. The raw evaluation results and input files are also

available.

Conflict of Interest: none declared.
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