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Abstract

Motivation: Antimicrobial resistance (AMR) is becoming a huge problem in both developed and

developing countries, and identifying strains resistant or susceptible to certain antibiotics is essen-

tial in fighting against antibiotic-resistant pathogens. Whole-genome sequences have been col-

lected for different microbial strains in order to identify crucial characteristics that allow certain

strains to become resistant to antibiotics; however, a global inspection of the gene content respon-

sible for AMR activities remains to be done.

Results: We propose a pan-genome-based approach to characterize antibiotic-resistant microbial

strains and test this approach on the bacterial model organism Escherichia coli. By identifying

core and accessory gene clusters and predicting AMR genes for the E. coli pan-genome, we not

only showed that certain classes of genes are unevenly distributed between the core and acces-

sory parts of the pan-genome but also demonstrated that only a portion of the identified

AMR genes belong to the accessory genome. Application of machine learning algorithms to

predict whether specific strains were resistant to antibiotic drugs yielded the best prediction

accuracy for the set of AMR genes within the accessory part of the pan-genome, suggesting that

these gene clusters were most crucial to AMR activities in E. coli. Selecting subsets of AMR genes

for different antibiotic drugs based on a genetic algorithm (GA) achieved better prediction

performances than the gene sets established in the literature, hinting that the gene sets selected

by the GA may warrant further analysis in investigating more details about how E. coli fight

against antibiotics.

Contact: yuwei.wu@tmu.edu.tw

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Antimicrobial-resistant (AMR) pathogens greatly undermine peo-

ple’s ability to control pathogens and cure diseases. The ultra-fast

mutation rates of these microbes render our existing drugs useless

against superbugs, and ‘existing classes of antibiotics are probably

the best we will ever have (Cormican and Vellinga, 2012).’ A study

published in 2013 also identified that, due to AMR, additional eco-

nomic costs may be as high as 55 billion USD and that trivial bacter-

ial infections such as hip replacements may increase the death rate

from approximately 0% to 30% (Smith and Coast, 2013). The rapid

decrease in the number of new drugs further diminishes our chances

of competing against these pathogens, and cutting-edge research in

all dimensions direly needs to find a way to control these microbes.

Genomic information has been incorporated in order to under-

stand why certain strains of pathogens are resistant to antibiotics,

including Staphylococcus aureus, Mycobacterium tuberculosis,

Klebsiella pneumoniae, Salmonella spp. and Pseudomonas aerugi-

nosa (Bradley et al., 2015; Gordon et al., 2014; McDermott et al.,

2016; Stoesser et al., 2013; Tyson et al., 2015). The PATRIC data-

base is one of the most comprehensive antibiotic resistance data-

bases that collects genes, proteins and genomic information related

to the resistance or susceptibility of pathogens to various antibiotic
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drugs (Wattam et al., 2017). The collection of over 80 000 bacterial

genomes available in the PATRIC database allows scientists to

understand the mechanisms of AMR in terms of genes, proteins and

genomes.

‘Pan-genome’, a term used to describe shared features of all

strains of certain bacteria, has been applied to understand the strain-

level diversity of these species (Medini et al., 2005). It was also used

in analyzing the diversity, virulence and AMR phenotypes of

Klebsiella pneumoniae, in which a genomic study found that

K. pneumoniae can be split into three distinct groups, and that cer-

tain branches in the three groups may be either hyper-virulent or

multi-drug-resistant (Holt et al., 2015). A computational approach,

Scoary (Brynildsrud et al., 2016), was developed to associate the

genetic components of the pan-genome with observed phenotypic

traits and identify gene clusters that were associated with high-level

AMR activities such as linezolid resistance in Staphylococcus

epidermidis. These examples suggested that the pan-genome idea

can be very useful in defining gene components that may contribute

to phenotypes of the living organisms.

In this paper, we explored whether machine learning approaches

can be applied on pan-genome to better define and predict AMR.

We selected the model organism Escherichia coli as the exploration

target due to its well-established gene profiles. Even though E. coli

pan-genome has already been studied to compare commensal and

pathogenic isolates (Rasko et al., 2008), no associations were estab-

lished between its pan-genome and strain-level AMR activities. We

therefore chose E. coli species as our primary target for pan-genome

identification and incorporated AMR resolution into the analytical

procedure. By analyzing the gene content within the pan-genome

and building predictive models for the AMR activities we extracted

the most likely gene sets that define whether E. coli strains are resist-

ant or susceptible to antibiotic drugs. A genetic algorithm (GA)

was also incorporated to select subsets of the genes that yielded

outstanding performances and outperformed established genes

described in the literature, highlighting the possibility of accurately

predicting AMR strains from pan-genome content and opening up

the potential of mining gene repertoire using machine learning algo-

rithms to understand more about bacterial AMR mechanisms.

2 Materials and methods

2.1 Genome collection and annotation
Genome fasta files of 59 E. coli strains with resistance metadata to

38 antibiotic drugs were downloaded from the PATRIC ftp site

(ftp://ftp.patricbrc.org/; Wattam et al., 2017) in July 2017. The gen-

ome IDs, genome sizes, genome status, number of contigs and N50

values as well as isolation sources, isolation countries and host infor-

mation were listed in Supplementary Table S1. The antibiotic drug

information, the classes of the drugs, along with the number of

entries measured for different E. coli strains can be found in

Supplementary Table S3. These genomes were re-annotated for their

AMR activities by comparing their minimum inhibitory concentra-

tion (MIC; the lowest concentration of a chemical that prevents the

bacterial growth) to the 2017 Clinical and Laboratory Standard

Institute (CLSI)’s guidelines on AMR (M100 Performance Standards

for Antimicrobial Susceptibility Testing), which offers the definition

of breakpoints for antibiotic resistance. The designated

annotations included ‘resistant’, ‘susceptible’, ‘intermediate’, ‘non-

resistant’ and ‘non-susceptible’. The ‘intermediate’ label indicated

that the dosage of an antibiotic drug required to kill the pathogenic

strain was higher than those susceptible to the drug but not as high

as resistant ones. ‘Non-resistant’ and ‘non-susceptible’, respectively,

indicated that the microbial strain was not resistant and not suscep-

tible to the antibiotic drug; however whether these microbes were

indeed susceptible or resistant to the drugs cannot be determined

(the reason we added these two categories is due to differences in

maximum MIC experimented during serial dilution documented in

different versions of CLSI, which resulted in insufficient information

for adapting the AMR annotations to 2017 CLSI’s guideline).

ezTree software, which was capable of identifying single-copy genes

from a group of genomes, separately aligning the amino acid sequen-

ces of the single copy genes and concatenating the alignments to

build a phylogenetic tree, was used to build the evolutionary tree for

the involved E. coli strains (Wu, 2018). Default parameters (-evalue

1e–10 -model JTT) were employed to build the tree using ezTree.

Visualization of the tree and AMR phenotypes was conducted using

Evolview (He et al., 2016).

2.2 Pan-genome construction
To build the pan-genome, protein-coding genes were predicted from

the genomes using Prodigal (Hyatt et al., 2010) with the ‘-p meta’

parameter (since more than 90% of the analyzed E. coli genomes

were fragmented draft genomes), and CD-HIT (Fu et al., 2012) was

utilized to group the predicted genes into gene clusters with 95%

amino acid identity. [Even though PATRIC already consisted of pre-

dicted genes for the individual genomes using RASTtk (Wattam

et al., 2014, 2017), which employed Glimmer3 (Brettin et al.,

2015), the program Prodigal was evaluated to outperform other

tools (Angelova et al., 2010; Hyatt et al., 2010) and was therefore

adopted to predict genes for the downloaded genomes]. The 95%

amino acid identity cutoff was determined by cross-comparing pro-

tein sequences from five E. coli strains randomly sampled from the

59 strains (including strains BIDMC 71, 17A, UCI 58, AR_0118

and MRSN388634) using BLAST (-p 1e–10 -max_target_seqs 1), in

which we found that 95% identity served as a good cutoff value for

grouping orthologous genes (Supplementary Fig. S5).

The extracted gene clusters were then classified into ‘core’ and

‘accessory’ genomes based on whether the clusters consisted of genes

from all strains; only clusters with genes from all genomes were

included in the ‘core’ set; otherwise they were classified into the

‘accessory’ set. Clusters of Orthologous groups (COGs) were predicted

by searching the amino acid sequences of the genes against COG hidden

Markov models downloaded from the eggNOG 4.5 database (Huerta-

Cepas et al., 2016) using HMMER3 (Eddy, 2011) with an e-value cut-

off of 1e–5. AMR genes were annotated by Resistance Gene Identifier

(RGI) software provided by Comprehensive Antibiotic Resistance

Database (CARD; Jia et al., 2017).

2.3 AMR phenotype prediction and performance

evaluation
Predictive machine learning models, including Support Vector

Machine (SVM; radial basis function kernel), Naı̈ve Bayes (NB)

(multi-variate Bernoulli models), Adaboost (based on an ensemble

of 200 decision trees with a maximum depth of 2 and the SAMME

algorithm) and Random Forest (RF; based on 200 decision trees

with no limit on their maximum depths; tree-splitting criteria were

Gini impurity), were built using Python scikit-learn (sklearn)

machine learning API (http://scikit-learn.org/). Only two AMR

phenotypes, ‘resistant’ and ‘susceptible’, were considered in the

evaluation—‘intermediate’, ‘non-susceptible’ and ‘non-resistant’

phenotypes were not included due to our inability to determine

whether those strains were indeed resistant or susceptible to an
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antibiotic. The evaluation was conducted using the leave-one-out

cross validation method, in which one of the strains was used for

validation while the remaining strains were recruited for training.

For example, assuming that there are n bacterial strains numbered

[1, 2, 3,. . ., n–1, n]; the leave-one-out process first uses [2, 3,., n–1,

n] to build a prediction model and apply it on strain [1]; it then ex-

haustively builds models using data from n–1 strains and estimates

the prediction accuracy on the left-out strain until all strains are

evaluated. The performances of the predictions were estimated after

all samples were iteratively predicted in the leave-one-out process

using area under the receiver operating characteristics (ROC) curve

(AUROC; also called AUC) metric. This process was repeated 10

times for each drug to get an averaged accuracy measurement.

2.4 Genetic algorithm
To improve the prediction accuracy using the presence/absence pat-

terns of the gene clusters identified from the 59 strains downloaded

from the PATRIC database, a genetic algorithm (GA) was imple-

mented to find the best subset of accessory gene clusters with CARD

annotations (acc/card) for predicting resistant or susceptible strains.

The ‘genomes’ of the GA (termed GA-genome hereafter) were

defined as either including [1] or not including [0] certain gene clus-

ters in predicting AMR activities and the GA-genome size was set to

the length of the number of acc/card gene clusters. For example, for

five gene clusters [A, B, C, D, E], the GA-genome [1, 0, 1, 0, 1] indi-

cates that only gene clusters A, C and E are used in the prediction of

AMR activities. The fitness function of the GA was selected to be

the AUC estimated for the SVM training models using the partial

gene cluster set selected by the GA-genomes, in which only gene

clusters marked as ‘1’ in the GA-genome were included in the leave-

one-out evaluation process as described before. The GA population

size was 100. In the beginning of the GA the GA-genomes were ran-

domly filled in either 0 or 1; each GA-genome was then evaluated

for its AUC under SVM training. After the performance evaluation

the best two GA-genomes were copied to the next iteration; all GA-

genomes (including the two already-copied ones) were then sampled

with probability proportional to their AUC score with base muta-

tion probability 0.05 and crossover probability 0.1 until 100 GA-

genomes were created. Only one crossover was allowed for any two

sampled GA-genomes. This GA process was repeated 30 000 times

to get the subset of gene clusters for each antibiotic drug for best

predicting AMR activities (the performance improvements was

shown in Supplementary Fig. S7, which indicated that AUC was

maximized at around 15 000 GA runs).

To compare our prediction performances against previously-

identified AMR genes and gene clusters identified by other pan-

genome-based methods, AMR genes established in (Tyson et al.,

2015) were checked for their presence in the 59 E. coli genomes using

BLASTP (-evalue 1e–10). We chose genes related to four antibiotic

drugs (ampicillin, ciprofloxacin, gentamicin and trimethoprim/sulfa-

methoxazole) that were also among the list of our 12 drug. The genes

being detected were: blaTEM-1, blaOXA-1, blaCMY-2 and ampC for

ampicillin; aac(3’)-Ia and aac(3’)-VI for gentamicin; dfrA1, dfrA5,

dfrA12 and dfrA15 for trimethoprim/sulfamethoxazole, and qnrB2,

qnrB6, qnrS2, gyrA, parC and parE for ciprofloxacin. We noted that

gyrA, parC and parE were checked for non-synonymous mutations

instead of their presence/absence patterns, as suggested by (Tyson

et al., 2015), by comparing against E. coli K-12 MG1655 genes.

Scoary (Brynildsrud et al., 2016) was used to establish gene clusters

associated with AMR phenotypes of the 59 genomes by the following

steps: a pan-genome was built using Roary (Page et al., 2015) with

default settings (-i 95 -cd 99 -iv 1.5); the Roary pan-genome gene clus-

ters associated with the AMR phenotypes were then identified using

Scoary with default settings (-p 0.05 –c I). The Roary gene clusters

were also annotated for their AMR activities using RGI/CARD as

described before.

3 Results

We first checked whether patterns existed for the AMR phenotypes

based on the phylogeny of the E. coli strains by building a phylogen-

etic tree and plotting the AMR phenotypes (resistant, susceptible,

intermediate, non-resistant, non-susceptible, or no data; see

Supplementary Table S2 for detailed information of the strains and

the re-annotated antimicrobial activities). The results, as shown in

Supplementary Figure S1, does not show clear clusters of the AMR

phenotypes on the heatmap; however, we observed that drugs of the

same class (for example, the four cephalosporins or the two amino-

glycosides) were grouped together, suggesting that the strains

reacted more similarly to drugs of the same classes. Note that even

though there were totally 38 antibiotics annotated for E. coli strains,

numbers of AMR annotations differed greatly among the drugs:

only 12 drugs were annotated for more than 30 strains in the

PATRIC database; and 13 drugs had fewer than 10 annotations

(Supplementary Table S3). We therefore chose the 12 most-

annotated antibiotic drugs or drug composites (meropenem, genta-

micin, ciprofloxacin, trimethoprim/sulfamethoxazole, ampicillin,

cefazolin, ampicillin/sulbactam, ceftazidime, cefepime, piperacillin/

tazobactam, tobramycin and ceftriaxone) for further examination.

The classes that these 12 drugs belonged to include: one carbape-

nem, one quinolone, two aminoglycosides, one penicillin, four ceph-

alosporins, one folate pathway and two beta-lactam inhibitors.

We then applied the pan-genome approach to the 59 E. coli

strains with various AMR activities. The number of unique gene

clusters in the pan-genome was 15 950, in which 2874 belonged to

the core part while the rest 13 076 belonged to the accessory part of

the pan-genome. The growth of the gene cluster numbers that be-

long to the pan-genome, core genome and accessory genome were

shown in Figure 1. The curve-fitting of the pan-genome growth was

performed using a power law regression, which was based on

Heaps’ law described in (Tettelin et al., 2005, 2008). The fitting was

conducted using panGP (Zhao et al., 2014) to fit the equation

(y ¼ ApanxBpan þCpan), in which y and x were pan-genome size and

the number of genomes, respectively. Bpan was equivalent to the c

parameter for estimating whether a pan-genome is open or close in

(Tettelin et al., 2008). Our estimated pan-genome profile curve was

(y ¼ 2810:31 � x0:38 þ 2222:97), in which Bpan was estimated to be

0.38. R2 was 0.999554. Since a pan-genome was consider open

when 0 < Bpan < 1 (and close otherwise), this result suggested

that our constructed pan-genome was an open pan-genome. The

core genome profile curve was also fitted to the equation

(y ¼ ApanexBpan þ Cpan) using panGP; the estimated parameters were

(Apan ¼ 2469:39, Bpan ¼ �0:41 and Cpan ¼ 2999:24). R2 was

0.887721. Previous studies such as (Medini et al., 2005) also sug-

gested that species that colonized multiple environments and had

numerous mechanisms for exchanging genetic elements (such as

Streptococci, Meningococci, H. pylori, Salmonella, and E. coli) were

more likely to have an open pan-genomes.

In order to identify differences in the protein functional distribu-

tions of the core- and accessory-genomes, COG annotation was per-

formed on the gene clusters. After quantifying the COG classes in

the core and accessory genomes and selecting COGs with different

Pan-genome-based machine learning for antimicrobial resistance analysis i91

Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: genetic algorithm
Deleted Text: ,
Deleted Text: ,
Deleted Text: genetic algorithm
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: genetic algorithm
Deleted Text: , 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty276#supplementary-data
Deleted Text: , 
Deleted Text: -
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty276#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty276#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty276#supplementary-data
Deleted Text: ,
Deleted Text: ,
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: ,
Deleted Text: ,


distributions (at least 2-fold abundance differences) between the

core and accessory parts of the pan-genome, we observed that pro-

tein classes essential to the core-genome were those responsible for

translation and ribosomal structure (J), signal transduction (T),

post-translational modification (O), energy production (C) and

amino acid/nucleotide/coenzyme/lipid transportation and metabol-

ism (E, F, H and I), as shown in Figure 2 (proportions of all COGs

among the genes were reported in Supplementary Table S5). On the

other hand, proteins for replication, recombination, and repair (L),

intracellular trafficking, secretion and vesicular transport (U), de-

fense mechanism (V) and cell motility (N) formed the majority of

the accessory genome. These results suggested that genes responsible

for metabolite transportation and metabolism, signal transduction,

energy production and core nucleotide/amino acid processing were

more critical to the survival of E. coli and were hence more con-

served. Similar results were also reported by another pan-genome

analysis on Bifidobacterium and Lactobacillus (Lukjancenko et al.,

2012), in which classes J, E, G and O were enriched in the core

genomes.

The AMR potentials of the gene clusters were also annotated

according to the CARD database. We discovered that totally 111

protein clusters (0.7% among all clusters) could be mapped to a

CARD entry, suggesting that genes related to AMR may only ac-

count for a small proportion of the genome. After comparing the

CARD annotation to the pan-genome, we found that only 61% (68

clusters) of CARD clusters belonged to the accessory genome, and

that the most-annotated COG class (25%) of the 68 gene clusters

was category V (defense mechanism). This suggested that there may

be intrinsic resistance mechanisms shared by most E. coli strains,

and that the 68 gene clusters may be more relevant to the distinc-

tions of AMR phenotypes of the strains.

We checked the best hit CARD annotations of the 68 gene clus-

ters (Supplementary Table S6) and identified that most of the gene

clusters were related to AMR activities of E. coli. For example,

one of the gene clusters (cluster 12 174) was annotated as emrE,

which belonged to the drug/metabolite transporter superfamily.

Overexpression of emrE may provide resistance to various

antibiotic drugs as well as a wide variety of toxic cationic hydropho-

bic compounds (Ma and Chang, 2004; Yerushalmi et al., 1995).

Another example were two gene clusters (clusters 2965 and 5292),

which were, respectively, annotated as mrx and mph(A) and were

also reported to confer high-level drug resistance to erythromycin

(Noguchi et al., 2000). Other examples included genes that provided

resistance to sulfamethoxazole (sul1, sul2 and sul3; clusters 5871,

5926 and 6303), ampicillin (TEM1; cluster 5687), tetracycline (tetA

and tetD; clusters 3154 and 10952), trimethoprim (dfrA12 and

dfrA17; clusters 9729 and 8425), streptomycin (aadA; cluster 6352)

and gentamicin [aac(3)-IV; cluster 6471], suggesting that most of

the 68 gene clusters were relevant to AMR.

To check whether the 68 accessory gene clusters with CARD

annotations (termed acc/card hereafter) may be used as viable pre-

dictors of AMR activities of the E. coli strains, we built predictive

models from the presence/absence patterns of four gene sets (all core

and accessory gene clusters, all accessory gene clusters, all acc/card

gene clusters and all CARD gene clusters) and evaluated the per-

formances of the models using the leave-one-out validation method.

Four machine learning methods (including SVM, NB, RF and

Adaboost) were incorporated into the evaluation process (see

Section 2 for details). The results (in terms of the AUC), as shown in

Figure 3, suggested that the 68 acc/card gene cluster were more suit-

able for predicting AMR phenotypes of E. coli strains (detailed pre-

diction results were listed in Supplementary Tables S7–S10). We

also noted that the Adaboost, RF and SVM algorithms performed

slightly better than NB. Measurements of F1 scores were also similar

to the AUC (Supplementary Fig. S2; precision and recall were shown

in Supplementary Figs S3 and S4).

Even though the 68 acc/card genes served as better predictors for

AMR activities compared to other gene sets (including all core and

accessory gene clusters, all accessory gene clusters and all CARD

gene clusters), the prediction performances of the 68 acc/card genes

on four selected drugs (ampicillin, gentamicin, trimethoprim/

sulfamethoxazole and ciprofloxacin) were still not as good as genes

proposed in the literature (Tyson et al., 2015) and gene clusters iden-

tified by another pan-genome-wide association tool, Scoary

(Table 1; the number of gene clusters and AMR annotations identi-

fied by Scoary for each drug was shown in Supplementary Table

S13; the SVM prediction performances evaluated for Scoary

were listed in Supplementary Table S14). We therefore designed a

genetic algorithm to select the subsets of the 68 acc/card genes for

predicting AMR activities. As shown in Table 1 and Figure 4, the

GA-selected gene cluster subsets for each drug clearly outperformed

Fig. 1. Growth rates of the pan-genome sizes, core gene cluster and accessory

gene cluster numbers with the increasing number of E. coli genomes. The

blue, orange and green lines, respectively, represent core-, accessory- and

pan-genome sizes

Fig. 2. Differences in the COGs functional distributions between the core- and

accessory-genomes. COG percentages were estimated by dividing COG num-

bers by the total gene cluster numbers in either the core- or accessory-

genome. Only COGs differing by at least 2-fold between the core and acces-

sory parts were included
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the 68 acc/card genes, suggesting that the gene clusters identified by

GA may be associated with AMR phenotypes (detailed AUC meas-

urements were listed in Supplementary Table S11; detailed informa-

tion of the gene clusters selected by the GA was listed in

Supplementary Table S12). Moreover, the GA-selected gene clusters

outperformed genes established in the literature and Scoary, hinting

that these genes may warrant more analysis in future AMR research

for E. coli.

4 Discussion

In this paper, we attempted to identify and classify AMR activities

of E. coli through the use of the pan-genome. Although the pan-

genome idea has previously been applied to identify commensal and

pathogenic strains, no previous pan-genome-based works were

related to E. coli AMR phenotypes. The construction of pan-

genome allowed us to simultaneously inspect all strains and their

AMR activities. The pan-genome idea also made it possible to un-

earth potential gene clusters that may confer resistance to antibiotic

drugs or toxic materials and measure variations between resistant

and susceptible groups. We noted that Brynildsrud et al. also

employed Scoary, a tool for scoring genes in microbial pan-genome-

wide association studies, to identify gene clusters that were associ-

ated with high-level AMR activities, including linezolid resistance in

Staphylococcus epidermidis (Brynildsrud et al., 2016).

After downloaded the E. coli genomes and AMR metadata from

PATRIC, we deliberately re-annotated the E. coli AMR activities

using the 2017 CLSI’s guideline. This was because the PATRIC

metadata that we downloaded (as of July 2017) did not specify

which criteria it used to annotate the resistance profiles of the bac-

terial strains. For example, E. coli strain 5CRE51 was annotated as

resistant to gentamicin (MIC>8); however the CLSI 2017 specified

that MIC needs to be>¼16 to be resistant to gentamicin.

Therefore, we re-annotated the 5CRE51 strain, which was only

tested for its MIC values up to 8, as ‘non-susceptible’ to gentamicin,

indicating that we knew it was not susceptible to gentamicin but

could not determine whether it was indeed resistant to gentamicin.

Another example is E. coli strain AR_0104, which was annotated as

resistant to norfloxacin (MIC>8) in the PATRIC database; the

CLSI 2017 however noted that MIC needed to be>¼32 to be resist-

ant to norfloxacin. Therefore we can only say that the AR_0104

strain was ‘not susceptible’ to norfloxacin without knowing whether

it was resistant to this drug.

To determine the best amino acid cutoff threshold for building

the pan-genome, we cross-compared the amino acid sequences of

the genes from five randomly-sampled E. coli strains and found that

95% amino acid identity served as a good cutoff value. This cutoff

was consistent with another pan-genomic study on Bacillus, which

also used 95% as the identity cutoff (Kim et al., 2017). We therefore

used 95% cutoff identity to build the pan-genome, which yielded

15 950 gene clusters, among which 2876 gene clusters belonged to

the core genome and 13 076 gene clusters belonged to the accessory

genome. The proportion of core gene clusters was about 18%.

These pan-genome statistics were similar to those in a previous

Fig. 4. SVM prediction accuracies of the antimicrobial resistance (AMR) activ-

ities (in terms of the area under the receiver operating characteristics curve

(AUC)) based on 1) 68 accessory genes with CARD annotations (68 acc/card

genes); 2) gene clusters selected for each drug based on the genetic algo-

rithm (GA-selected clusters); 3) gene clusters identified by Scoary; and 4)

gene clusters with CARD annotations identified by Scoary (Scoary with

CARD). The boxplot indicates the distribution of the prediction accuracies for

the 12 selected drugs. Dashed red line indicates 0.9 AUC
Table 1. SVM prediction performances (based on the AUC) meas-

ured for ampicillin, gentamicin, trimethoprim/sulfamethoxazole

and ciprofloxacin

Drugs 68 acc/carda Tyson 2005b Scoaryc Scoary/cardd GAe

Ampicillin 0.64g 0.86 0.75 0.79 0.97

Gentamicin 0.78 0.83 0.85 0.68 0.98

Trim/sulfaf 0.87 0.82 0.76 0.87 0.94

Ciprofloxacin 0.71 0.78 0.93 0.87 0.93

a68 accessory gene clusters with CARD annotations.
bGenes established in (Tyson et al., 2015).
cGene clusters that were associated with phenotypes extracted by Scoary.
dGene clusters that can be mapped to the CARD database extracted

by Scoary.
eGene clusters selected by the GA.
fTrimethoprim/sulfamethoxazole.
gAUC measured from the leave-one-out evaluation process using SVM.

Fig. 3. Prediction accuracies of the AMR activities [in terms of the area under

the ROCs curve (AUC)] based on the presence/absence patterns of (i) all core

and accessory gene clusters (coreþ acc); (ii) all accessory gene clusters (acc);

(iii) accessory gene clusters with CARD annotations (acc/card) and (iv) all

CARD gene clusters. The boxplots indicate the distribution of the predictive

accuracy of 12 selected drugs (Section 2 and Section 3). The four blocks of

boxplots represent four different machine learning algorithms, including

Adaboost, NB, RF and SVM, used in the prediction process. Dashed red line

indicates 0.9 AUC
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report (Rasko et al., 2008). We also compared our pan-genome to a

much larger E. coli pan-genome (which consisted of 307 strains)

available on panX (Ding et al., 2018), in which the core gene cluster

proportion was 13% (totally 23 128 gene clusters, among which

3199 gene clusters belonged to the core genome and 19 929 gene

clusters belonged to the accessory genome) after adjusted the cluster-

ing criterion to 95%. We noted that the core gene clusters identified

by panX (3199) was slightly larger than ours (2876), probably due

to different clustering algorithms between panX and ours.

To explore the effect of clustering identity cutoffs, we tried sev-

eral identity cutoffs (95%, 90%, 80% and 70%) to build different

pan-genomes. As expected, the decrease of the identity cutoff

increased the core gene clusters and reduced the accessory gene clus-

ters and total pan-genome sizes, as shown in Supplementary Table

S4. The growth rate of the gene clusters also slowed down. Similar

observation were also made on panX, in which adjusting the identity

cutoff from 95% to 90% resulted in the number of core gene clus-

ters increased from 3199 to 3345 while the amount of accessory

gene clusters reduced from 19 929 to 19 783. We noted that the re-

duction of accessory gene cluster numbers from 95% identity cutoff

to 90% on panX was not as much as our analysis, probably because

(i) different clustering algorithms were adopted for producing gene

clusters; or (ii) the sources of the panX E. coli strains were very di-

verse (including dogs, cats, mice, cattle and human) while the

PATRIC E. coli strain sources were strictly human.

From the pan-genome we identified core and accessory gene clus-

terss and annotated AMR genes. Cross comparisons between AMR

genes and core/accessory genomes revealed that only 61% of the

genes belonged to the accessory genome. One of the possible reasons

for this phenomenon is that some resistance factors may be intrinsic

to E. coli, resulting in shared AMR genes among most strains. It was

also possible that the number of E. coli genomes (which is 59) was

not large enough, or that the majority of the E. coli strains in the

PATRIC database carried resistance to multiple drugs and hence

shared some AMR genes.

By building machine learning models to check the predictive

abilities of four different cluster sets, we found that the set of acc/

card genes yielded the best prediction results compared to other

gene sets. This result suggested that AMR genes that did not appear

universally in every genome may be a good predictor for forecasting

AMR activities of the E. coli strains. The finding that SVM, RF and

Adaboost outperformed NB also suggested that the problem of pre-

dicting AMR activities from genomic information may be a non-

linear problem.

By designing a genetic algorithm to pick subsets of acc/card

genes with the most AMR predictive power for the antibiotic drugs,

we extracted gene clusters that were able to better predict the resist-

ance profiles of the E. coli strains for each of the 12 drugs. To check

whether patterns exist for the GA-selected gene clusters, we made a

heatmap from the GA-selected patterns, as shown in Supplementary

Figure S6. No clear patterns were observed from this heatmap, and

some drugs of the same class were not grouped together (e.g. the

four cephalosporins). One of the possible reasons was that there

may be some weakly-associated genes that the GA also recruited in

order to maximize the prediction accuracy and therefore disturbed

the patterns of the heatmap. We also observed some gene clusters

picked by the GA cannot be fully associated with known genetic

functions despite the outstanding prediction performances. For ex-

ample, gene clusters 1202, 1513, 3412, 3408 and 3397 were anno-

tated as either pmrC or pmrE, which were related to polymyxin

resistance (Olaitan et al., 2014); the GA however selected either

pmrC or pmrE or both in the prediction of strains resistant to drugs

with different antibiotic mechanisms such as ampicillin, cefazolin,

or trimethoprim/sulfamethoxazole, to name just a few. There were

two possible explanations: either the GA ‘found’ that the inclusion

of these gene clusters could improve the prediction accuracy, or that

there were two or more equally good combinations of selected gene

clusters that may lead to similar prediction performances. We also

cannot rule out the possibility that unknown genetic mechanisms

may be associated with the seemingly-unrelated AMR genes.

Further investigation is still needed to fully interpret the results

obtained by the GA. We noted that Scoary also associated pmrE

with cefazolin and trimethoprim/sulfamethoxazole (Supplementary

Table S13), lending support to the hypothesis that there may be

some associations between seemingly-unrelated genes and the anti-

biotic drugs.

One of the limitations of our study is that there were only 59

E. coli strains with AMR annotations in the PATRIC database—far

less than the number of E. coli strains in the NCBI database. We

however argue that the successful determination of the pan-genome

and crucial AMR gene sets from the 59 E. coli strains showcase the

potential of the proposed pan-genome approach for predicting

AMR activities from genomic content. We look forward to testing

our approach on larger E. coli genome set with AMR profiles and

checking whether the pan-genome-based machine learning method

is robust. We also plan to extend our approach into other pathogen-

ic species such as Klebsiella pneumoniae or Samonella enterica. We

hope that by establishing crucial AMR gene cluster sets for the spe-

cies we can better understand how these microorganisms fight

against antibiotics.

5 Conclusion

In this study, we constructed the pan-genome of E. coli strains with

AMR annotations and identified key factors for predicting whether

or not a strain was resistant to certain antibiotics. Specifically, we

found that a very small set of accessory genes with antimicrobial ac-

tivity annotations achieved the best predictive accuracy. To the best

of our knowledge, this is the first study to employ a pan-genome as

an essential guide in predicting E. coli AMR activities and we hope

that this study can serve as a stepping stone in dealing with AMR

pathogens using genomic information.
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