
DeepFam: deep learning based alignment-free

method for protein family modeling and

prediction

Seokjun Seo1, Minsik Oh1, Youngjune Park2 and Sun Kim1,2,3,*

1Department of Computer Science and Engineering and 2Interdisciplinary Program in Bioinformatics and
3Bioinformatics Institute, Seoul National University, Seoul 08826, Korea

*To whom correspondence should be addressed.

Abstract

Motivation: A large number of newly sequenced proteins are generated by the next-generation

sequencing technologies and the biochemical function assignment of the proteins is an important

task. However, biological experiments are too expensive to characterize such a large number of

protein sequences, thus protein function prediction is primarily done by computational modeling

methods, such as profile Hidden Markov Model (pHMM) and k-mer based methods. Nevertheless,

existing methods have some limitations; k-mer based methods are not accurate enough to assign

protein functions and pHMM is not fast enough to handle large number of protein sequences from

numerous genome projects. Therefore, a more accurate and faster protein function prediction

method is needed.

Results: In this paper, we introduce DeepFam, an alignment-free method that can extract func-

tional information directly from sequences without the need of multiple sequence alignments. In

extensive experiments using the Clusters of Orthologous Groups (COGs) and G protein-coupled

receptor (GPCR) dataset, DeepFam achieved better performance in terms of accuracy and

runtime for predicting functions of proteins compared to the state-of-the-art methods, both

alignment-free and alignment-based methods. Additionally, we showed that DeepFam has a

power of capturing conserved regions to model protein families. In fact, DeepFam was able to

detect conserved regions documented in the Prosite database while predicting functions of

proteins. Our deep learning method will be useful in characterizing functions of the ever

increasing protein sequences.

Availability and implementation: Codes are available at https://bhi-kimlab.github.io/DeepFam.

Contact: sunkim.bioinfo@snu.ac.kr

1 Introduction

Protein sequences from genome projects have been growing rapidly

over the decades. However, biological experiments are too expen-

sive to characterize functions of the exponentially increasing protein

sequences. Thus, a majority of protein sequences are yet to be char-

acterized for their functional roles. A practical and standard ap-

proach is to infer the function of a protein by comparing to well-

annotated protein sequences. Comparing evolutionary related

sequences requires resolving technical problems such as how to com-

pare and score amino acids, i.e. scoring scheme, and how to deter-

mine an optimal alignment of two protein sequences. These issues

have been successfully integrated into a single computational

framework of probabilistic modeling (Durbin et al., 1998). The

most widely adopted method to compare two protein sequences is

Smith-Waterman algorithm (Smith and Waterman, 1981) that com-

putes an optimal local alignment using the dynamic programming

technique. However, comparing two distantly related proteins can-

not be done effectively by the local sequence alignment. Distantly

related proteins can be effectively identified by using protein families

because a query sequence may share similar features with some of

proteins in the family or would be related to member sequences in a

transitive manner. Thus, computational techniques to model mul-

tiple protein sequences of similar biochemical functions have been

developed over several decades.

VC The Author(s) 2018. Published by Oxford University Press. i254

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 34, 2018, i254–i262

doi: 10.1093/bioinformatics/bty275

ISMB 2018

https://bhi-kimlab.github.io/DeepFam
https://academic.oup.com/


1.1 Modeling protein families
Computational methods for modeling protein families can be

grouped into two categories: alignment-based and alignment-free

protein family modeling methods.

1.1.1 Alignment-based protein family modeling

Comparing multiple sequences needs a computational scheme. The

most widely used technique for comparing multiple sequences is the

alignment based method. A correct alignment of multiple sequences

of similar function is not only useful for modeling protein families

but also for determining functions of uncharacterized proteins.

Unlike pairwise sequence alignment methods, the computational

complexity of aligning multiple sequences increases exponentially to

the number of sequences and it is actually known as an NP-

Complete problem (Wang and Jiang, 1994). Thus, heuristic and ap-

proximation algorithms, such as ClustalW (Thompson et al., 1994),

Omega (Sievers et al., 2014) and MUSCLE (Edgar, 2004), are wide-

ly used to compute an alignment of multiple sequences. A multiple

sequence alignment itself provides valuable information on sequence

conservation but needs additional computation algorithms to ex-

tract and model conserved regions. For example, manually deter-

mining conserved regions in a multiple sequence alignment is not

always possible and often incorrect, thus there are tools to compute

conserved regions in an multiple sequence alignment, e.g. ARCS

(Song et al., 2006). Modeling protein families from multiple se-

quence alignment also requires sophisticated methods. A major chal-

lenge is to deal with insertions and deletions of amino acids in

multiple sequence alignment. These computational challenges are

nicely handled by using profile Hidden Markov Model (pHMM)

(Eddy, 1998) that uses position-specific modeling of columns and

modeling of indels by defining explicit insertion and deletion states.

pHMM is the most accurate modeling technique and is used by the

widely used protein family database, PFam (Bateman et al., 2004).

1.1.2 Alignment-free protein family modeling

The alignment-based methods, though successful, have several limi-

tations which will be discussed in the next section. Thus, there have

been significant efforts to develop alignment-free family modeling

methods. A major issue of the alignment-free method is a feature

vectorization, how to convert raw sequence into numerical feature

vector. The most successful approach is to use k-mers, k amino

acids, as features and uses all possible k-mers as a feature vector

(Vinga and Almeida, 2003). In some cases including remote hom-

ology detection, alignment-free methods show better performance

than alignment-based methods (Lingner and Meinicke, 2006; Strope

and Moriyama, 2007).

1.1.3 Limitations of the current protein modeling methods

As aforementioned, alignment-based methods are useful but have

some issues. First, the alignment-based protein family modeling

requires a correct alignment of multiple sequences but it is hard to

compute the multiple sequence alignment correctly. There are two

major reasons that make multiple sequence alignment difficult; com-

puting optimal multiple sequence alignment is a NP-hard problem

and methods to score more than two amino acids correctly are not

available (i.e. no scoring matrices for multiple amino acids). Thus,

existing multiple sequence algorithms are heuristics. Another issue is

that the multiple sequence alignment is a global alignment algo-

rithm. However, there are many cases that the same domain is

repeated multiple times and different domains appear inconsistently

in each of the multiple sequences. Specifically, sequences can have

recombined conserved regions by rearrangements, inversion, trans-

position and translocation without loss of the biochemical function

(Vinga and Almeida, 2003). In this case, a global alignment is not

possible and, even if possible, much of information is lost while

aligning sequences globally.

Alignment-free methods also have critical limitations. First, al-

though using k-mers may be able to handle arbitrary numbers of

domains, k-mer approaches lose the order information in biological

sequences. Biological sequences cannot be in a random order even

though there are few exceptions like domain shuffling, and this is

why sequence alignment methods have been used for a long time in

the biology community. Second, k-mer approaches require exact

matches but it is well known that different amino acids can share

biochemical properties, which is modeled as a substitution matrix

like BLOSUM(Henikoff and Henikoff, 1992). This is a critical issue

since the k-mer approaches do not utilize the biological information

of sequences. Lastly, there is no guideline for determining the length

of k when using k-mer approaches. This can be easily understood in

terms of sensitivity and specificity. The shorter k is, the sensitivity of

a k-mer gets better but the specificity becomes worse exponentially.

The longer k is, the specificity of a k-mer becomes gets better but the

sensitivity gets worse dramatically. This is an unresolved machine

learning problem. In general, k-mer based approaches are good to

speed sequence alignment by using k-mers as anchors for sequence

alignment but they are not successful in modeling protein families.

In a recent article (Zielezinski et al., 2017), advantages and disad-

vantages of the alignment free methods are extensively discussed. In

general, alignment-based methods perform better than alignment-

free methods, which is why the current protein family databases are

predominantly constructed by using alignment-based methods

including Pfam (Bateman et al., 2004) and TIGRFAM (Haft et al.,

2003).

1.2 Motivation and our approach
As we discussed in the previous section, both alignment-based and

alignment-free methods for modeling protein families have limita-

tions. Thus, a new approach to model protein families is needed. We

leveraged the recent success in the deep learning community

(Alipanahi et al., 2015) to develop a novel method for modeling pro-

tein families. Introduced in this paper is DeepFam, a deep learning

based alignment-free method for modeling sets of protein sequences

or protein families. The predictive power of our model is measured

by performing cross validation tests on how good the protein family

membership assignments of test sequences or protein function pre-

dictions can be made. Thus, in this article, we will use terminologies

such as ‘modeling protein families’ and ‘protein function prediction’

in this context. Later in this article, we will show that the protein

function prediction is done by detecting motifs, functional or char-

acterizing subsequences, which we interpret that DeepFam is able to

extract functional information from a protein sequence.

DeepFam has several merits. First, DeepFam directly generates

feature vectors from a raw sequence without requiring a multiple se-

quence alignment. Second, DeepFam can model arbitrary subse-

quences in a position-specific and a stochastic manner by using

convolution units, functioning similarly as position-specific scoring

matrix used in alignment-based methods. Third, DeepFam solves

the issue of determining length of a single unit subsequence by using

variable-size convolution unit and by using a fully-connected neural

network, combining nearby short captured conserved regions.

Lastly, DeepFam is an end-to-end model, which extracts features

and makes a prediction simultaneously.

DeepFam i255



2 Materials and methods

In this section, we describe DeepFam and other existing methods that

were used as baselines for performance comparison. DeepFam is an

alignment-free protein family prediction model, taking a raw protein

sequence as input and inferring family of the protein as output. From

the sequence, DeepFam first calculates the existence score of conserved

regions by using convolution layer and 1-max pooling layer. The

hidden units have the power of detecting conserved regions since the

hidden units that are activated frequently for proteins of the same fam-

ily indicate which k-mers are frequently used for the family. DeepFam

has an additional dense layer (fully-connected layer) to extract longer

or high-order features from the existences of conserved regions. A

feature vector is generated as the output of the dense layer and the

multinomial logistic regression computes probabilities of being the

member of the each family from the feature vector. The architecture of

DeepFam is illustrated in Figure 1. The detail of how the model works

and how to train the model is described in Section 2.1 (Table 1).

2.1 DeepFam
2.1.1 Encoding

To process sequences in a batch, we made the length of all training

and test sequences the same by inserting zero padding at the end

of the shorter sequences. The raw dataset is the set of pairs of

a protein sequence and a family label fðSðnÞ; yðnÞÞgNdata

n¼1 where

SðnÞ ¼ ðsn
1; . . . ; sn

t Þ; yðnÞ 2 labelset; t � L. To encode data into nu-

merical values, we applied one-hot encoding to the label and also

apply similar approach to the sequence defined as

Xi;j ¼

1 if si ¼ jth base in charset

0:5 if si ¼ B and jth base in charset 2 fD;Ng

or si ¼ Z and jth base in charset 2 fE;Qg

or si ¼ J and jth base in charset 2 fI;Lg

0 otherwise

8>>>>>>>><>>>>>>>>:
(1)

Yq ¼
1 if y ¼ ith in labelset

0 otherwise

(
(2)

where i 2 f1; . . . ;Lg and q 2 f1; . . . ;Nlabelg. This encoding follows

IUPAC amino acid code notation. As a result of preprocessing, pairs

of the sequences and family labels are transformed into pairs of

encoded sequence array and label array fðXðnÞ;YðnÞÞgNdata

n¼1 .

2.1.2 Convolution layer

Convolution layer is the first layer of our model, directly connected to

the encoded input layer. Convolution layer converts an encoded pro-

tein sequence into the vector of features from sequence. Convolution

is operated by windowing each convolution unit over the encoded in-

put sequence. Therefore, for the encoded sequence array of length L,

the output size of the convolution layer is reduced to L�mk þ 1 for

each mk length unit, and the activation value is defined as

hk;i ¼ r Bk þ
Xmk

l¼1

XC

j¼1

Xiþl�1;jWk;l;j

 !
(3)

where hk is ðL�mk þ 1Þ array and Wk is mk � C array for

k 2 f1; . . . ;Nfltg. ReLU activation function is used, defined as

rðxÞ ¼ maxð0;xÞ: (4)

Fig. 1. The overview of DeepFam model. It is a feedforward convolution neural network whose last layer represents the probabilities of each family. convolution

layer and 1-max pooling layer calculate a score (activation) of the existence of a conserved regions. The next layer is fully-connected neural network which can

detect longer or complex sites. In order to infer the probability of each family, the last layer is designed as softmax layer (multinomial logistic regression), gener-

ally used for multi-class classification

Table 1. Notations of variables

L Maximum length among all sequences

charset {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, X}

C Size of charset ¼ 21

N data Number of sequences

Nlabel Number of families

labelset Set of families

Nflt Number of convolution units

Nhdn Number of hidden units on fully connected layer

mk Length of kth convolution kernel

i256 S.Seo et al.



2.1.3 1-Max pooling layer and dropout

There are several pooling strategies for convolution neural network

such as max pooling and average pooling (Boureau et al., 2010). To

focus on the existence of conserved regions, we used 1-max pooling

which takes one maximum activated value among ðl �mk þ 1Þ neu-

rons, approaching similarly as DeepBind did (Alipanahi et al.,

2015).

hmax
k ¼ max

l�mkþ1

i¼1
ðhk;iÞ (5)

Dropout (Srivastava et al., 2014) stochastically removes some

neurons at training time and has power of regularization. We adopt

dropout after the 1-max pooling layer to prevent overfitting and to

train robust features.

2.1.4 Dense layer and softmax layer

To combine features from sequence and to extract high-order fea-

tures, we employ additional dense hidden layer whose length is Nhdn

and weight W0 is Nflt �Nhdn array. The output value of this layer is

calculated as

Zl ¼ r B0l þ
XNflt

k¼1

hmax
k W0

k;l

 !
(6)

where l 2 f1; . . . ;Nhdng. A softmax layer is connected with a dense

layer whose weight matrix is W00. The softmax layer is used to calcu-

late probability over each family class, defined as

Oq ¼ B00q þ
XNhdn

l¼1

ZlW
00
l;q (7)

byq ¼ softmaxðOqÞ ¼
eOqP
r eOr

(8)

where q 2 f1; . . . ;Nlabelg.

2.1.5 Training

The loss function for the DeepFam model is calculated as cross-

entropy with L2 regularization on last layer, defined as

� 1

N

XNdata

n¼1

XNlabel

q¼1

½Yn
q log ð bY n

qÞ þ ð1� Yn
q Þ log ð1� bY n

qÞ�

þ k
XNhdn

l¼1

XNlabel

q¼1

W002l; q (9)

We adopt commonly used techniques for learning a deep feed-

forward network. First, since all the training data cannot be loaded

in the memory and calculating the gradients of all the training data

is too slow, we use the mini-batch gradient descent technique, a gen-

eral optimization technique for training deep neural network.

Another technique is the batch normalization (Ioffe and Szegedy,

2015) that accelerates stochastic optimization and has a power of

regularization by reducing internal covariate shift. For all layers hav-

ing activation function such as the convolution layer and the dense

layer, batch normalization is adopted before calculating activations.

For example, activation of the fully connected layer (Y) is calculated

as Y ¼ rðWXþ BÞ from input X without batch normalization,

while the activation is calculated as Y ¼ rðBNðWXþ BÞÞ with

batch normalization. The third technique is Xavier initialization

(Glorot and Bengio, 2010) that helps activation to propagate well

through the network by initializing weights between adjacent layers,

considering the number of both side of neurons. For an optimization

algorithm, we use Adam optimization (Kingma and Ba, 2015) which

is the state-of-art gradient descent optimization algorithm that

works well for sparse gradient. Adam computes different and adap-

tive learning rates for each parameter by utilizing previous gradients

and squared gradients which can alleviate the problem of local op-

tima with stochastic gradient descent. The optimization terminates

after training 20 epochs of the train dataset.

2.1.6 Hyperparameters

There are several hyperparameters including the number and the length

of convolution kernels, the number of perceptrons in the fully con-

nected layer, a coefficient of regularization, dropout rate, learning rate

and batch size. Since there are too many hyperparameters, it is not pos-

sible to search optimal values for all parameters exhaustively. Thus, we

set the widely used default settings for most of the parameters that are

known to perform well in practice. However, the number and the

length of convolution units and the number of hidden units in a fully

connected layer were parameters specific to DeepFam, so we chose the

parameter setting by considering all combinations of candidate param-

eters. The lengths of the convolution units that we considered were f8;
12; 16;20; 24; 28;32;36g (8 different sizes) and the number of convo-

lution units of each length were tested among f100; 150; 200;250g,
so the total number of all convolution units were f800; 1200; 1600;

2000g respectively. For the number of hidden units in the fully con-

nected layer, we tested with settings of {1000, 1500, 2000}. For each

of possible 12 models with settings of Nflt 2 f100;150; 200; 250g
and Nhdn 2 f1000; 1500; 2000g, we chose the best performing model

in a one of the cross validation set. The other hyperparametes were

set as follows: coefficient of regularization (k) ¼ 0:0005, dropout

rate ¼ 30%, learning rate ¼ 0:001, batch size ¼ 100.

2.2 Existing protein modeling methods used for

performance comparison
In this section, we provide a detailed explanation on the three exist-

ing protein modeling methods, profile Hidden Markov Model,

k-mer based logistic regression and the Provec-based logistic regres-

sion. These methods were used to compare classification performan-

ces against DeepFam.

2.2.1 Profile Hidden Markov Models

For the alignment-based algorithm, we built profile Hidden Markov

Models (pHMM), the state of the art modeling technique for protein

families. To build the model, we first used MUSCLE to generate

Nlabel multiple sequence alignments. Then we used HMMER to con-

struct pHMM model. For each of Nlabel alignments, we used

hmmbulid to build Hidden Markov Model of each family. From in-

dividual family models, we concatenated them into a single file and

compressed them into single Hidden Markov Model database,

indexed with hmmpress. For each test protein, hmmscan generated

candidate family assignments of the sequence and the most probable

family of which has smallest E-value that represents the significance

of a sequence matched to the family model was selected as output.

We used MUSCLE v3.8 and HMMER v3.1 with default options.

For some sequences, HMMER was not able to assign family label

since no E-value was generated from any of the family models. We

treated these cases as incorrect predictions.

2.2.2 K-mer based logistic regression

For a benchmark of alignment-free algorithms, we implemented a

k-mer based logistic regression model in Tensorflow (Abadi et al.,

2016). For preprocessing, raw sequence with length l was split

DeepFam i257



into l � kþ 1 words considering the overlaps, defined as

S ¼ ðs1; . . . ; sl�kþ1Þ. For all bag of the k-mers WB ¼ ðw1; . . . ;wBÞ;B
¼ 26k (base is 26 because the FASTA format allows 26 amino acid

characters), the frequency of each word was calculated as

f ðwiÞ ¼
Xl�kþ1

j¼1

Iðwi ¼ sjÞ
l � kþ 1

(10)

Iðx ¼ yÞ ¼
1 if x ¼ y

0 otherwise

(
(11)

A vector of k-mer frequencies ðf ðw1Þ; . . . ; f ðwl�kþ1ÞÞ was given

as input to the multinomial logistic regression model. The loss func-

tion was defined as cross entropy of target labels and predictions

with small L2-regularization (k ¼ 0:0005) to prevent overfitting.

The other settings including optimization and the size of mini-batch

were same as in DeepFam.

2.2.3 Protvec based logistic regression

We used another k-mer based model, adopting Protvec (Asgari and

Mofrad, 2015). Protvec converts 3-mers into 100 numerical values

that reflect spatial closeness of 3-mers. Implementation of Protvec is

available at the archive, referenced in original publication. For pre-

processing, raw sequence with length l was split into l – 2 words

considering overlaps defined as S ¼ ðs1; . . . ; sl�2Þ. With Protvec

embedding defined as a function gðsÞ : 3�mer! R
100, S was trans-

formed to G ¼ ðgðs1Þ; . . . ; gðsl�2ÞÞ. The feature vector was calcu-

lated by sum of all the embedded 3-mers, the same method as

Protvec did in the original publication. Therefore, an input feature

vector is defined as
Pl�2

i¼1 gðsiÞ. The cross entropy with small L2-

regularization (k ¼ 0:0005) was used as loss function as same as the

k-mer based logistic regression model. The other settings were the

same as in DeepFam.

2.3 Datasets
For a fair comparison, we chose protein family databases that were

not built by any of four methods to be evaluated. For example,

PFam (Bateman et al., 2004), one of the most famous database, is

excluded because PFam is based on profile Hidden Markov Model.

Two datasets, consisting of Clusters of Orthologous Groups of pro-

teins (COG) database and G Protein-Coupled Receptor (GPCR)

dataset, were used to compare performance of models. Recently,

COG expanded the database using PSSM generated from the 2003

version of COG. Thus, the alignment based method has some ad-

vantage over the non-alignment based methods in the experiment

using COG. Later, we will show that the two datasets are independ-

ent and have different characteristics, which make our experiments

more comprehensive.

2.3.1 Clusters of orthologous groups of proteins dataset

Clusters of Orthologous Groups of proteins (COGs) database is one

of the most widely used functional annotation databases. COG

database has been available to the public since 1997 and the latest

version is published in 2014 (Galperin et al., 2015). Protein family

assignment was done by utilizing pairwise sequence comparisons in

the whole genome context, genome-wide bidirectional best hits

(BBH) and then a requirement of forming a triangle of BBHs in three

genomes. Use of the genome context information in a triangular

way was effective in recognizing distant homologs (Galperin et al.,

2015). The functional curation of the clusters was done manually to

make the annotation of COG database more reliable. Each COG

family contains different number of proteins (from 1 to 10 632)

while the proteins vary in its sequence length (from 21 to 29 202). In

order to formulate a multi-class classification problem, we discarded

proteins which were assigned to more than one family, resulting in 1

674 176 proteins from 4659 families. We filtered out long sequences

that were longer than 1000 amino acids because lengths of protein

sequences varied considerably but most of the sequences are shorter

than 1000 amino acids. As a result, only 1.3% of sequences were fil-

tered out, resulting in 1 652 408 proteins from 4655 families. The

number of proteins belongs to each family is highly biased, thus we

discarded some families that did not satisfy certain thresholds. For

extensive experiments, we tested with three thresholds for the min-

imum number of sequences, 100, 250 and 500, resulting in 1 565

976 proteins with 2892 families, 1 389 595 proteins with 1796 pro-

teins and 1 129 428 proteins with 1074 families, respectively. We

denoted these datasets as COG-100-2892, COG-250-1796 and

COG-500-1074.

2.3.2 G protein-coupled receptor dataset

The G protein-coupled receptor (GPCR) is a well studied protein

superfamily that consists of diverse proteins with seven highly con-

served transmembrane segments (Davies et al., 2007). To categorize

divergent proteins, the GPCR proteins are hierarchically annotated.

We used one of the biggest GPCR dataset, GDS (Davies et al.,

2007). The authors of Davies et al. (2007) did GPCR family predic-

tion experiments with 8222 protein sequences belonging to 5 fami-

lies, 38 sub-families and 86 sub-subfamilies.

3 Experiments and results

For label Y ¼ ðy1; . . . ; yNÞ and prediction bY ¼ ð by1 ; . . . ;cyN Þ, the

overall accuracy is calculated as below,

AccuracyðY; bY Þ ¼ 1

N

XN
i¼1

Iðyi ¼ byi Þ (12)

where I is an indicator function defined in Equation (11).

We compared the predictive power of the methods using the

COG dataset and GPCR dataset. All three methods described in

Section 2.2 were trained with the same data that were used to train

DeepFam. The profile Hidden Markov Model, 3-mer based logistic

regression model and ProtVec-based logistic regression model are

denoted as pHMM, 3-mer LR and ProtVec LR, respectively.

The experiments were performed with a GeForce GTX 980 GPU

machine and Intel Xeon CPU E7-4850 v4 @ 2.10 GHz CPU machine

having 128 cores and 504 G RAM. DeepFam, 3-mer LR and

ProtVec LR were trained and tested on a GPU machine for most of

the experiments except for comparing execution time. The other

experiments including training and testing pHMM were done on the

CPU machine. All methods were tested on CPU machine when meas-

uring execution time for fair comparison.

3.1 Evaluation of clusters of orthologous groups

prediction
The accuracy of the methods was measured in a 3-fold cross-

validation experiment using the COG dataset. The proteins of each

family were equally split into three folds while preserving the ratio

of the families. Before evaluating the DeepFam model, we explored

different combinations of hyperparameters and determined a

DeepFam model as described in Section 2.1.

i258 S.Seo et al.



Figure 2 presents the error rate of each hyperparameter combin-

ation in one of the validation set. With the number of hidden units

fixed, DeepFam predicted family labels more accurately as the num-

ber of convolution units increased. Likewise, with the number of

convolution units fixed, DeepFam predicted better as the number of

hidden units increased. However, if the number of the convolution

units were not enough, specifically when the number is 800 or 1200,

the model with the large number of hidden units showed worse

performance.

DeepFam showed the best accuracy for the COG-500-1074 and

COG-250-1796 datasets but showed slightly worse accuracy for

the COG-100-2892 dataset than pHMM. In general, pHMM

performed second best (Table 2). This is no surprise since it is widely

accepted that pHMM is the most accurate protein function

modeling method. The k-mer based approach and the Protvec based

approach did not perform well which shows the limitation of the

existing alignment-free methods.

As the number of families increased, accuracies of most methods

tended to decrease, which is the current research topic in machine

learning community, known as the high multi-class problem (Gupta

et al., 2014). The most important issue is how sensitive the modeling

method is to the number of classes to be determined. The accuracy

of 3-mer LR and Protvec LR dropped almost 10% as the number of

families increased from 1074 (COG-500-1074 dataset) to 2892

(COG-100-2892 dataset). The performance of DeepFam, though it

is an alignment free method, decreased only 4%. As expected, the

alignment-based method, pHMM, was most stable to the number of

families.

3.2 Evaluation of G protein-coupled receptor

family prediction
We also evaluated the modeling methods in another 10-fold cross-

validation experiment. Because of the capacity limitation of the

GPU machine that we used, it was not possible to train DeepFam for

284 sequences whose lengths were longer than 1000 amino acids.

To overcome this issue, a 10-fold cross validation experiment was

designed in a special way that DeepFam was in a disadvantageous

situation. The long 284 sequences were first excluded for training,

but later appended to the test set of each cross validation. This

10-fold cross validation experiment penalized DeepFam since long

sequences were never seen in any training set but always included in

test sets.

To evaluate the performance for hierarchical classes, we first

trained 86 sub-subfamily level models. From the sub-subfamily pre-

diction, we evaluated sub-family and family level prediction in a

bottom-up approach, following up the hierarchy of GPCR labels.

For example, the ‘BLT2’ sub-subfamily is treated as ‘Leuko’ in fam-

ily level and treated as ‘class A’ in family level. We compared 14

modeling methods that included a majority of machine learning

methods while 10 machine learning algorithm results were copied

from Davies et al. (2007). DeepFam achieved the best accuracy at all

levels as shown in Table 3 while pHMM performed the second best.

Prediction accuracies of all methods decreased as the level became

deeper, which showed similar results with COG experiment.

3.3 Evaluation of execution time over the number

of families
We also measured the execution time of the methods, i.e. the elapsed

time to get the results from query sequences, which is one of the im-

portant issues for a real-world problem when a large number of

sequences should be processed. We analyzed the execution time in

two aspects; the absolute execution time and the scalability to the

number of the families. The absolute execution time was measured

in a setting of a fixed number of sequences and a fixed number of

families. Scalability was evaluated how much more time each

method required for prediction as the number of protein families

increased. We used pre-trained models from the COG prediction ex-

periment, described in Section 3.1. A separate model was trained for

each dataset, COG-500-1074, COG-250 1796 and COG-100-2892.

We measured the execution time by averaging 5 independent trials,

each of them were measured with randomly selected 1000 sequen-

ces. The experiment was done on a CPU machine with multi-

threading. DeepFam, 3-mer LR and Protvec LR could utilize all

Table 2. Prediction accuracy (%) comparison of COG dataset

Dataset COG-500-1074 COG-250-1796 COG-100-2892

DeepFam 95.40 94.08 91.40

pHMM 91.75 91.78 91.67

3-mer LR 85.59 81.15 75.44

Protvec LR 47.34 41.76 37.05

Bold indicates the best performance for each dataset.

Fig. 2. The error rates of DeepFam models with different hyperparameter

combinations. The error rate is calculated as 1� accuracy, which means that

the lower the error is, the better the hyperparameter setting is

Table 3. Prediction accuracy (%) comparison of GPCR dataset in

each level

Method Family Sub-family Sub-subfamily

DeepFam 97.17 86.82 81.17

pHMM 95.77 85.39 78.50

3-mer LR 95.59 83.51 77.06

Protvec LR 88.58 74.98 67.32

Selective top-down* 95.87 80.77 69.98

Naive Bayes* 77.29 52.60 36.66

Bayesian network* 85.24 64.27 50.69

SMO* 80.21 56.67 35.96

Nearest Neighbour* 95.87 78.68 69.40

PART* 93.27 78.73 65.68

J48* 92.93 77.49 64.30

Naive Bayesian Tree* 93.07 76.92 64.78

AIRS2* 91.98 74.58 62.68

Conjunctive Rules* 76.19 49.93 16.49

Note: Results marked with *are extended from Davies et al. (2007).

Bold indicates the best performance for each dataset.

DeepFam i259



CPU cores as Tensorflow uses all possible computing resources

without additional implementation. pHMM also could use multiple

cores by omitting ‘–cpu’ options of HMMER as described in the

HMMER documentation.

The result in Figure 3 shows that DeepFam is slower than simple

alignment-free methods but much faster than pHMM. For scalabil-

ity, all the alignment-free methods were not affected much by the

number of families while pHMM took significantly more time as the

number of families increased. Note that DeepFam, unlike the other

alignment free methods, achieved the scalability without sacrifice of

predictive power.

3.4 Interpreting the performance of the DeepFam model
In the experiments with two large datasets of different characteristics,

DeepFam had better predictive power than existing methods. We

looked at why DeepFam performed well and we found that the high

accuracy of DeepFam came from the power of capturing conserved

regions. With a pre-trained DeepFam model, we visually inspected

some of convolution units that were activated for a specific family

and verified the captured regions were highly conserved in the family.

Furthermore, we found that the conserved regions captured at the

convolutional units were functionally related to the family.

The experiment was done as follows. We selected a family

COG0517 in the COG database and PS51371 in the Prosite data-

base (Sigrist et al., 2012), both annotated as ‘CBS domain’. To visu-

alize convolution units activated for a specific family, we utilized the

similar approach as used in DeepBind. We trained additional

DeepFam model with COG-500-1074 dataset, using 90% of dataset

to train the model and using rest 10% to monitor overfitting. While

feeding the sequences that belonged to the family to trained

DeepFam, we gathered all sub-sequences that have positive activa-

tion on each convolution unit. We filtered out infrequently activated

convolution units that were activated in less than 70% of total

sequences. Top 30 highly activated convolution units were selected

as the convolution units that were most related to the family. For

each of 30 convolution units, WebLogo software (Crooks et al.,

2004) was used to generate logo images of the corresponding sub-

sequences from convolution unit.

To determine conserved regions of COG0517 family, we utilized

one of the widely used software MEME (Bailey et al., 2009) that

predicts ungapped motifs in a set of sequences. We sampled 500

sequences from COG0517 sequences because of the input size

limitation of MEME. We ran MEME with ‘-nmotifs 30 -maxw 36 -

minw 8’ options to make motifs detected by MEME to be

comparable to the conserved regions determined by DeepFam. For

comparison and discussion, we selected 2 top ranked motifs, each of

them denoted as MEME-1 and MEME-2.

From logos generated by DeepFam, we could identify two con-

volution units corresponding to two MEME motifs, MEME-1 and

MEME-2. We denoted two convolution units as COG-DF-1552 and

COG-DF-921 because the logos are generated from convolution

unit of indices 1552 and 921 with sequences belonging to

COG0517. The logos are shown in Figure 4; the first logo was gen-

erated from MEME and the second logo was generated from

DeepFam with COG0517 sequences for both Figure 4a and b. This

result shows that DeepFam has a power of detecting conserved

regions or motifs related to the family.

Additionally, we found that captured regions were functional

family related regions, not a common repeat. To confirm this find-

ing, we generated logos from another sequences that were independ-

ent to COG database but whose functional annotation were also

‘CBS domain’. Prosite provides a profile of domain with UniProtKB/

Swiss-Prot (Apweiler et al., 2004) protein sequences that are

matched to the profile. We downloaded the multiple sequence align-

ment of PS51371 and generated logo with WebLogo. Unlike other

logos we generated, logo from PS51371 had gaps because it was

generated from the multiple sequence alignment. As the whole

length was too long to depict, PS51371 logos in Figure 4 (third

logos) were modified to show un-gapped conserved regions only.

The last logos in Figure 4, prefixed with PS-DF, were generated

from DeepFam that were pre-trained with COG sequences but

Fig. 3. The average elapsed time of five trials to predict families of 1000 protein

sequences for each method. Three independent models were built for each

method, which were trained to predict one of 1074, 1796 and 2892 families by

using COG-500-1074, COG-250 1796 and COG-100-2892 dataset respectively

(a)

(b)

Fig. 4. Visualizing MEME motifs, convolution units responsive to COG0517

sequences, PS51371 motifs and convolution units responsive to PS51371

sequences. (a) depicts the highest rank MEME motif and corresponding logos

and (b) depicts the second highest rank MEME motif and corresponding

logos. Only selected conserved regions are shown for PS51371 motifs be-

cause raw PS51371 logo is too long and has too many unconserved regions

as PS51371 logo is generated from multiple sequence alignment

i260 S.Seo et al.



examined by 329 Prosite sequences. We downloaded 366 Prosite

sequences with annotation of PS51371 pattern signatures. To make

sure that all sequences were never seen to DeepFam, we removed 34

sequences that were also existed in the COG database and further

removed 3 sequences whose lengths were over 1000 amino acids. As

shown in Figure 4, DeepFam was also able to catch subsequences

corresponding to the documented PS51371 pattern signatures that

are annotated as a motif for COG0517 but seen at the time of train-

ing. This experiment shows that DeepFam has a power of capturing

conserved regions related to the protein family.

4 Discussion

We presented DeepFam, a deep learning based alignment-free pro-

tein family modeling method. When the number of proteins in the

family is sufficient for training, DeepFam achieves better prediction

accuracy than the state-of-the-art methods while preserving the ad-

vantage of alignment-free methods, i.e. fast runtime. DeepFam has

several desirable characteristics. First, DeepFam is more accurate

than both existing alignment-based and alignment-free methods in

extensive experiments with the COG dataset and the GPCR dataset.

DeepFam is an alignment-free method and it is scalable without sac-

rificing the modeling power. In addition, we showed that DeepFam

can detect conserved subsequences while classifying query sequen-

ces. Since a huge number of protein sequences are generated from

many genome projects, a fast and accurate protein family modeling

method is very important. Thus, we believe that DeepFam will be

very useful in this regard.

There are several issues that are left as the future work. First, like

the k-mer-based approach, a convolutional neural network ap-

proach encounters a problem of choosing the optimal length of con-

volution units. To alleviate this problem, we used different

convolution units varying 8–36. A fully connected layer in DeepFam

is used to aggregate information captured by multiple distinct filters.

This approach worked well in our experiments even with small

number of the layers but could be improved with other methods.

One possible alternative is to utilize Google inception modules that

showed an excellent performance in the ILSVRC 2014 competition

(Szegedy et al., 2015) by making the model deeper without explo-

sion of model parameters. Second, different pooling strategies need

to be explored. For example, use of k-max pooling showed a good

performance for modeling sentences (Kalchbrenner et al., 2014).

Use of k-max pooling increases the model complexity, thus it should

be tested extensively. Third, unlike COG database, most of the pro-

tein family databases, such as GPCR database, hierarchically classify

a protein at multiple levels. We simply predicted multiple levels sep-

arately in our experiment. By adopting the hierarchical classification

or multi-task algorithm in deep learning, DeepFam model may be

extended to predict family of protein at multiple levels. Finally,

changing the model to the multi-label problem would be more useful

because some proteins have more than one function. Datasets that

we used in our experiments, though they are representative protein

databases, have few proteins of multiple functions, thus DeepFam

and the state of the art pHMM achieved very good accuracies.

However, to characterize proteins of multiple functions, a new study

is necessary.

Funding

This work was supported by Collaborative Genome Program for Fostering

New Post-Genome industry through the National Research Foundation of

Korea (NRF) funded by the Ministry of Science ICT and Future Planning

[NRF-2014M3C9A3063541], Next-Generation Information Computing

Development Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Science, ICT (No. NRF-

2017M3C4A7065887) and Institute for Information & communications

Technology Promotion (IITP) grant funded by the Korea government (MSIP)

[B0717-16-0098, Development of homomorphic encryption for DNA ana-

lysis and biometry authentication].

Conflict of Interest: none declared.

References

Abadi,M. et al. (2016) TensorFlow: A System for Large-scale Machine

Learning. In: Proceedings of the 12th USENIX Conference on Operating

Systems Design and Implementation (OSDI-16), pp. 265–283.

Alipanahi,B. et al. (2015) Predicting the sequence specificities of DNA- and

RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831–838.

Apweiler,R. et al. (2004) UniProt: the universal protein knowledgebase.

Nucleic Acids Res., 32, D115–D119.

Asgari,E. and Mofrad,M.R. (2015) Continuous distributed representation of

biological sequences for deep proteomics and genomics. PloS One, 10,

e0141287.

Bailey,T.L. et al. (2009) MEME SUITE: tools for motif discovery and search-

ing. Nucleic Acids Res., 37(suppl. 2), W202–W208.

Bateman,A. et al. (2004) The Pfam protein families database. Nucleic Acids

Res., 32, D138–D141.

Boureau,Y.-L. et al. (2010) A theoretical analysis of feature pooling in visual

recognition. In: Proceedings of the 27th international conference on ma-

chine learning (ICML-10), pp. 111–118.

Crooks,G.E. et al. (2004) WebLogo: a sequence logo generator. Genome Res.,

14, 1188–1190.

Davies,M.N. et al. (2007) On the hierarchical classification of G

protein-coupled receptors. Bioinformatics, 23, 3113–3118.

Durbin,R. et al. (1998) Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press.

Eddy,S.R. (1998) Profile hidden Markov models. Bioinformatics, 14, 755–763.

Edgar,R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Res., 32, 1792–1797.

Galperin,M.Y. et al. (2015) Expanded microbial genome coverage and

improved protein family annotation in the COG database. Nucleic Acids

Res., 43, D261–D269.

Glorot,X. and Bengio,Y. (2010) Understanding the difficulty of training deep

feedforward neural networks. In: Proceedings of the thirteenth international

conference on artificial intelligence and statistics (AISTATS 2010), vol. 9,

pp. 249–256.

Gupta,M.R. et al. (2014) Training highly multiclass classifiers. J. Mach.

Learn. Res., 15, 1461–1492.

Haft,D.H. et al. (2003) The TIGRFAMs database of protein families. Nucleic

Acids Res., 31, 371–373.

Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution matrices from

protein blocks. Proc. Natl. Acad. Sci. USA, 89, 10915–10919.

Ioffe,S. and Szegedy,C. (2015) Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In: Proceedings of the 32nd

International Conference on Machine Learning (ICML-15), pp. 48–456.

Kalchbrenner,N. et al. (2014) A convolutional neural network for modelling

sentences. In: Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics (ACL-2014), pp. 655–665.

Kingma,D. and Ba,J. (2015) Adam: a method for stochastic optimization. In:

Proceedings of the 3rd International Conference on Learning

Representations (ICLR-15), arXiv preprint arXiv: 1412.6980.

Lingner,T. and Meinicke,P. (2006) Remote homology detection based on

oligomer distances. Bioinformatics, 22, 2224–2231.

Sievers,F. et al. (2014) Fast, scalable generation of high-quality protein mul-

tiple sequence alignments using Clustal Omega. Mol. Syst. Biol., 7, 539.

Sigrist,C.J. et al. (2012) New and continuing developments at PROSITE.

Nucleic Acids Res., 41, D344–D347.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular

subsequences. J. Mol. Biol., 147, 195–197.

DeepFam i261



Song,B. et al. (2006) ARCS: an aggregated related column scoring scheme for

aligned sequences. Bioinformatics, 22, 2326–2332.

Srivastava,N. et al. (2014) Dropout: a simple way to prevent neural networks

from overfitting. J. Mach. Learn. Res., 15, 1929–1958.

Strope,P.K. and Moriyama,E.N. (2007) Simple alignment-free methods for

protein classification: a case study from G-protein-coupled receptors.

Genomics, 89, 602–612.

Szegedy,C. et al. (2015) Going deeper with convolutions. In: Proceedings

of the IEEE conference on computer vision and pattern recognition,

pp. 1–9.

Thompson,J.D. et al. (1994) CLUSTAL W: improving the sensitivity of pro-

gressive multiple sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix choice. Nucleic Acids

Res., 22, 4673–4680.

Vinga,S. and Almeida,J. (2003) Alignment-free sequence comparison—a

review. Bioinformatics, 19, 513–523.

Wang,L. and Jiang,T. (1994) On the complexity of multiple sequence align-

ment. J. Comput. Biol., 1, 337–348.

Zielezinski,A. et al. (2017) Alignment-free sequence comparison: benefits,

applications, and tools. Genome Biol., 18, 186.

i262 S.Seo et al.


	bty275-TF52
	bty275-TF1
	bty275-TF51

