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Abstract

Motivation: Recent success in metabolite identification from tandem mass spectra has been led by

machine learning, which has two stages: mapping mass spectra to molecular fingerprint vectors

and then retrieving candidate molecules from the database. In the first stage, i.e. fingerprint predic-

tion, spectrum peaks are features and considering their interactions would be reasonable for more

accurate identification of unknown metabolites. Existing approaches of fingerprint prediction are

based on only individual peaks in the spectra, without explicitly considering the peak interactions.

Also the current cutting-edge method is based on kernels, which are computationally heavy and

difficult to interpret.

Results: We propose two learning models that allow to incorporate peak interactions for

fingerprint prediction. First, we extend the state-of-the-art kernel learning method by developing

kernels for peak interactions to combine with kernels for peaks through multiple kernel learning

(MKL). Second, we formulate a sparse interaction model for metabolite peaks, which we

call SIMPLE, which is computationally light and interpretable for fingerprint prediction. The for-

mulation of SIMPLE is convex and guarantees global optimization, for which we develop

an alternating direction method of multipliers (ADMM) algorithm. Experiments using the

MassBank dataset show that both models achieved comparative prediction accuracy with

the current top-performance kernel method. Furthermore SIMPLE clearly revealed individual

peaks and peak interactions which contribute to enhancing the performance of fingerprint

prediction.

Availability and implementation: The code will be accessed through http://mamitsukalab.org/tools/

SIMPLE/.

Contact: hai@kuicr.kyoto-u.ac.jp

1 Introduction

Metabolites are small molecules which are used in, or created by,

chemical reactions occurring in living organisms (Wishart, 2007).

They play a lot of important functions such as energy transport,

signaling, building block of cells and inhibition/catalysis.

Understanding biochemical characteristics of metabolites is an

essential and important part of metabolomics to enlarge the

knowledge of biological systems. It is also key to development of

many applications and areas such as biotechnology, biomedicine or

pharmaceutical sciences. Mass Spectrometry is a common technique

in analytical chemistry (de Hoffmann and Stroobant, 2007) for me-

tabolite identification. A mass spectrometer analyses a chemical

sample by fragmenting it and measuring the mass-to-charge ratios

(m/z) of its fragments. The resulting mass spectrum (MS) or tandem

mass spectrum (MS/MS) is represented by a graph with m/z on the

x-axis and the relative abundance of ions with m/z values on the

y-axis (Fig. 1). Another common representation of mass spectrum is

a list of peaks, each defined by its m/z and intensity value (top-right

corner of Fig. 1).

Many methods have been proposed for metabolite identification.

A traditional approach is to compare a query MS or MS/MS spec-

trum of unknown compound against a database of a number of ref-

erence MS or MS/MS spectra (Scheubert et al., 2013). The candidate

molecules from the database are ranked based on the similarity, and
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the query spectrum and the best matched candidates are returned.

However, the main disadvantage of this approach is that the refer-

ence database often contains only a small fraction of molecules in

reality, leading to unreliable matching results if the molecule of the

query spectrum is not in the database. Consequently, to mitigate the

insufficiency of the reference databases, alternative approaches for

metabolite identification are devised to deal with unavailable meas-

ured reference spectra. In general, we can divide computational

methods for metabolite identification into the following three cate-

gories: i) searching in spectral libraries; ii) in silico fragmentation;

iii) machine learning (ML).

We focus on the ML approach, where the common scheme is,

given a set of MS/MS spectra, to learn a map from a MS/MS

spectrum to a molecule (Fig. 2). This has two steps: i) fingerprint

prediction: predict a fingerprint with supervised ML, and ii) candi-

date retrieval: use the predicted fingerprint to query the database.

Our particular focus is the first step, which predicts the fingerprint

that is a binary (or rarely real-valued) vector, indicating the presence

(or absence) of certain substructure. This step has been tackled by

many ML methods, including linear discriminative analysis (LDA)

(Imre et al., 2008) and decision tree (Hummel et al., 2010). A not-

able method is FingerID (Heinonen et al., 2012), which used support

vector machine (SVM) with kernels for pairs of mass spectra, includ-

ing integral mass kernel and probability product kernel (PPK)

(Jebara et al., 2004).

We point out three drawbacks of the existing ML approaches: i)

all methods are based on the information from individual peaks in

spectra, without explicitly considering peak interactions, which

leads to the limitation of predictive performance. ii) There is an

interesting (not ML-based) software, which outputs, given a spec-

trum, a so-called fragmentation tree (FT) (Böcker and Rasche, 2008;

Rasche et al., 2011). In a FT, possible fragments corresponding to

peaks in spectrum are shown as node labels, where parent–child

relationships in this tree are inclusive relations of fragments in chem-

ical structure. FT is indeed interesting, but this software of convert-

ing a given spectrum into a FT is very slow. CSI: FingerID (Dührkop

et al., 2015; Shen et al., 2014) used both mass spectra and FTs as in-

put, thinking that structural information of chemical compounds

can be captured by FTs. Indeed using FTs might be similar to consid-

ering peak interactions. However if FTs are used as input features,

spectrum must be converted into a FT not only in training and

but also in prediction, which needs a heavy computational load. iii)

The size/length of a fingerprint is not short, while the number of

peaks is usually small, meaning that most elements of a fingerprint

vector are zero. So the training data is very sparse, while sparse

models have not been considered yet. In addition, sparse models are

advantageous in that their results are easily interpretable.

Motivated by these drawbacks, we address the following two

problems: i) incorporation of peak interactions into the learning

model to improve the predictive performance; ii) introduction of

sparsity into the models for interpretation. For the above i), we

Fig. 1. Example MS spectrum from Human Metabolome Database (Wishart

et al., 2012) for 1-Methylhistidine (HMBD00001), with its corresponding chem-

ical structure (top-left) and peak list (top-right)

Fig. 2. A general scheme to identify unknown metabolites based on molecular fingerprint vectors. There are two main stages: 1) fingerprint prediction: learning a

mapping from a molecule to the corresponding binary molecular fingerprint vector by classification methods, given a set of MS/MS spectra and fingerprints; 2)

candidate retrieval: using the predicted fingerprints to retrieve candidate molecules from the databases of known metabolites. Note that the step of constructing

an affinity matrix is optional and is used in L-SIMPLE only
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propose a kernel for peak interactions and combine this kernel with

other kernels through multiple kernel learning (MKL). For the above

both i) and ii), we propose a sparse, interpretable model, which we

call Sparse Interaction Model over Peaks of moLEcules (SIMPLE).

Additionally, we also propose a FT-induced Laplacian regulariza-

tion to make SIMPLE more robust. We note that in SIMPLE, FTs

are used for regularization only and not for input, by which we do

not need FTs for prediction, meaning that computationally SIMPLE

is much lighter for prediction than (Shen et al., 2014). We formulate

the model as a convex optimization problem, for which we develop

an alternating direction method of multipliers (ADMM) algorithm.

We evaluated our two proposed models by using real data

obtained from the MassBank dataset (Horai et al., 2010), which

was used in (Shen et al., 2014). We found that incorporation of

peak interactions can significantly improve the prediction accuracy

of not using interactions, resulting in comparable performance with

the current top method. Furthermore, SIMPLE could show the inter-

pretability of results, i.e. peaks and peak interactions which contrib-

ute to high predictive performance.

2 Related work

In Figure 2, the standard data preprocessing converts spectra into

high-dimensional feature vectors by dividing m/z range into bins and

taking accumulated intensity within each bin as a feature value.

However the width of bins is hard to determine. In fact, wide bins

can cause noise, and narrow bins can induce alignment errors due to

mass error. One idea to overcome this issue is using a kernel, say

probability product kernel (PPK; Jebara et al., 2004), which can be

computed directly from mass spectra. PPK treats each peak in a

spectrum as a two-dimensional Gaussian distribution and a spec-

trum as a uniform mixture of these distributions. Then, kernel be-

tween two spectra is computed by all-against-all matching between

the component Gaussians. The detail is in Section 3.1.1.

Also we briefly explain the current cutting-edge ML method by

MKL, CSI: FingerID (Dührkop et al., 2015; Shen et al., 2014), where

the input is both MS/MS spectra and FTs. Motivation behind this

method is to use structural information, which might be captured by

FTs. So they use numerous kernels for FTs to capture any information

of FTs, ranging from simple ones, such as node kernels: node binary

(NB), node intensity (NI) and edge kernels: loss binary (LB), loss count

(LC), loss intensity (LI) to more complex one like common path count-

ing (CPC) which is one of path based kernels. Subsequently, these ker-

nels are combined by MKL methods, such as centered alignment

(Gönen and Alpaydin, 2011), quadratic combination and lp�norm

regularized combination (Kloft et al., 2011). The combined kernel is

then used in learning the final model for fingerprint prediction.

We again emphasize that these methods consider mainly only

peaks in MS/MS spectra without explicitly taking peak interactions

into account. Also kernels using FTs have the limitation of process-

ing MS/MS spectra, particularly for prediction, due to the need of

computationally heavy conversion of spectra into FTs. More import-

antly, kernels are difficult to interpret and deal with sparse data,

such as MS/MS spectra, where each spectrum (fingerprint vector)

has only a few number of peaks (nonzeros).

3 Materials and methods

3.1 Kernel method
We develop kernel for peak interactions and combine this kernel

with PPK (kernel for peaks) (Heinonen et al., 2012) through the

framework of MKL.

3.1.1 Preliminary: kernel for peaks

MS/MS spectra have peak information, i.e. m/z and intensity. The

problem is that peaks are not correctly aligned each other, due to

measurement errors in mass spectrometry devices (alignment error).

To overcome this problem, PPK (Jebara et al., 2004) was developed

to calculate the similarity between two spectra. The idea is that a

peak can be considered as a two-dimensional Gaussian distribution

and the spectrum is a uniform mixture of peaks (or distributions).

The kernel between two spectra is computed by all-against-all

matching between the Gaussians.

More specifically, given a mass spectrum S, being a list of peaks,

i.e. f m1; I1ð Þ; m2; I2ð Þ; . . . ; mNS
; INS

ð Þg. The kth peak of the spectrum

S is represented by a Gaussian distribution pk centered around the

peak measurement mk; Ikð Þ and with covariance shared with all

peaks: R ¼ diag r2
m; r

2
I

� �
, where r2

m and r2
I are the variances for

the mass and intensity, respectively. Hence, the spectrum S can be

represented as a uniform mixture of the peaks contained in it,

i.e. p Sð Þ ¼ 1
NS

PNS

k¼1 pk. Likewise, another spectrum S0 is also repre-

sented by a mixture of distributions ql, l ¼ 1; 2; 3; ::;NS0 and

p S0ð Þ ¼ 1
NS0

PNS0
l¼1 ql.

With definitions above, the kernel for peaks, Kpeak, between two

spectra S and S0 is given by:

Kpeak S; S0ð Þ ¼
ð
R

2
pS xð ÞqS0 xð Þdx (1)

¼ 1

NSNS0

X
1� i�NS
1� j�NS0

K pi;qj

� �
(2)

where K p; qð Þ is the PPK between two component Gaussian distribu-

tions p and q, computed by (3).

K p;qð Þ ¼ 1

4prmrI
exp �0:5

lm
p � lm

q

� �2

rm
þ

lI
p � lI

q

� �2

rI

0
B@

1
CA

0
B@

1
CA (3)

where lm
p and lI

p denote the mass and intensity values of the peaks

corresponding to p.

3.1.2 Kernel for peak interactions

Being rather straight-forward, kernel for peak interactions between

two spectra S and S0 can be defined as follows:

Kinteraction S; S0ð Þ ¼
X

1 � i � j � NS

1 � k � l � NS0

K pi; qkð Þ � K pj; ql

� �
; (4)

where K is the function defined by (3).

Note that Kinteraction also can overcome the alignment error prob-

lem by taking advantage of Kpeak. Intuitively, Kpeak can be consid-

ered as a probabilistic version of the number of common peaks.

Similarly Kinteraction can be considered as a probabilistic version of

the number of common edges or interactions between two spectra.

3.1.3 Combining kernels for peaks and peak interactions

We combine kernels for peaks and peak interactions by using a

regular approach: Multiple Kernel Learning (MKL; Gönen and

Alpaydin, 2011), which can combine kernels from different sources.

We use three approaches: the first is the uniform combination of the

kernels (UNIMKL: the weights for kernels are equal), which can

produce good results for prediction in many practical applications.

The second and third are two different MKL algorithms: centered
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alignment (ALIGN) and alignment maximization algorithm

(ALIGNF) (Cortes et al., 2012).

These algorithms have the same setting. Given a set of kernels

fKj 2 R
n�n; j ¼ 1; ::;mg, computed from n data points and repre-

senting different sources of information. The vector y ¼ f�1; 1gn

corresponds to the output or labels of data points. The aim of MKL

is to seek a combination of these kernels, as defined by:

Ka ¼
Xm
j¼1

ajKj (5)

A popular approach to MKL, which is called two-stage MKL, separ-

ate kernel learning from prediction learning. In the first stage, the

combined kernel is learned through the use of an objective function,

such as centered alignment that measures the similarity of two ker-

nels over the training dataset. For the purposes of MKL, alignment

is often measured between the combined kernel in (5) and the target

kernel Ky ¼ yyT . Subsequently, the learned combined kernel is used

in the second stage with kernel based classifiers such as relevance

vector machine (RVM) used in (Burden and Winkler, 2015) or SVM

used in our experiments.

Formally, the centered kernel of a given kernel K 2 R
n�n is

defined by:

Kc ¼ I� eeT

n

� �
K I � eeT

n

� �
(6)

where I is the identity matrix and e is the vector with all ones.

The centered alignment between two kernels K and K0 is defined by:

q K;K0ð Þ ¼ < Kc;K
0
c >

jjKcjjF jjKcjjF
(7)

where < Kc;K
0
c > ¼ trace KT

c K0c
� �

and jjKcjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace KT

c Kc

� �q
(8)

Cortes et al. (2012) proposed two MKL algorithms: i) a simple

centered alignment algorithm (ALIGN), which assigns alignment

scores computed in (7) to combination weights in (5), i.e.

aj ¼ q Kj;KY

� �
; j ¼ 1; 2; 3; . . . ;m. and ii) the alignment maximum

algorithm (ALIGNF) seeks the weights a by maximizing the align-

ment scores between the combined kernels Ka and target kernel Ky,

resulting in the objective function:

a� ¼ argmax
a

< Ka;Ky >

jjKajjF
(9)

subject to jjajj ¼ 1 ; a � 0 (10)

In our experiments, we conducted comparative experiments by

using these algorithm for combining kernels for peaks and

interactions.

3.2 Sparse Interaction Model over Peaks of moLEcules

(SIMPLE)
Kernel-based methods are difficult to deal with sparse data and lack

of interpretation. Thus we present a more interpretable, fast, sparse

learning: Sparse Interaction Model over Peaks of moLEcules

(SIMPLE), to incorporate peak interactions explicitly. We first pre-

process each MS/MS spectrum to generate a feature vector: we div-

ide m/z range into bins and taking accumulated peak intensities in a

bin as a feature value to obtain high dimensional vector for each

spectrum. These feature vectors are normalized such that all feature

values are in [0, 1].

3.2.1 Prediction model

Given a MS/MS spectrum, represented by a feature vector,

x ¼ x1; x2; . . . ; xd½ �T 2 R
d, we formulate the model for individual

peaks and peak interactions as follows:

f x; w;Wð Þ ¼ bþ
Xd

i¼1

wixi þ
Xd

i¼1

Xd

j¼1

Wijxixj (11)

¼ bþwTxþ xTWx (12)

where b 2 R; w 2 R
d and W 2 R

d�d. The prediction function con-

sists of a bias b and two terms: main effect term parameterized by

the weight vector w and interaction term parameterized by the

weight matrix W. Their roles are different. While the former capture

information about the peaks, the latter captures information about

peak interactions. Since our task is classification which predicts the

presence or absence of properties in fingerprint vector, the output of

the model can be computed by y xð Þ ¼ sign f x; w;Wð Þð Þ 2 f�1;1g.
In order to predict a binary vector of fingerprint, we predict one

response variable (hereafter a property or a task) at each time with a

separate classifier. Let consider a property and give a set of n train-

ing input/output pairs f xi; yið Þgni¼1, where xi 2 R
d represent the ith

spectrum and yi 2 f�1; 1g indicates the presence (þ1) or absence

(-1) of the property. We can learn the parameters by minimizing the

following optimization function:

min
b;w;W

Xn

i¼1

l yi; f xi; w;Wð Þð Þ þ R wð Þ þ R Wð Þ (13)

where l y; byð Þ is the hinge loss function and computed by

l y; byð Þ ¼ 1� y; byð Þþ, in which the operator zð Þþ denotes max 0; zð Þ.
R wð Þ and R Wð Þ are the regularization terms for vector w and ma-

trix W, respectively.

Our purpose is to seek a model which is accurate as well

as interpretable. Different from SVM using l2-norm regularizer,

R wð Þ ¼ ajjwjj22, our model uses sparsity-induced regularizer

(Tibshirani, 1994), R wð Þ ¼ ajjwjj1 to yield sparse solution and

interpretation. As for interaction term, it is natural to impose low-

rankness on matrix W due to the existence of groups of peaks inter-

acting with each other. Thus, we propose to use trace norm, similar

to (Blondel et al., 2015), i.e. R Wð Þ ¼ bjjWjj�. Furthermore, due to

the symmetry of matrix W, we also impose the positive semidefinite-

ness on matrix W, i.e. W � 0. Therefore, putting all above things to-

gether, the objective function of SIMPLE becomes:

min
b;w;W

Xn

i¼1

l yi; f xi; w;Wð Þð Þ þ ajjwjj1 þ bjjWjj�

subject to W � 0

(14)

where a and b are hyperparameters to control the sparsity of w and

low-rankness of W, respectively. Note that (15) is the convex func-

tion which guarantees to find the global optimal solution.

3.2.2 Fragmentation trees (FTs) as prior information

As the number of interactions is large, it would be a good idea to

regularize (14) with background knowledge. We propose to regular-

ize the interaction matrix W by FTs of the spectra. However, there

are two questions to deal with: i) How to represent the structural in-

formation from FTs; ii) how to incorporate them into the convex ob-

jective function (14) while preserving its convexity to guarantee the

global optimal solutions.
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To answer the first question, our idea is to construct an affinity (ad-

jacency) matrix A for all peaks in the spectra. Concretely, each spec-

trum is converted into a FT by algorithms in (Rasche et al., 2011). Our

assumption is that, the frequency of an interaction present in the frag-

mentation trees reflects how strongly the corresponding features are

interacting with each other. From that, we calculate the co-occurrence

of all peak pairs in the trees to construct the affinity matrix (Fig. 3).

To answer the second question, we impose the constraint of

being positive semidefinite on interaction matrix W. By this, W can

be decomposed into the low rank matrix, i.e. W ¼ VVT where

V 2 R
nxk; k ¼ rank Wð Þ. Thus, the interaction term in the prediction

function (12) can be rewritten as following:

xTWx ¼
Xd

i;j¼1

vT
i vj

� �
xixj;

where vi and vj are the ith and jth bins of spectrum x and correspond

to representation of ith and jth features in the space R
k.

We assume that if ith and jth peaks are strongly interacting with

each other, then their representation in the vector space should be

close, i.e. jjvi � vjjj2 should be small. From this observation, we in-

clude the following term, Laplacian smoothness, into the objective

function (14):

R Vð Þ ¼
Xd

i;j¼1

Aijjjvi � vjjj22 (15)

¼ trace VTLV
� �

(16)

¼ trace VVTL
� �

¼ trace WLð Þ (17)

where L ¼ D� A, D is the degree matrix of A, i.e.

Dii ¼
Pn

j¼1 Aij; i ¼ 1; ::; n

Thus, we can formulate the following optimization problem,

which we call L-SIMPLE:

min
b;w;W

Xn

i¼1

l yi; fið Þ þ ajjwjj1 þ bjjWjj� þ ctrace WLð Þ;

subject to W � 0

(18)

where fi ¼ f xi; w;Wð Þ, c is an additional hyperparameter to control

Laplacian smoothness of the objective function (18). It is note-

worthy that, our derived formulation is still convex due to convexity

of regularization terms, thus, the solution of (18) is guaranteed to be

the global optimal. Below we will present an optimization method

for efficiently solving (18).

3.2.3 Optimization: ADMM algorithm

Equation (18) is convex and guaranteed that the algorithm con-

verges to the global optimal solution. However, it is challenging to

solve this problem directly, because terms are nondifferentiable.

Our optimization method is based on alternating direction method

of multipliers (ADMM). Due to the nondifferentiability of the hinge

loss, we introduce the auxiliary variable C, where C ¼
C1;C2; . . . ;Cnð ÞT and Ci ¼ 1� yifi, then (18) can be reformulated

into the following equivalent constrained problem:

min
b;w;W;C

Xn

i¼1

Cið Þþ þ ajjwjj1 þ bjjWjj� þ ctrace WLð Þ

subject to C ¼ 1� YF and W � 0

(19)

where F ¼ f1; f2; . . . ; fn½ �T .

The augmented Lagrange function of (19) is defined by:

L w0;w;W;C; uð Þ ¼
Xn

i¼1

Cið Þþ þ ajjwjj1 þ bjjWjj� þ ctrace WLð Þ

þuT 1� YF�Cð Þ þ 1

2
jj1� YF� Cjj22

(20)

where u ¼ u1;u2; . . . ;un½ �T is a dual variable corresponding to the

constraint C ¼ 1�YF. Note that the constraint W�0 is not

included in (20) because this property will be imposed automatically

on W after each iteration of updating W, as explained in the

Appendix section. We solve the problem of finding the saddle point

b�;w�;W�;C�; u�ð Þ of the augmented Lagrangian function (20)

through an iterative algorithm between the primal and the dual opti-

mization as follows:

btþ1;wtþ1 ¼ argminb;w L b;w;Wt;Ct; utð Þ

Wtþ1 ¼ argminW L btþ1;wtþ1;W;Ct; ut
� �

Ctþ1 ¼ argminC L btþ1;wtþ1;Wtþ1;C; ut
� �

utþ1 ¼ ut þ 1� YFtþ1 � Ctþ1

8>>>>>><
>>>>>>:

(21)

where the first three steps update the primal variables based on the

current estimate of the dual variable ut and the final step updates

the dual variable based on the current estimate of the primal varia-

bles. Note that the efficiency of ADMM for solving (20) depends on

whether the subproblems in (21) can be solved quickly. Algorithm 1

summarizes the ADMM steps for solving the optimization problem

(20). To avoid confusion, the detailed derivation of the update rules

for subproblems of (21) are in Appendix.

3.3 Model summary
We here summarize the advantageous features of (L-)SIMPLE:

1. Peak interactions: SIMPLE has, in its formulation, the term for

peak interactions explicitly, which has not been considered by

existing methods, particularly kernel-based methods.

2. Sparse interpretability: MS spectra are with many zeros and

sparse data. We formulate SIMPLE as a sparse model, by which

peaks or peak interactions which contribute to improve the pre-

dictive performance can be checked and found easily.

Fig. 3. Illustration of constructing affinity matrix A from the set of fragmenta-

tion trees. The constructed matrix A is used as prior information for regulariz-

ing interaction matrix W
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3. Convex formulation: our formulation keeps SIMPLE (L-SIMPLE) a

convex model, which guarantees to find the global optimum. We

have developed an alternating direction method of multipliers

(ADMM) algorithm, to realize the detection of the global optimum.

4. No fragmentation trees in prediction: L-SIMPLE uses fragmen-

tation trees for regularization in training, and they are not

inputs, meaning that we do not need fragmentation trees in pre-

diction, which can avoid heavy computational cost of generating

fragmentation trees from spectrum.

4 Experimental evaluation

Our focus is to incorporate peak interactions of mass spectra into

fingerprint prediction, and to build sparse models for model inter-

pretability, and so we conducted experiments to answer the follow-

ing two questions:

• (Q1): Can peak interactions due to sets of correlated peaks in

spectra be used to predict fingerprint vectors more accurately?
• (Q2): For the purpose of interpretation, how to identify a smaller

subset of predictors (i.e. peaks or peak interactions) that exhibit

the strongest effects on fingerprints?

4.1 Data, preprocessing and evaluation measures
MassBank (Horai et al., 2010) was used. We used the same dataset with

402 compounds as (Shen et al., 2014), and followed the same preprocess-

ing steps as in (Shen et al., 2014): for each compound, peaks recorded

from different energies were merged for each MS/MS spectra. Then, spec-

tra were normalized such that the sum of intensities is up to 100%. In

terms of the output for the learning models, molecular fingerprints, which

are binary vectors of 528bits in total, were generated using OpenBabel

(O’Boyle et al., 2011). Fingerprints have a high class imbalance, i.e.

mostlyþ1 or reverse. Thus we only trained models for predicting finger-

prints in which the majority class occupies less than 90% of instances.

We used micro-average accuracy, F1 score to evaluate the per-

formance of different methods, computed by taking the average of

accuracies and F1 scores over all tasks.

4.2 Benefit of incorporating interaction
We show the benefit of incorporating peak interactions using kernel

methods described in Section 3.1. The MKL algorithms, i.e. UNIMKL,

ALIGN and ALIGNF, were used to combine two kernels, Kpeak

and Kinteraction (we call their results ComUNIMKL, ComALIGN,

ComALIGNF, respectively) and compared with PPK, which has only

kernel for peaks. The combined kernels were coupled with SVM to pre-

dict the fingerprint properties. Each property was separately trained by

a classifier. Five-fold cross-validation was conducted to seek suitable

margin parameter C where C 2 f2�3;2�2; . . . ; 26;27g.
Table 1 shows the results, in which the micro-average accuracy

and F1 score of combined kernels were higher than PPK. This shows

that incorporating peak interactions can improve the performance

on predicting molecular fingerprint properties. Additionally, the per-

formance of ALIGNF algorithm was slightly better than the rest.

4.3 Benefit of (L-)SIMPLE, sparse interaction models
Since kernel methods in Section 3.1 are unable to provide sparse sol-

utions for interpretability, we examined (L-)SIMPLE to gain insight

into the models to predict fingerprints. (L-)SIMPLE needs to con-

struct feature vectors from MS/MS spectra: we divided m/z range

into 500 bins and took accumulated peak intensities in a bin as a

feature value to obtain high dimensional vector for each spectrum.

These feature vectors were normalized such that all feature values

are in [0, 1]. (L-)SIMPLE was trained by ADMM (see algorithm 1)

with all variables initialized at zero. The algorithm was iterated until

the relative difference in training errors fell below 0.0001 or the

number of iterations reaches 100. Five-fold cross-validation was

used to evaluate the generalization of the learning machines.

Specifically, parameters a, b and c, for controlling sparsity,

Table 1. Micro-average performance of kernels: PPK (Heinonen

et al., 2012) is used to compute Kpeak

Method Acc (%) F1-score (%)

PPK 75.74 (68.13) 60.59 (613.75)

ComUNIMKL 78.41 (66.82) 65.05 (612.16)

ComALIGN 78.57 (66.24) 65.34 (611.99)

ComALIGNF 79.03 (67.89) 65.67 (613.02)

Note: ComUNIMKL, ALIGN, ALIGNF are combinations of Kpeak and

Kinteraction by algorithms UNIMKL, ALIGN, ALIGNF, respectively.

Algorithm 1 ADMM algorithm for optimizing the objective

function (19).

1: Inputs:

A set of MS/MS spectra X ¼ xT
1 ;x

T
2 ; . . . ; xT

n

	 
T
and

associated output Y ¼ y1; y2; . . . ; yn½ �T . Laplacian L

(only for L-SIMPLE).

2: Outputs:

weight vector w and interaction matrix W.

3: Initialize:

b 0;w 0; W  0; C 0; u 0

4: while not converged do

5: 1. Fix W, C, u and update b, w

6: Precompute bF1  Y 1� Cþ uð Þ � diag XWXT
� �

7: while not converged do

z w� qXT Xwþ b� bF1

� �
w Sa zð Þ

b 1

n
sum bF1 �Xw

� �

8>>>>>><
>>>>>>:

8: end while

9: 2: Fix b, w, C, u and update W

10: precompute bF2  Y 1� Cþ uð Þ � b�Xw

11: while not converged do

R diag XWXT
� �

� bF2

DWL  XTRX

Z W � q DWLþ cLð Þ

U;E EVD Zð Þ
bE  Sb Eð Þ

W  UbEUT

8>>>>>>>>>>>><
>>>>>>>>>>>>:

12: end while

13: 3: Update C

14: F ¼ bþXwþ diagXWXT ; C T 1 1� YFþ uð Þ
15: 4: Update the dual variable u

16: u uþ 1�YF� C

17: end while
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low-rankness and Laplacian smoothness were chosen from the lists:

{1, 2, 3}, f2; 3; 4;5g and f0:1; 0:5; 1:0g, respectively.

Also, to evaluate the effects of adding the Laplacian smoothness

term into the objective function, we compared the accuracy and F1

score over tasks by performing five-fold cross-validation. Table 2

shows the accuracy and F1 score obtained for the first ten tasks

(Note that we used only tasks in which the majority class occupies

less than 90% of instances). The micro-average over all tasks is also

displayed at the bottom. We can see that Laplacian regularization

worked to make SIMPLE more robust, resulting in better predictive

performance of L-SIMPLE.

We further compared (L-)SIMPLE with various kernel, namely

PPK, NB, NI, LB, LC, LI, CPC and their combination, which we call

ComFT, all from (Shen et al., 2014). While these kernels (except for

PPK) are all computed from the fragmentation trees, in which the

cost for converting MS/MS spectra to these trees is heavy and time-

consuming, our method uses peaks from spectra only and is effi-

ciently computable in prediction.

Table 3 shows the results of accuracy, F1 scores and computa-

tion time for prediction by all compared methods. The prediction

time (in milliseconds) was averaged over all spectrum in the dataset.

The first four methods including PPK achieved around the accuracy

of 75%, which is clearly worse than the other methods, which

achieved around 78–80% and are very comparable each other. In

fact ComFT, the current cutting-edge MKL-based method, per-

formed best in both accuracy and F1 score, while the second best

was not clear (NB by accuracy and L-SIMPLE by F1 score). On the

other had, about computation time, FT-based methods, i.e. from LB

to ComFT, were clearly slower than the others, because they need

convert spectra into FTs. In fact ComFT needed more than 1500 ms,

which is more than 300 times slower than that of (L-)SIMPLE,

which just spent only less than 5 ms. This is a sizable difference

when we have to process a huge amount of spectra produced by the

current high-throughput MS/MS. We stress that the performance

difference between (L-)SIMPLE and ComFT was very slight and

statistically insignificant, while (L-)SIMPLE was exceedingly faster

than ComFT.

4.4 Model interpretation
One advantage of sparse learning models over kernel based methods

is interpretation. For illustration purposes, Figure 4 shows the

weights of main effect terms (w) and the interaction weight matrix

(W) obtained by L-SIMPLE for nine fingerprint properties (or tasks):

29, 37, 56, 70, 139, 192, 236, 356 and 370 (these are randomly

selected for investigation). As observed, the weight of main effect

and interaction terms were different between properties, suggesting

that different properties are strongly affected by different subsets of

a few peaks in spectra.

Table 4 shows case studies to illustrate the effects of peak inter-

actions. We consider four interaction pairs frequently present in

these tasks. w1 and w2 denote the weights for peaks and W12

denotes the weight for their interactions. We can raise the following

three interesting findings:

1. Either w1 or w2 (or both) can be zero but the interaction weights

are often nonzero: For example, W12 of interaction (42, 85) are

mostly nonzero, while w1 and w2 are both zero with respect to

tasks 29, 37, 56, 70. This means that individual peaks are not

good predictive descriptors of properties, while their interactions

are. Thus this result clearly shows the importance of considering

peak interactions in fingerprint prediction.

2. Despite of negative impacts of individual peaks, their interac-

tions can be positive: For example, interaction (85, 227) with re-

spect to tasks 29, 56 and 366. This means that while individual

peaks indicate the absence of a property, the interactions of two

peaks mean the presence of the property.

Table 2. Performance comparison between SIMPLE and L-SIMPLE

Task Id/Name SIMPLE L-SIMPLE

Acc (%) F1 (%) Acc (%) F1 (%)

3 (Aldehyde) 71.16 69.24 73.14 70.75

27 (Hydroxy) 91.24 95.19 90.29 94.82

29 (Primary alcohol) 79.36 53.74 79.85 53.98

30 (Secondary alcohol) 80.35 54.18 81.84 56.17

37 (Ether) 80.35 71.39 80.61 72.03

38 (Dialkyl etherEther) 82.35 70.98 82.6 71.16

45 (Aryl) 83.83 81.67 83.34 82.16

50 (Carboxylic acid) 69.38 62.00 69.65 62.15

56 (Primary Carbon) 73.12 40.42 73.88 44.46

57 (Secondary Carbon) 71.88 67.15 72.39 67.28

60 (Alkene) 81.35 23.49 84.08 27.75

Avg 6 Std 78.33 6 6.05 66.69 6 13.03 78.86 6 5.87 67.59 6 12.35

Table 3. Micro-average performance and computation time (for

prediction) of kernel-based methods in Shen et al. (2014) and pro-

posed methods in this paper

Method Acc F1 score Run. time

(%) (%) (ms)

PPK (Peaks) 75.74 (66.72) 60.59 (614.54) 52.37

LB (Loss binary) 76.63 (67.03) 61.64 (615.48) 1501.02

LC (Loss count) 75.33 (65.4) 61.25 (613.99) 1501.02

LI (Loss intensity) 74.54 (68.49) 58.46 (616.01) 1501.02

NB (Node binary) 79.11 (65.02) 67.34 (611.75) 1501.09

NI (Node intensity) 78.41 (64.99) 66.87 (612.11) 1501.01

CPC (Common path

count)

79.02 (67.4) 67.55 (612.93) 1501.11

ComFT (combining

all above)

80.98 (66.05) 69.04 (611.98) 1559.20

ComALIGNF (Proposed:

MKL)

79.03 (67.89) 65.67 (613.02) 471.71

SIMPLE (Proposed) 78.33 (66.05) 66.70 (613.03) 4.57

L-SIMPLE (Proposed) 78.86 (65.87) 67.59 (612.35) 4.32
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3. Interaction of peaks can be zero, indicating these peaks are inde-

pendent of each other even if their corresponding weights are non-

zeros: For example, interaction (42, 85) with respect to task 139.

They are just part of numerous findings, but even these examples

show a fact that even individual peaks are not good indicators of

some fingerprints, their interactions with others may significantly

contribute to the prediction. This again confirms the importance of

peak interactions for fingerprint prediction.

5 Discussion and conclusion

The goal of this work is to propose machine learning models which

are able to incorporate peak interactions for fingerprint prediction.

Our experiments showed that peak interactions are definitely useful

to improve fingerprint prediction, along with discriminative infor-

mation about peaks.

Our first model is based on kernel learning, defining two kernels,

one for peaks and the other for peak interactions, which are combined

through MKL. Again we note that Shen et al. (2014) used

fragmentation trees for prior structural information of spectral, and

converting spectra into fragmentation trees is definitely computation-

ally expensive. On the other hand, our model of kernel learning uses

only peaks in the spectrum as input for prediction, indicating that our

model is much more efficient. Kernel learning does not have to con-

struct feature vectors for spectra, and instead this is done implicitly by

kernels defined, which can avoid any error caused when generating

feature vectors. However, a big issue of kernel learning is interpret-

ability. That is, it is difficult for kernel learning to figure out which

subset of peaks or peak interactions exhibit the strongest effects on

fingerprint prediction, despite that clearly each property depends on a

very few number of mass positions in each given spectrum.

Our sparse interaction models, (L-)SIMPLE, have a number of

advantages, which are summarized in Section 3.3: (L-)SIMPLE is

formulated as a sparse, convex optimization model, which can

capture peak interactions and also give interpretable solutions.

We emphasize that next generation fingerprint prediction needs a

ML model, which should learn, from huge but sparse spectra, peaks

as well as peak interactions comprehensibly and predict fingerprints

(a) (b)

Fig. 4. (a) Weight vectors (w) of the main effect terms and (b) smooth heat map of weight matrices (W) of the interaction terms learned by L-SIMPLE for properties

or tasks: 29 (Primary alcohol), 37 (Ether), 56 (Primary Carbon), 70 (Alkylarylether), 139 (Thioenol), 192 (Carbonic acid monoester), 236 (Heteroaromatic), 356

(1,5-Tautomerizable) and 366 (Actinide)

Table 4. Case studies of weight vector w and interaction matrix W learned by L-SIMPLE over a set of randomly selected tasks

Tasks/Name (42, 85) (42, 163) (85, 227) (130, 201)

w1 w2 W12 w1 w2 W12 w1 w2 W12 w1 w2 W12

29 (Primary Alcohol) 0.0 0.0 0.0016 �0.0545 0.0 0.0442 �0.4085 �0.0545 0.0765 �0.4085 0.0 0.0218

37 (Ether) 0.0 0.0 0.0120 0.0260 0.0 0.0471 0.0 0.0260 0.1264 0.0 0.0 0.3389

56 (Primary Carbon) 0.0 0.0 0.0271 �0.5657 0.0 0.0047 �0.9833 �0.5657 0.0271 �0.9833 0.0 0.0104

70 (Alkylarylether) 0.0 0.0 0.0159 0.0 0.0 0.0551 �0.1238 0.0 0.0972 �0.1238 0.0 0.0265

139 (Thioenol) 0.1575 0.3939 0.0 �0.2308 �0.4094 0.0 �0.3589 �0.2308 0.0 �0.3589 �0.1126 0.0

192 (Carbonic acid monoester) �0.1542 0.0 0.0 0.0 0.0 0.0 �0.6945 0.0 0.0 �0.6945 0.0 0.0

236 (Heteroaromatic) 0.0 0.0 0.0107 0.0 0.2499 0.0537 �0.3069 0.0 0.1062 �0.3069 0.1401 0.0201

356 (1,5-Tautomerizable) 0.0 0.0 0.0170 0.0 0.0 0.0301 0.5539 0.0 0.0607 0.5539 0.0 0.0107

366 (Actinide) 0.0 0.0 0.0245 �0.1891 0.6065 0.0282 �0.5373 �0.1891 0.0399 �0.5373 0.0 0.0153

Note: w1 and w2 denote weights corresponding two mass positions and W denotes the weight of their interactions. Four pairs of mass positions which are fre-

quently present in these tasks, including (42, 85), (42, 163), (85, 227) and (130, 201) are shown.
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against again huge spectra highly efficiently. (L-)SIMPLE would be

a reasonable solution for this situation.
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Appendix

We will derive the updating rules of ADMM for steps in (21).

A1. ADMM for updating b and w
The subproblem for optimizing b, w in (21) is equivalent to

btþ1;wtþ1 ¼ argmin
b;w

L b;w;Wt;Ct; utð Þ

¼ argmin
b;w

ajjwjj1 þ
1

2
jj1� YFt � Cþ ujj22

¼ argmin
b;w

ajjwjj1 þ
1

2
jjXwþ b1� bF1jj22

(22)

where bF1 ¼ Y 1�Cþ uð Þ � diag XWXT
� �

. We denote the operator

diag :ð Þ to produce a vector composed of diagonal elements of given

square matrix.

In fact, solving (22) can be done easily with proximal gradient

descent through alternately updating estimate of w and b as follows:

zkþ1 ¼ wk � dwXT Xwk þ bk � bF1

� �

wkþ1 ¼ Sa zkþ1
� �

bkþ1 ¼ 1

n
sum bF1 �Xwkþ1

� �

8>>>>>>><
>>>>>>>:

(23)

where dw is the learning rate for the proximal gradient updates and set

to 0.01 in our experiments, k is the index of inner loop for optimizing

b, w, Sk tð Þ is the element-wise soft-thresholding operator, defined by:

Sk tð Þ ¼ sign tð Þmax 0; jtj � kð Þ (24)

A2. ADMM for updating W
The subproblem of optimizing W in (22) is equivalent to:

Wtþ1 ¼ argmin
W

L btþ1;wtþ1;W;Ct; ut
� �

¼ argmin
W

bjjWjj� þ ctrace WLð Þ

þ1

2
jj1� YFt � Ct þ utjj22

¼ argmin
W

bjjWjj� þ ctrace WLð Þ

þ1

2
jjdiag XWXT

� �
� bF2jj22

(25)

where bF2 ¼ Y 1� Cþ uð Þ � b1�Xw. It is obvious that the

objective function (25) split in two components: ctrace WLð Þþ
1
2 jjdiag XWXT

� �
� bF2jj22, which is convex, differentiable and bjjWjj�,

which is also convex with inexpensive proximal operator. It is known

that the solution of (25) is given by the matrix shrinkage operation

which corresponds to a singular value decomposition (SVD) [see, e.g.

Cai et al. (2010) and Ma et al. (2011) for more details]. Hence, prox-

imal gradient descent for updating W again is given as follows:

Rkþ1 ¼ diag XWkXT
� �

� bF2

DWL ¼ cLþXTRkþ1X

Zkþ1 ¼Wk � dWDWL

Ukþ1;Ekþ1 ¼ EVD Zkþ1
� �

bEkþ1
¼ Sb Ekþ1

� �
Wkþ1 ¼ Ukþ1bEkþ1

Ukþ1

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(26)
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where DWL is the derivative of the differentiable component of (26)

with respect to W, dW is the learning rate for the proximal gradient

updates and set to 0.05 in our experiments, k is the index of inner

loop for optimizing W. U and E are columns of eigenvectors and di-

agonal matrix of eigenvalues obtained by applying eigendecomposi-

tion (EVD) to Z, by which we can guarantee the semidefiniteness of

weight matrix W after each iteration.

A3. ADMM for updating C
For the subproblem of optimizing C in (22), it is equivalent to

Ctþ1 ¼ argmin
C

L btþ1;wtþ1;Wtþ1;C; ut
� �

¼ argmin
C

Xn

i¼1

Cið Þþ þ
1

2
jj1� YFtþ1 þ ut �Cjj2

(27)

In order to solve (27), we use the following proposition in

(Watanabe et al., 2014):

Proposition 1: the solution T k tð Þ ¼ argminx2Rk xð Þþ þ 1
2 x� tð Þ2

has the following form:

T k tð Þ ¼

t � k if t � k

0 if 0 � t � k

t if t < 0

8>><
>>: (28)

Note that components of C are independent of each other in (27).

By applying Proposition 1 in element-wise, we can derive the update

for C in the following closed form solution:

Ctþ1 ¼ T 1 1� YFtþ1 þ ut
� �

(29)
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