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Abstract

Motivation: Allele-specific expression (ASE) refers to the differential abundance of the allelic copies

of a transcript. RNA sequencing (RNA-seq) can provide quantitative estimates of ASE for genes with

transcribed polymorphisms. When short-read sequences are aligned to a diploid transcriptome,

read-mapping ambiguities confound our ability to directly count reads. Multi-mapping reads align-

ing equally well to multiple genomic locations, isoforms or alleles can comprise the majority

(>85%) of reads. Discarding them can result in biases and substantial loss of information. Methods

have been developed that use weighted allocation of read counts but these methods treat the different

types of multi-reads equivalently. We propose a hierarchical approach to allocation of read counts that

first resolves ambiguities among genes, then among isoforms, and lastly between alleles. We have im-

plemented our model in EMASE software (Expectation-Maximization for Allele Specific Expression) to

estimate total gene expression, isoform usage and ASE based on this hierarchical allocation.

Results: Methods that align RNA-seq reads to a diploid transcriptome incorporating known genetic

variants improve estimates of ASE and total gene expression compared to methods that use reference

genome alignments. Weighted allocation methods outperform methods that discard multi-reads.

Hierarchical allocation of reads improves estimation of ASE even when data are simulated from a non-

hierarchical model. Analysis of RNA-seq data from F1 hybrid mice using EMASE reveals widespread

ASE associated with cis-acting polymorphisms and a small number of parent-of-origin effects.

Availability and implementation: EMASE software is available at https://github.com/churchill-lab/

emase.

Contact: gary.churchill@jax.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Allele-specific expression (ASE) refers to the relative abundance of

the two alleles of a transcript in a diploid organism. ASE can result

from differential rates of transcription, differences in mRNA stabil-

ity, or other mechanisms that affect transcript abundance. Allelic

differences can range in magnitude from subtle quantitative effects

to purely monoallelic expression. ASE is driven by factors that are

linked to the gene and act in cis to affect transcript abundance.

These cis-acting factors may be local genetic variants or epigenetic

marks that distinguish maternal and paternal alleles. In the absence

of cis-acting variation, trans-acting factors should exert an equal in-

fluence on both allelic copies of a gene. Accurate estimation of ASE
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can provide insight into mechanisms of normal transcriptional regu-

lation and it can reveal allelic dysregulation that may underlie or re-

flect disease states (Wittkopp et al., 2004).

The advent of RNA sequencing technologies (RNA-seq) has pro-

vided a unique opportunity to measure ASE directly (Lister et al.,

2008; Nagalakshmi et al., 2008). But the analysis of ASE from

RNA-seq data presents new challenges. In particular, while tran-

scribed genetic variation provides the information needed to dis-

criminate the allelic origin of a transcript, allelic differences can also

introduce systematic biases in alignment and ASE estimates (Degner

et al., 2009).

Quantification of ASE from RNA-seq data begins with align-

ment of sequence reads to a genome or transcriptome. Single nucleo-

tide polymorphisms (SNP) between the parental genomes enable the

allelic origin of some reads to be unambiguously determined and

these reads provide the information needed to estimate ASE. Some

of the first attempts to estimate ASE from short read RNA-seq data

aligned reads to a reference genome, allowing for mismatches in the

alignment, and then counted allelic proportions at known SNPs.

However, it is now recognized that alignment to a reference genome

can bias estimation in favor of the allele that is most similar to

the reference (Degner et al., 2009; Munger et al., 2014). Several

approaches have been developed to reduce this bias by accounting

for known SNPs in the scoring of alignments (Castel et al., 2015;

Lalonde et al., 2011; Pickrell et al., 2010; Stevenson et al., 2013).

Other methods explicitly represent diploid genomes that incorporate

known SNPs (Rozowsky et al., 2011). ASE estimation can also be

improved by assigning reads to alleles of a transcript based on all

known SNPs (Coolon et al., 2012). These approaches reduce but do

not fully remove biases that arise from the initial reference align-

ment. For example, van de Geijn et al. (2015) showed that reads

from non-reference alleles frequently map to multiple genomic loca-

tions and would be discarded by these methods. Ideally, all of these

challenges—diploid alignment, using information in multiple SNPs

and indels, and accounting for ambiguous read alignments—should

be addressed in a unified statistical analysis framework.

In this study, we focus on alignment to a diploid transcriptome,

which includes sequences from both allelic copies of all transcript

isoforms. The diploid transcriptome has a natural hierarchical struc-

ture. Genes, the transcribed regions of the genome, are present as

two copies, the maternal and paternal alleles, either of which can be

transcribed and processed into multiple different isoforms. A tran-

script originates from one isoform of one allele of one gene but dif-

ferent transcript sequences may be highly similar or even identical to

one another. As a result, a short read sequence may align equally

well to multiple transcript sequences. Alignment ambiguities can

occur at different levels of the hierarchy. Sequence similarity shared

across genes can give rise to genomic multi-reads that align to mul-

tiple locations in the genome. Exon or exon-junction sharing be-

tween transcripts can result in isoform multi-reads that align to

more than one isoform of the same gene. Lastly, the absence of dis-

tinguishing polymorphisms can give rise to allelic multi-reads that

align equally well to both allelic copies of a gene. A single read can

display multiple ambiguities at different levels of this hierarchy.

Accounting for multi-mapping reads is known to improve esti-

mation of transcript abundance but little attention has been given

to the role of these different types of multi-reads in the estimation

process.

One approach to resolve multi-reads is to employ an expectation

maximization (EM) algorithm to assign probabilistic weights that

apportion the read across multiple transcripts. Previously reported

EM algorithms for RNA-seq analysis do not differentiate between

genomic, isoform and allelic multi-reads (Bray et al., 2016; Li and

Dewey, 2011; Patro et al., 2014; Turro et al., 2011). Here, we report

an EM algorithm that accounts for the hierarchical structure of the

transcriptome. Our method is implemented in open source software,

EMASE (https://github.com/churchill-lab/emase). We describe the

EMASE algorithm and evaluate its performance using simulated and

real data. We use simulated data to evaluate four EMASE models

with different hierarchies and compare the performance of EMASE

to several widely used methods for estimating ASE. We demonstrate

the application of EMASE to real data by analyzing liver RNA-seq

data from a reciprocal F1 hybrid cross between two inbred mouse

strains.

2 Materials and methods

2.1 Importance of counting multi-reads
RNA-seq data consist of millions of sequence reads obtained from

an RNA sample. We represent the transcriptome as a collection of

sequence elements, one for each allele of each isoform of each gene,

and we assume that each read originated from exactly one element.

Some elements of the transcriptome may be highly similar or even

identical to one another. There are sequence similarities across gene

families; isoforms of a gene may share exons or exon-junctions; and

alleles may have a few or no distinguishing polymorphisms. As a re-

sult, a read may align to one or more elements in the transcriptome

with equal alignment quality. If the best alignment is unique we as-

sume it is correct. Otherwise, we assume the read originated from

exactly one of the elements with equally best alignment quality.

Discarding ambiguous or multi-mapping reads is unfortunately a

common practice in RNA-seq analysis (Conesa et al., 2016). In add-

ition to loss of information, selectively discarding reads can bias re-

sults. The impact of discarding genomic multi-reads on total gene

expression has been documented (Li et al., 2010). Relatively less at-

tention has been paid to the impact of discarding isoform and allelic

multi-reads but it remains a standard practice to discard these reads

on the assumption that they are uninformative (Castel et al., 2015;

Kanitz et al., 2015).

To illustrate the potential impact of multi-reads, we counted the

different classes in our F1 cross data (Fig. 1). Only �14% of all

aligned reads are unique (U in Fig. 1) at all levels and the remaining

�86% of reads are multi-reads for at least one level of the hierarchy.

Simple multi-reads are multiply aligned at exactly one level of the

hierarchy; they represent 42% of all reads (Gþ I þ A). Complex

multi-reads are multiply aligned at two or more levels in the hier-

archy; they represent 44% of all reads (GIþGAþ IAþGIA). Thus

complex multi-reads represent a significant fraction of the total

data, and information; these are the reads that are apportioned in

different ways depending on what we assume about the hierarchy of

genes, alleles and isoforms.

Unique reads are simply the complement of multi-reads. They

provide critical information needed to assign weights and allocate

multi-reads. The majority of reads (83%) are genomic unique

(Aþ IþAIþU). Reads that are both genomic and allelic unique rep-

resent 22% (IþU) of the total; these reads are most informative for

ASE. In the diploid transcriptome of our F1 animals, 88% of genes

have at least one allelic variant site; for genes with no variants there

will be no allelic unique reads and we cannot estimate ASE. Reads

that are both genomic and isoform unique represent a larger propor-

tion, 48% (AþU) of total reads. However, many of these reads

align to single-isoform genes (36% of total reads) and thus only
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12% of total reads are informative for distinguishing among

isoforms.

2.2 Fitting an EMASE model
We address the problem of resolving multi-reads in RNA-seq data

by assigning probabilistic weights to each alignment of a multi-read.

Current approaches to resolve multi-reads treat all alignments

equally regardless of whether the multiple alignments involve alleles,

isoforms or genes (Bray et al., 2016; Li and Dewey, 2011; Nicolae

et al., 2011; Patro et al., 2014; Turro et al., 2011). This approach ig-

nores the hierarchical structure of the transcriptome in which a gene

may have multiple isoforms and each isoform will have two alleles.

As noted above, a single read can be a multi-read at multiple levels

in this hierarchy. It is not immediately obvious how to allocate

weights for these complex multi-reads.

We implemented four EMASE models (M1, M2, M3 and M4)

with distinct hierarchical structures (Fig. 2a). Each model appor-

tions a complex multi-read differently. Under M1, reads are appor-

tioned among genes first, then between alleles, and then among

isoforms. Under M2, reads are apportioned among genes first, then

among isoforms, and then between alleles. Under M3 reads are

apportioned among genes first, then among each isoform-allele

combination which are treated equally. Model M4 assumes no hier-

archy and multi-reads are apportioned equally among genes,

Fig. 1. Multi-read proportions in hybrid mouse data. For each read, we deter-

mined whether it aligns to multiple genomic locations, multiple isoforms of a

gene and multiple alleles. If, for example, a read is a genomic multi-read and

is also an isoform multi-read for at least one of its genomic alignments, the

read is counted as an isoform multi-read. Complex multi-reads are shown at

the intersections of the Venn diagram. The proportion of reads that align

uniquely at all levels is 14.1% as shown

(a) (b) (c)

Fig. 2. Hierarchical allocation of multi-reads. (a) The EMASE model hierarchies are illustrated for a gene ðgÞ with two alleles ða1; a2Þ and three isoforms ði1; i2; i3Þ. The

model hierarchy determines the order in which the alignments of a multi-read are resolved. For example, under EMASE model 1 (M1), we first account for genomic

multi-read alignments, then allele alignments and isoform alignments are last to be resolved. Under EMASE model 4 (M4), all alignments of a multi-read are treated

equally and are resolved without any order. (b) Probabilistic allocation of a complex multi-read. The alignment profile (left) is an indicator matrix with ‘1’ set at the

aligned positions of a multi-read in a diploid transcriptome. Dark gray lines indicate levels of hierarchy within which weights are being allocated. Light gray lines dis-

tinguish items in each level of hierarchy. In EMASE, a multi-read is allocated along four different hierarchies. For example, in M1 a read with the given alignment pro-

file is sequentially allocated at the level of gene, then allele and finally isoform. Note that for models M1, M2 and M3, the presence of three alignments to gene g1 is

counted as a single event and thus the weight allocated to each gene is 1
2. Under M4, each alignment is weighted equally; gene g1 receives 3

4 of the total weight and

gene g2 receives 1
4. (c) The EMASE parameter estimation algorithm is carried out iteratively. Each read alignment profile (1) is assigned weights in proportion to the

current estimates of transcript proportion (2). Then weights are summed to obtain the expected read counts (3). Counts are normalized by their effective transcript

length to obtain new estimates of transcript proportions. This cycle is repeated until the transcript proportion parameters converge
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isoforms, and alleles. M4 is implicitly the model used by other EM

approaches. Under M4, the gene-level allocation of reads will de-

pend on the number of isoforms that are represented in the tran-

scriptome; genes with more isoforms will receive proportionately

higher weights in the allocation of reads that are both genomic and

isoform multi-reads. To see why this may be problematic, consider a

situation where new isoforms of a gene are discovered and added to

the transcriptome. With the new transcriptome definition, this gene

will receive a larger share of the read allocation but the evidence

that the read originated from this gene has not changed.

To illustrate how the four EMASE models allocate multi-reads, we

constructed a hypothetical example of an alignment profile (Fig. 2b).

This is a complex multi-read at all three levels of the hierarchy. M1

first allocates equal weight to each gene; it then allocates weight be-

tween the two alleles of gene g1; lastly it allocates weights to isoforms

within each gene and allele. Models M2 and M3 make similar alloca-

tions but in different orders resulting in different overall allocation of

weights. We note that all three model M1, M2 and M3 given equal

weight to each gene. In contrast, M4 will apportion weights equally to

each alignment such that gene g1 receives 3
4 weight and gene g2 receives

1
4 weight. In this example, we applied equally weighted allocations to a

single read. Next we describe an iterative algorithm for estimating the

allocation parameters that uses data from all of the reads.

An EM algorithm is applied to obtain maximum likelihood par-

ameter estimates for an EMASE model (Fig. 2c). The EM algorithm

for EMASE M1 begins with initial estimates of the relative expres-

sion of each gene ðhgÞ, the allelic proportions for each gene ð/hjgÞ,
and the isoform proportions within each allele of each gene ðdijg;hÞ.
Initial values can be equally weighted as in Figure 2b. The product

of these parameters kg;h;i ¼ hg � /hjg � dijg;h represents the relative

abundance of the transcript. In the E-step, current estimates of tran-

script abundance are used to apportion the unit count of a multi-

read among the gene(s), isoform(s) and allele(s) to which it aligns.

This process is repeated for each read and the weights are summed

across all reads to obtain an expected read count for each transcript.

In the M-step, the expected read counts are used to re-estimate the

transcript abundance, incorporating an adjustment for the transcript

length. The EM algorithm converges to yield maximum likelihood

parameter estimates of transcript abundance and expected read

counts. We note that expected read counts may not be integers due

to the weighted allocation of multi-reads. Transcript abundance is a

proportion among all transcripts and it is typically standardized to

transcripts per million (TPM). Convergence of the EMASE fitting al-

gorithm is declared when the sum of the absolute TPM changes by

<1.0 on consecutive iterations. A detailed description of the EM al-

gorithms is provided in the Supplementary Material.

3 Results

3.1 Performance of EMASE on simulated data
We used simulations to evaluate the performance of EMASE

models for estimating total and allele-specific expression and for

comparison of EMASE to other approaches. We simulated 12 inde-

pendent sets of 10 million 68 bp single-end reads using RSEM (Li

and Dewey, 2011) version 1.3.0 with input parameters obtained by

applying RSEM analysis to eight samples of F1 hybrid cross between

mouse strains NOD/ShiLtJ (NOD) and PWK/PhJ (PWK). For the

alignment phase of analysis, we generated NOD and PWK transcrip-

tomes by incorporating known strain-specific SNPs and short indels

into the reference transcriptome and combined these to form the

diploid transcriptome of a NOD�PWK F1 hybrid mouse using

g2gtools (https://github.com/churchill-lab/g2gtools) (Supplementary

Fig. S1). We built the bowtie (Langmead et al., 2009) index using

rsem-prepare-reference and aligned each of the simulated read sets

to the diploid NOD�PWK transcriptome using the bowtie aligner

to generated BAM files for each of the 12 simulated datasets. Details

of the simulations are provided in Section 2.

We fit each of the four EMASE models with these BAM files and

carried out head-to-head comparisons between all pairs of models to

determine the proportions of genes or isoform for which each

method provided estimates of ASE or total expression that are closer

to the simulated truth. For ASE, we report comparisons of EMASE

model M2 against the other methods (Table 1 and Supplementary

Figs S2–S4). For total expression, we report comparisons between

EMASE model M2 and the other EM methods (Supplementary

Table S1 and Figs S5 and S6).

For ASE estimation, we considered the estimates obtained from

two methods to be equivalent if the difference between the absolute

deviations of estimated values from the simulated truth is 5% or

less. In comparison to the other EMASE models, the M2 estimates

are more often closer to the true values. The difference is most pro-

nounced in comparison to M1 at the gene-level where 11.5% of

genes were better estimated by M2 and only 3.3% were better

estimated by M1. The differences among the EMASE model com-

parisons are less pronounced at the isoform level. In comparisons to

the other estimation methods, M2 is consistently best and the next

best performance is from RSEM followed by kallisto and unique-

reads. The performance of WASP is an outlier—M2 provided sub-

stantially better estimates of ASE for 26.2% of all genes.

We compared EMASE model M2 estimates of total gene expres-

sion to the other EM based methods. Estimates were considered to

be equivalent if they are within 5% relative difference. At the gene

level, estimates from EMASE models M1, M2 and M3 are essentially

identical and the minor differences (0.1%) can be attributed to con-

vergence of the EM fitting algorithm. In comparison to model M4,

Table 1. Head-to-head model comparisons

(a) Comparing M2 with other EMASE models

M1 M3 M4

% of Genes:

M2 is better 11.5 6 0.2 1.1 6 0.1 2.3 6 0.2

The other is better 3.3 6 0.1 0.6 6 0.1 2.0 6 0.1

% of Isoforms:

M2 is better 16.9 6 0.2 18.2 6 0.2 18.7 6 0.2

The other is better 11.0 6 0.2 12.2 6 0.2 13.1 6 0.2

(b) Comparing M2 with other existing methods

RSEM kallisto Unique WASP

% of Genes:

M2 is better 3.7 6 0.2 7.1 6 0.3 6.2 6 0.1 26.2 6 0.8

The other is better 2.9 6 0.1 4.4 6 0.2 2.6 6 0.1 5.1 6 0.2

% of Isoforms:

M2 is better 19.8 6 0.3 22.2 6 0.2 13.6 6 0.2 N/A

The other is better 13.2 6 0.2 14.0 6 0.2 5.6 6 0.1 N/A

Note: For each pair of methods, we consider only those genes for which

one or both estimates of ASE deviate by 5% or more from simulated truth.

We then tabulated the proportion of genes or isoforms for which one model is

closer to the truth. The pairwise comparisons are summarized relative to

EMASE model M2. WASP does not provide isoform-level estimation. See

Supplementary Figures S2–S6.
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we see that the M2 estimates are closer to truth for 1.4% of genes

and M4 estimates are closer to truth for 5.5% of genes. Model M2

outperforms both RSEM and kallisto at the gene-level. At the iso-

form level, we see very similar performance among M1, M2 and M3.

Model M4 is closer to truth than M2 for 12.7% of isoforms and

RSEM also outperforms M2 in this comparison. We conclude that

the best estimates of total gene expression are obtained using either

EMASE model M4 or RSEM, but we note that all of the EM meth-

ods are performing within a few percentage points of one another.

For both ASE and total expression, EMASE model M2 was overall

best but not best in every comparison.

We examine the distribution of allele proportions in the simu-

lated data (Supplementary Fig. S7a) and estimated allelic propor-

tions by EMASE M2, RSEM, kallisto, WASP and unique-reads

methods (Supplementary Fig. S7). In total, �22% and �14% of

reads are allelic unique at the gene and isoform level, respectively.

EM-based methods [Supplementary Fig. S7(b–d)] produced a

smooth, bell-shaped distribution similar to the true distribution but

with increased variation that reflects estimation error. WASP failed

to estimate allele proportion in over 2200 genes compared to the

other methods. The overall distribution of ASE obtained from

WASP was skewed toward NOD alleles, which are more similar to

the mouse reference genome (Supplementary Fig. S7e). For these rea-

sons, we conclude that post-processing allele specificity after refer-

ence alignment is not fully correcting the reference alignment bias.

The unique-reads method (Supplementary Fig. S7f) resulted in a

symmetric distribution of allele proportions but with greater esti-

mation error. We observed a 13% increase in variance at the gene-

level and 39% increase at the isoform-level compared to EMASE

model M2. Our implementation of the unique-reads method is

unbiased due to the alignment to a customized transcriptome but es-

timates of ASE are more variable than EM and there are more

monoallelic calls.

It is often of interest to classify the ASE state of genes as monoal-

lelic versus bi-allelic expression. In this simulation, we call a gene

monoallelic if its estimated allele proportion is <2% or >98%. It is

also of interest to classify genes as expressed or not-expressed. We

call a gene with expected read count <1.0 as not-expressed. Based

on these classification rules, we compared the precision-recall of

each model (Supplementary Table S2 and Figs S8 and S9).

The classification results for ASE are summarized in

Supplementary Table S2a. EMASE model M2 reported the smallest

number of false monoallelic expression calls: 168 6 9 versus

196 6 13 (EMASE M4), 203 6 14 (RSEM), 228 6 12 (kallisto),

264 6 13 (unique-reads method) or 735 6 37 (WASP) across 12

samples. Precision—the proportion of monoallelic calls that are

true—is around 50% for all of the ASE estimation methods with the

exception of WASP for which only 16.4% of monoallelic calls were

correct. Recall—the proportion of true monoallelic expressions that

are called—is more variable across the ASE estimation methods

with best performance reported for the unique-reads method

followed by EMASE model M4, RSEM and kallisto. At the isoform

level, we can see a similar result. EMASE model M1 and M2

achieved the best precision, in excess of 60%, and the unique-reads

method had the best recall of 93.7%, closely followed by EMASE

model M4, RSEM and kallisto.

Classification results for total expression are summarized in

Supplementary Table S2b. Precision and recall are consistently

above 97% for each of the EM-based methods. Classification per-

formance at the isoform-level is also consistently high across the

EM-based estimation methods.

To evaluate the performance of correctly identifying genes with

ASE, we performed significance testing for ASE on the true read

counts using Beta-Binomial model (See Supplementary Material

Section 2.7). We then performed significance tests using the read

counts estimated from each of the methods being evaluated on 10

035 genes that had at least one read with a SNP or indel to distin-

guish alleles and with a minimum estimated read count of 25. When

the estimated read counts did not meet these criteria, the outcome

was recorded as ‘no-call’, otherwise we reported the outcome of the

test as true positive, true negative, false positive, or false negative

(unadjusted P�0.01), based on concordance with the outcome of

the test on the true counts (Table 2). We observed that the EM meth-

ods substantially outperform WASP and Unique-reads. The latter

methods display an excessive number of false-positive outcomes and

high rates of no-calls.

We compared the overall accuracy of ASE and total expression

estimation on the 12 simulated samples (Supplementary Table S3).

To determine the accuracy of ASE, we computed the proportion of

genes or isoforms for which the absolute differences between esti-

mated and true ASE is <0.1 (Supplementary Table S3a). For gene-

level estimates models M2 and M4 were equally best in performance

and M2 was best for isoform-level ASE estimation. When we com-

pared EMASE with the other EM methods, RSEM and kallisto, they

all fell within a few percentage points of one another with kallisto

having only marginally lower accuracy. The unique-reads method

and WASP have substantially lower accuracy compared to EM

methods. At the gene-level, WASP estimates of ASE fell within 10%

of truth for fewer than half of genes. Isoform level estimates are not

available with WASP.

To evaluate estimation of total gene expression among the EM

based methods we computed the proportions of genes or isoforms

for which the relative difference between estimated and true values

was <10% (Supplementary Table S3b). At both gene and isoform-

level, M4 was most accurate based on number of genes that fell

within 10% of the true value (Supplementary Table S3b). All of the

EM based methods have similar accuracy for total gene expression

(�85%) and for total isoform expression (�40%). Kallisto has

slightly lower accuracy and, as expected, total expression estimates

for EMASE models M1, M2 and M3 are essentially identical.

In summary, the EMASE models M2 and M4 estimates consist-

ently provided the best or close to best estimates of both total

Table 2. Performance of EMASE, RSEM, kallisto, unique-reads and WASP on identifying ASE using significance tests with Beta-Binomial

model at a=2 ¼ 0:01 on simulated data

Method True positive True negative False positive False negative No call

EMASE M2 4595 2805 115 2459 61

RSEM 4519 2827 86 2524 79

kallisto 4406 2808 102 2624 95

unique-reads 3038 1518 96 1351 4032

WASP 1864 823 251 1245 5852
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expression and allelic proportion in our simulations. The same can

be said for the RSEM estimates. Estimates obtained using kallisto

were also consistently good but often not as accurate as the other

EM methods—this may reflect some loss of information in the fast

pseudo-alignment strategy. Among the non-EM methods, the

unique-reads method (with alignment to the custom diploid tran-

scriptome) provided consistent but less precise estimation. The

WASP algorithm, which relies on a reference alignment strategy,

performed poorly in all evaluations using simulated data.

3.2 ASE in F1 hybrid data
We applied EMASE to RNA-seq data from a reciprocal F1 hybrid

cross between mouse strains NOD and PWK (Supplementary Fig.

S10). There were 48 male mice in total with 24 mice from each dir-

ection of the cross (NOD�PWK and PWK�NOD). In order to

evaluate the extent of ASE, we applied EMASE model M2 to esti-

mate the PWK allele proportions for 9102 informative autosomal

genes (see Section 2). This distribution of estimated ASE is sym-

metric (Supplementary Fig. S11a) indicating that there are no strain-

specific biases. Monoallelic expression was observed for NOD

alleles at 173 genes and for PWK alleles at 174 genes in the

NOD�PWK samples. Monoallelic expression was observed for

NOD alleles at 150 genes and for PWK alleles at 152 genes in the

PWK�NOD samples. These are median values over the 24 samples

in each cross direction. Numbers of monoallelic expressed genes var-

ied from 115 to 454 in individual samples.

Male F1 mice from the two reciprocal crosses are hemizygous

for the X chromosomes. We included both X chromosomes in our

transcriptome definition in order to evaluate the misclassification

rate of monoallelic expression. The majority of X chromosome

genes (85% and 82% in NOD�PWK and PWK�NOD, respect-

ively) demonstrated monoallelic expression for the correct X

chromosome (Supplementary Fig. S11a). Among the genes that

show bi-allelic expression, 65% of the genes have fewer than five

SNPs or indels to distinguish between alleles and others (35%) share

sequence similarity and genomic multireads with autosomal genes.

We evaluated the statistical significance of ASE using the beta-

binomial test (See Supplementary Material Section 2.7 and

Supplementary Table S1). We identified 4216 genes (at FDR 5%)

for NOD�PWK mice and 3869 genes (at FDR 5%) for

PWK�NOD mice with overlap of 3084 genes (P<2.2e�16). This

suggests that ASE is pervasive (affecting >35% of genes) and con-

sistent across different groups of animals. A scatterplot of ASE esti-

mates from each direction of cross reveals a striking level of

concordance (r2¼0.831) (Supplementary Fig. S11b) and suggests

that ASE is continuously distributed with variable degrees of allelic

imbalance across the genome.

We observed a handful of genes with a reversal in the PWK allele

proportion between the two crosses, consistent with a parent-of-

origin effect on ASE (Supplementary Table S2). In order to evaluate

their significance we employed a logistic regression with a quasi-

binomial likelihood (Agresti, 2002) and direction of cross as a pre-

dictor. We identified 70 genes with significant parent-of-origin

effect, at 5% FDR (Supplementary Fig. S12). The strongest effects

were restricted to genes that are already known to be imprinted,

including Igf2r, Peg3, Zrsr1, H13 and Impact. We conclude that

parent-of-origin effects are limited to a small number of well-

characterized genes in adult mouse liver (Supplementary Fig. S11b).

We also tested the effect of diet and age on ASE using the overdis-

persed logistic model and found 12 genes with significant diet effect

and 112 genes with a significant age effect on ASE at 5% FDR

threshold. These results suggest that allele-specificity is relatively in-

sensitive to the diets and range of ages of mice in this study.

4 Discussion

Until recently access to individual whole genome sequences has been

out of reach for most organisms but sequencing of individual gen-

omes of humans and model organisms is now proceeding rapidly.

When individual genomes are not directly available, high-density

genotyping arrays and variant databases can support imputation

and phasing to obtain accurate approximations of individual diploid

genomes. Hybrid mouse genomes, such as the NOD�PWK F1 ani-

mals used here, are straightforward to construct; they serve as a

proof-of-principle for future applications of individually targeted

RNA-seq analysis. ASE estimation based on reference genome align-

ment suffers from bias even when secondary analyses are applied to

account for misaligned reads. We recommend, whenever possible, to

use an individually tailored diploid transcriptome incorporating

known or imputed genetic variants as an alignment target for

RNA-seq analysis.

EMASE software works with BAM format files that can be pro-

duced by most short-read alignment software. It requires alignment

to a collection of discrete sequence elements such as a transcriptome.

The transcriptomes of human, mouse and other well-studied or-

ganisms are refined and well annotated. There is always room for

improvement but for the present we rely on the reference transcrip-

tome and adjust individual sequence elements to incorporate known

or imputed SNPs and small indels. The impact of errors or individ-

ual variations in the set of the transcribed elements is not clear but

will result in failure of some RNA-seq reads to align to their correct

origin or failure to align to any element. New alignment strategies

that operate on whole genomes but are transcriptome-aware could

help to address some of these concerns (Kim et al., 2015).

EMASE achieves up to 1000 fold data reduction from BAM

alignment format to the read alignment matrix. This reduction en-

tails loss of information about the details of read alignments but this

does not appear to impact the accuracy of estimation. Computing

time for EMASE is substantially faster than RSEM but not as fast

as k-mer methods such as kallisto. This suggests that detailed infor-

mation about the aligned sequences is of limited value and that

counting aligned reads is sufficient for accurate estimation (See

Supplementary Material Section 1.2 for details).

The EMASE algorithm is readily adaptable to other contexts. All

that is required is an alignment target composed of discrete sequence

elements and a hierarchy. EMASE has been adapted to estimate

allele-specific binding using ChIP-seq data (Baker et al., 2015) by

defining sequence elements around DNA binding sites and applying

a two-level hierarchy for sites and alleles. We have implemented an

exon-junction version of EMASE as an alternative to the transcript

isoform model presented here (Raghupathy et al., unpublished).

EMASE has been adapted to analyze multiparent populations

(http://churchill-lab.github.io/gbrs) with alleles assigned to eight (or

any number of) haplotype classes (Chick et al., 2016). We anticipate

the development of EMASE applications to allele-specific methyla-

tion, allele-specific RNA editing and more.

Evaluation of RNA-seq analysis methods requires complex and

realistic simulated data. Any simulation software makes assumptions

that will affect the properties of the simulated data and the outcome

of evaluations. After testing several simulation tools (Frazee et al.,

2015; Griebel et al., 2012) including our own EMASE simulator, we

decided to base our simulation studies on the RSEM simulator
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(Li and Dewey, 2011), which we found to be well documented and

easy to implement. We obtained input parameters for the simulations

using values estimated from our F1 hybrid mouse data by RSEM.

Thus both the input parameters and the simulated data were ob-

tained from a non-hierarchical model that is most similar to EMASE

model M4. RNA-seq simulations can be sensitive to other choices

such as whether and how to simulate poly-A tails and how to intro-

duce sequencing errors. We compared estimated read counts and al-

lelic- or isoform-proportions of read counts as the outcome measure

for comparison of different analysis tools. Alternative measures such

as transcripts per million (TPM), are widely used but each of the soft-

ware tool had its own unique method of computing the transcript

length adjustment for converting read counts to TPM. Read counts

are the starting point for most normalization and downstream ana-

lysis methods, for example in voom (Law et al., 2014), edgeR

(Robinson et al., 2010) and DESeq2 (Love et al., 2014).

In order to assess the extent to which these simulations might have

favored RSEM or EMASE model M4, we simulated read counts using

our EMASE simulator according to the model M2 hierarchy and com-

pared analysis results between model M2 (with hierarchy) and model

M4 (without). In this setting, model M2 significantly outperforms

model M4 (Supplementary Figs S13a and b) but only on the multi-

isoform genes (Supplementary Figs S13c and d). This is consistent with

our expectations for the hierarchical model (see Fig. 2). When isoforms

are treated independently (as in M4 and RSEM), multi-reads will be

distributed with more weight given to genes with more isoforms. The

RSEM simulations indicate any of the EM-based methods for ASE esti-

mation methods perform more-or-less equally well. Our preference for

the hierarchical models, specifically M2, rests on the argument that the

weights assigned to multi-reads should not depend on the number of

annotated isoforms of a gene. One problem we face in evaluating these

methods is that there is currently no way to know which of the many

available simulation models best reflects the real biology of transcrip-

tional regulation. Establishing standards for simulation-based evalu-

ation of RNA-seq analysis is an area in need of further attention.

EMASE estimates read counts at the level of transcriptome elements

corresponding to individual isoforms and alleles of a gene. It can also

aggregate counts at the gene-level and report average ASE across iso-

forms or isoform usage across alleles. If allelic proportions vary widely

between isoforms, the gene-level average ASE may have little meaning.

On the other hand when there is a dominant isoform or when ASE is

consistent across isoforms, the gene-level summary will be more accur-

ate due to the larger numbers of reads that are available to estimate

ASE. Aggregate summaries of ASE are useful but should be viewed

with caution. To obtain the best estimates of ASE, we recommend fit-

ting model M2 and aggregating counts across isoforms—after checking

that the isoform level estimates are not widely divergent.

EMASE explicitly models the different types of multi-reads

and uses a hierarchical strategy to allocate weights. Our first imple-

mentation of EMASE was based on the hierarchy of model M1. It

seemed logical because transcription acts first on an allele and splic-

ing follows to produce the isoform. Yet model M1 consistently

underperforms in comparison to other EMASE models. To under-

stand the difference between models M1 and M2 in particular, we

note that 86% of all reads are genomic unique, 50.6% of reads are

isoform-unique and 23.1% of reads are allele-unique. Thus we have

more information to distinguish among isoforms than we have to

distinguish among alleles. In addition, allelic-unique reads are typ-

ically defined by one or by a small number of SNPs; whereas

isoform-unique reads can be distinguished across most or all of the

nucleotides in the read. As a result we have more information to ac-

curately allocate weights across isoforms compared to alleles. And

we have the most information available to allocate multi-reads

across genes. Our original motivation for constructing the EMASE

hierarchy was based on the biology of transcription but a more per-

tinent consideration for determining the hierarchy is the information

content of the data. We obtained the best results when we allocate

at the most informative level first and the least informative level

last. The differences in performance among the EMASE algorithms

reflect this.

In selecting methods for comparison to EMASE, we chose to

focus on software tools that exemplify best practices for each of the

most widely used approaches to ASE estimation. We implemented

each tool as recommended by their developers. Each method involves

a series of steps and uses parameter settings that have been optimized

by the developers for their analysis pipeline. The most relevant differ-

ences among these methods are in the choice of the alignment target,

the method of aligning reads and the method of resolving multi-reads

(summarized in Supplementary Table S4). While we cannot fully dis-

entangle the effects of each of these choices, we can draw the follow

broad conclusions. Methods that use a diploid transcriptome outper-

form reference-based methods. The EM methods outperform meth-

ods that discard multi-reads. Among the EM methods, kallisto is

extremely fast but has slightly poorer performance. Both kallisto and

RSEM capture fewer reads compared to EMASE for reasons that we

donto fully understand. Adding a hierarchy to the EM algorithm re-

sults in small performance improvements relative to RSEM even

when data are simulated using the RSEM model. The biggest per-

formance gains are due to diploid alignment and retaining multi-

reads by using one of the EM methods.

In summary, ambiguity in read alignment presents a significant

challenge for RNA-seq analysis. While it is tempting to discard

multi-reads, this can lead to bias and reduced precision in estima-

tion. Ambiguity in read alignment can be addressed by proportion-

ately allocating counts using an EM algorithm. There are several

EM algorithm implementations available, including EMASE, and

they all perform well in head-to-head comparisons. EMASE resolves

multi-reads by specifying a hierarchy among genes, isoforms and al-

leles and we have found that the hierarchy of EMASE model M2 has

generally the best performance. However, the differences reported in

our evaluations are small and we would recommend the use of any

these EM methods in practice.
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