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Abstract

Motivation: Indexing reference sequences for search—both individual genomes and collections of

genomes—is an important building block for many sequence analysis tasks. Much work has been

dedicated to developing full-text indices for genomic sequences, based on data structures such as

the suffix array, the BWT and the FM-index. However, the de Bruijn graph, commonly used for

sequence assembly, has recently been gaining attention as an indexing data structure, due to its

natural ability to represent multiple references using a graphical structure, and to collapse highly-

repetitive sequence regions. Yet, much less attention has been given as to how to best index such

a structure, such that queries can be performed efficiently and memory usage remains practical as

the size and number of reference sequences being indexed grows large.

Results: We present a novel data structure for representing and indexing the compacted colored

de Bruijn graph, which allows for efficient pattern matching and retrieval of the reference informa-

tion associated with each k-mer. As the popularity of the de Bruijn graph as an index has increased

over the past few years, so have the number of proposed representations of this structure. Existing

structures typically fall into two categories; those that are hashing-based and provide very fast

access to the underlying k-mer information, and those that are space-frugal and provide asymptot-

ically efficient but practically slower pattern search. Our representation achieves a compromise be-

tween these two extremes. By building upon minimum perfect hashing and making use of succinct

representations where applicable, our data structure provides practically fast lookup while greatly

reducing the space compared to traditional hashing-based implementations. Further, we describe

a sampling scheme for this index, which provides the ability to trade off query speed for a reduc-

tion in the index size. We believe this representation strikes a desirable balance between speed and

space usage, and allows for fast search on large reference sequences.

Finally, we describe an application of this index to the taxonomic read assignment problem. We

show that by adopting, essentially, the approach of Kraken, but replacing k-mer presence with

coverage by chains of consistent unique maximal matches, we can improve the space, speed and

accuracy of taxonomic read assignment.

Availability and implementation: pufferfish is written in Cþþ11, is open source, and is available at

https://github.com/COMBINE-lab/pufferfish.

Contact: rob.patro@cs.stonybrook.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Motivated by the tremendous growth in the availability and afford-

ability of high-throughput genomic, metagenomic and transcrip-

tomic sequencing data, the past decade has seen a large body of

work focused on developing data structures and algorithms for effi-

ciently querying large texts (e.g. genomes or collections of genomes)

(Dobin et al., 2013; Hach et al., 2010; Kim et al., 2015; Langmead

and Salzberg, 2012; Langmead et al., 2009; Li, 2013; Li and

Durbin, 2009; Li et al., 2008; Liao et al., 2013). While numerous

approaches have been proposed, many fall into one of two catego-

ries—those based on indexing fixed-length pattern occurrences (i.e.

k-mers, which are patterns of length k) in the reference sequences
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(Hach et al., 2010; Li et al., 2008; Liao et al., 2013) (most common-

ly using hashing), and those based on building full-text indices such

as the suffix array or FM-index over the references (Dobin et al.,

2013; Kim et al., 2015; Langmead and Salzberg, 2012; Langmead

et al., 2009; Li, 2013; Li and Durbin, 2009).

Recently, there have been efforts to extend both categories of

approaches from the indexing of linear reference genomes to the

indexing of different types of sequence graphs (Paten et al., 2017),

with various tradeoffs in the resulting space and time efficiency. On

the full-text index side, examples include approaches such as those

of Maciuca et al. (2016) and Beller and Ohlebusch (2016) which en-

code the underlying graph using variants of the BWT, and the ap-

proach of Sirén (2017), which indexes paths in the variation graph

(again making use of a substantially modified BWT). There have

also been recent approaches based on k-mer -indices that adopt

graphs as the underlying representation of the text being searched.

Examples of such tools include genomeMapper (Schneeberger et al.,

2009), BGREAT (Limasset et al., 2016), kallisto (Bray et al., 2016)

and deBGA (Liu et al., 2016).

Rather than general variation graphs, we focus in this

manuscript on the de Bruijn graph. The de Bruijn graph is a

widely-adopted structure for genome and transcriptome assembly

(Grabherr et al., 2011; Haas et al., 2013; Pevzner et al., 2001).

However, the compacted variant of the de Bruijn graph has recently

been gaining increasing attention both as an indexing data struc-

ture—for use in read alignment (Liu et al., 2016) and pseudoalign-

ment (Bray et al., 2016)—as well as a structure for the analysis of

variation (among multiple genomes) (Minkin et al., 2016) and a

reference-free structure for pan-genome storage (Holley et al.,

2016). The compacted de Bruijn graph (Chikhi et al., 2014; Minkin

et al., 2013; Movahedi et al., 2012) (see Section 2) is particularly at-

tractive for representing and indexing repetitive sequences, since

exactly repeated sequences of length at least k are represented only

once in the set of unique, non-branching paths. As has been demon-

strated by Liu et al. (2016), this considerably speeds up alignment to

repeat-heavy genomes (e.g. the human genome) as well as to collec-

tions of related genomes. A similar concept of collapsing repetitive

regions—though not based on the de Bruijn graph formalism—has

been introduced by Yorukoglu et al. (2016) in the compressive read

mapper, CORA, to enable impressive speed-ups for existing aligners

through a plug-in architecture. Herein, we consider collections of

genomes to be represented as color information on the de Bruijn

graph [as described by Iqbal et al. (2012); see Section 2 below for

details]. Efficient representation of multiple samples, encoded as col-

ors in a de Bruijn graph, has been investigated in tools such as VARI

(Muggli et al., 2017) and Rainbowfish (Almodaresi et al., 2017).

Both VARI and Rainbowfish have implemented a data structure to

efficiently index color encoding on top of a succinct navigational

representation of a de Bruijn graph, proposed in BOSS (Bowe et al.,

2012). However, none of these tools are equipped with membership

queries and sequence search and are, hence, regarded as out of scope

in this paper.

The query speed of existing compacted de Bruijn graph indices

comes at a considerable cost in index size and memory usage.

Specifically, the need to build a hash table over the k-mers appearing

in the de Bruijn graph unipaths requires a large amount of memory,

even for genomes of moderate size. Typically, these hash functions

map each k-mer (requiring at least 8 bytes) to the unipath in which it

occurs (typically 4 or 8 bytes) and the offset where the k-mer appears

in this unipath (again, typically 4 or 8 bytes). A number of other

data structures are also required, but, most of the time, this hash

table dominates the overall index size. For example, an index of the

human genome constructed in such a manner (i.e. by deBGA or kal-

listo) may require 40–100GB of RAM (see Table 2). This already

exceeds the memory requirements of moderate servers (e.g. those

with 32G or 64G of RAM), and these requirements quickly become

untenable with larger genomes or collections of genomes.

2 Preliminaries

In this section, we formally define the preliminary terms and nota-

tions that are used throughout the manuscript. We consider all

strings to be over the alphabet R ¼ fA;C;G;Tg. A k-mer is a string

of length k over R (i.e. k 2 Rk). Given a k-mer, x, we define the re-

verse complement of x by �x; this is a string obtained by reversing x

and then complementing each character according to the rule
�A ¼ T; �C ¼ G; �G ¼ C; �T ¼ A. We define the canonical representa-

tion of a k-mer, x, by bx ¼ minðx; �xÞ, where the minimum is taken

according to the lexicographic ordering. In this manuscript, we

are fundamentally interested in indexing a collection of reference

sequences (be they pre-existing, or assembled de novo); we, there-

fore, adopt the following definitions with respect to the de Bruijn

graph and its variants. The de Bruijn graph is a graph, G ¼ ðV;EÞ,
built over the k-mers of some reference string, s. We define s(k) as

the set of k-mers present in s, and assume that s is of length at least k

(i.e. jsj � jkj). The vertex set of G is given by V ¼ fbxjx 2 sðkÞg.
There exists an edge fu; vg 2 E between two vertices u and v if and

only if there exists some ðkþ 1Þ-mer, z, in S such that u is a prefix of

z and v is a suffix of z. The colored de Bruijn graph associates each

v 2 V with some specific set of colors. When building the de Bruijn

graph over a collection of reference strings s1; . . . ; sM, we define the

color set for a vertex to be the set of references in which it appears

(i.e. colorsðvÞ ¼ fijv 2 siðkÞ _ �v 2 siðkÞg). Finally, we define the

compacted colored de Bruijn graph to be the color-coherent compac-

tion of a colored de Bruijn graph. A compacted de Bruijn graph

replaces each non-branching path, p ¼ u v, in G with a single edge

(which no longer represents a single k-mer, but instead represents

the entire string that would be spelled out by walking from u to v in

an orientation consistent manner). We say that such a compaction is

color-coherent if and only if all vertices u 2 p share the same color

set. The compacted colored de Bruijn graph is the graph obtained by

performing a maximal color-coherent compaction of the colored de

Bruijn graph.

3 Methods

We present pufferfish, a software tool implementing a novel index-

ing data structure for the compacted de Bruijn graph and the colored

compacted de Bruijn graph. We focus on making the compacted de

Bruijn graph index practical in terms of disk and memory resources

for genomic and metagenomic data while maintaining very fast

query speeds over the index. While, we are conscious of memory

usage, we do not aim to build the smallest possible index.

Furthermore, we introduce two different variants of our index, the

dense and sparse pufferfish indices. Similar to the FM-index

(Ferragina and Manzini, 2001), in the sparse pufferfish index, there

is a sampling factor that can be tuned to trade off search speed for

index size. The dense index is, in a sense, just a variant of the sparse

index tuned for maximum speed (and, hence, taking maximum

space). However, as we believe the dense index will be a popular

choice, we implement a few optimizations and describe the struc-

tures separately.
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3.1 Pre-processing
We assume as input to pufferfish the compacted de Bruijn graph on

the reference or set of references to be indexed. The pufferfish soft-

ware itself accepts as input a graphical fragment assembly (GFA)

format (https://github.com/GFA-spec/GFA-spec) file that describes

the compacted de Bruijn graph. Specifically, this file encodes the uni-

paths (i.e. non-branching paths) of the compacted de Bruijn graph

as ‘segments’ and the mapping between these unipaths and the ori-

ginal reference sequences as ‘paths’. Each path corresponds to an in-

put reference sequence (e.g. a genome), and is spelled out by an

ordered set of unipath IDs and the orientation with which these uni-

paths map to the reference, so that each unipath has an overlap of

k � 1 with its following unipath in the path (either in the forward-

or reverse-complement direction).

GFA is an evolving standard that is meant to be a common for-

mat used by tools dealing with graphical representations of genomes

or collections of genomes. We note that there are a number of soft-

ware tools for building the compacted de Bruijn graph directly (i.e.

without first building the un-compacted de Bruijn graph). We adopt

TwoPaCo (Minkin et al., 2016), which employs a time and

memory-efficient parallel algorithm for directly constructing the

compacted de Bruijn graph, and whose output can be easily con-

verted into GFA format. We note that, due to a technical detail con-

cerning how TwoPaCo constructs the compacted de Bruijn graph

and the GFA file, the output cannot be directly used by pufferfish.

Therefore, the current workflow of pufferfish includes a GFA-to-

GFA converter that prepares the TwoPaCo -generated GFA file for

indexing by pufferfish (detailed in Supplement Section S1). We note

that TwoPaCo (and therefore pufferfish) consider the edge-explicit

de Bruijn graph. That is, two k-mers will be connected if and only

if the input reference contains a ðkþ 1Þ-mer having one of these

k-mers as its left k-mer and the other as its right k-mer. Conversely,

other tools, like BCALM2 (Chikhi et al., 2016) and kallisto consider

the induced-edge de Bruijn graph, where there will be an edge be-

tween any pair of k-mers overlapping by k � 1 nucleotides, regard-

less of whether or not a ðkþ 1Þ-mer containing them exists in the

input. This leads to small but persistent differences in the topology

of these graphs, as is further detailed in Supplementary Table S1.

3.2 The dense pufferfish index
The index consists of 6 components (and an optional seventh com-

ponent), and the overall structure is similar to what is explained by

Liu et al. (2016). Herein, we provide a detailed description of the

components of the dense pufferfish index:

useq: The unipath sequence (useq) array consists of the (2-bit

encoded) sequence of all unipaths of the compacted de Bruijn

graph packed together into a single array. Typically, the size of

this structure is close to (or smaller than) the size of the 2-bit

encoded reference sequence, since redundant sequences are repre-

sented only once in this structure. We note that the unipath array

contains the sequence of every valid k-mer, as well as that of po-

tentially invalid k-mers (those which span unipath boundaries in

the packed array, as the sequences in the array follow each other

without any delimiters or gaps.). We denote by Ls the total length

(in nucleotides) of the unipath array.

bv: The boundary vector (bv) is a bit-vector of length Ls. The bits of

this vector are in one-to-one correspondence with the nucleotides

of the unipath array, and the bv contains a one at each nucleotide

corresponding to the end of a unipath in useq, and a zero every-

where else. We can retrieve the index of each unipath in useq

using the rank operation on bv. rank ðbv; iÞ returns the number

of 1s in bv before the current index, i, or, in other words, the

index of the current unipath. This can be used to get reference in-

formation for the current unipath from unipath table (utab),

which is explained below. We note that bv is typically very

sparse, and so can likely be compressed [using e.g. RRR (Raman

et al., 2002) or Elias-Fano encoding], though we have not

explored this yet.

h: The minimum perfect hash function (h) maps every valid k-mer in

the unipath array (i.e. all k-mers not spanning unipath bounda-

ries) to a unique number in ½0;NÞ, where N is the number of dis-

tinct valid k-mers in useq. We make use of the highly-scalable

minimum perfect hash function (MPHF) construction algorithm

of Limasset et al. (2017). We also note that we build the MPHF

on the canonicalized version of each k-mer.

pos: The position (pos) vector stores, for each valid k-mer x, the

position where this k-mer occurs in useq. Specifically, for k-mer

x, let �x be the reverse complement of x and let bx be the canonical

form of x (the lexicographically smaller of x and �x). Then pos ½hðbxÞ�
contains the starting position of x in useq such that

useq ½hðbxÞ : hðbxÞ þ k� ¼ x.

utab: The utab stores, for each unipath appearing in useq, the

reference sequences [including reference ID (ref), offset (p) and

orientation (o) in Fig. 1] where this unipath appears in the refer-

ence. This is similar to a ‘posting list’ in traditional inverted indices,

where all occurrences of the item (in this case, an entire compacted

de Bruijn graph unipath) are listed. The order of the unipaths in

utab is the same as their order in useq, allowing the information

for a unipath to be accessed via a simple rank operation on bv.

etab: The edge table (etab) stores, for each unipath appearing

in useq, the nucleotides that encode the edges to the left and right

of this unipath. The etab maintains a byte for each unipath, where

each byte encodes which of the left and right extensions of this

unipath produce a valid k-mer in the de Bruijn graph. Specifically,

the first four bits of the byte are set to 1 if there is a left neighbor

that can be reached by taking the leftmost ðk� 1Þ-mer of the cur-

rent unipath and pre-pending A, C, G and T, respectively, and

these bits are 0 otherwise. The last 4 bits of the byte likewise en-

code the connectivity for the right end of the unipath. This etab is

useful for speeding up navigation in the graph, because we find

that the compacted de Bruijn graph is often sparse, so that query-

ing for all potential neighbors of a unipath can be wasteful, since

many unipaths have few neighbors.

eqtab: Optionally, an equivalence class table that records, for each

unipath, the set of reference sequences where this unipath

appears. Pre-computation and storage of these equivalence classes

can speed up certain algorithms [e.g. pseudoalignment (Bray

et al., 2016)].

These structures allow us to index every k-mer in the compacted

de Bruijn graph efficiently, and to recall, on demand, all of the refer-

ence loci where a given k-mer occurs. We note here that the k-mers of

the compacted de Bruijn graph constitute only a subset of the k-mers

in useq. We refer to all k-mers in useq that do not span the bound-

ary between two unipaths as valid k-mers; these are in one-to-one cor-

respondence with the k-mers of the compacted de Bruijn graph.

Additionally, we note that navigation among the unipaths in the

index could be accomplished without an explicit etab. Specifically,

upon reaching the end of a unipath, one could query the index with

all possible extensions to see which are supported by the indexed se-

quence, and potentially spurious overlaps (i.e. unipaths which over-

lap by k � 1 nucleotides but are not actually adjacent in any

reference sequence) can be filtered out by traversing the relevant
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entries of utab. However, this process is not efficient, and is par-

ticularly wasteful if the average degree of each unipath is small since,

in this case, most queries for neighbors would fail or return spurious

overlaps which would then be filtered out. An empirical analysis of

the compacted colored de Bruijn graph of the datasets we analyze

suggested that these graphs do, in fact, tend to have a skewed degree

distribution and that most unipaths exhibit a small degree

(Supplementary Fig. S1). This motivates the utility of etab, espe-

cially given that it takes relatively small space.

3.2.1 k-mer query in the dense pufferfish index
By using a MPHF, h, to index the valid k-mers, we avoid the

typically large memory burden associated with standard hashing

approaches. Instead, the identity of the hashed keys is encoded im-

plicitly in useq. Given a k-mer x, we can check for its existence and

location in the following way. We first compute i ¼ hðbxÞ, the index

assigned to the canonicalized version of k-mer x by h. If i � N,

where N is the number of unique valid k-mers, then we immediately

know that x is not a valid k-mer. Otherwise, we retrieve the position

pi stored in pos½i�. Finally, we check if the encoded string

useq ½pi : pi þ k� is identical to x (or �x). If so, we have found the

unipath location of this k-mer. Otherwise, x is not a valid k-mer.

Herein, we use the notion S½i : j� to mean the substring of S from

index i (inclusive) to index j (exclusive) with length j� i� 1.

Given pi, we can retrieve the reference positions by computing

rpi
¼ rank ðbv ;piÞ, which provides an index into utab that is

associated with the appropriate unipath. This provides all of the

reference sequences, offsets and orientations where this unipath

appears. We compute the offset of k-mer x in the unipath as

oi ¼ pi � select ðrpi
Þ, where select ðrpi

Þ returns the start pos-

ition of the unipath in utab. This allows us to easily project this

k-mer ’s position onto each reference sequence where it appears. We

note that querying a k-mer in the pufferfish index is an asymptotical-

ly constant-time operation, and that the reference loci for a k-mer x

can be retrieved in OðoccðxÞÞ time, where occðxÞ is the number of

occurrences of x in the reference.

3.3 The sparse pufferfish index
The pufferfish index, as described above, is relatively memory-

efficient. Yet, what is typically the biggest component, the pos vector,

can still grow rather large. This is because it requires dlgðjuseq jÞe
bits for each of the N valid k-mers in useq. However, at the cost of a

slight increase in the practical (though not asymptotic) complexity of

lookup, the size of this structure can be reduced considerably. To see

how, we first make the following observation:

Observation 1. In the compacted de Bruijn graph (and hence, in

useq), each valid k-mer occurs exactly once (k-mers occuring

between unipath boundaries are not considered). Hence, any valid

k-mer in the compacted de Bruijn graph is a complex k-mer (i.e. it

has an in or out degree >1), a terminal k-mer (i.e. it appears at the

beginning or end of some input reference sequence) or it has a

unique predecessor and/or successor in the orientation defined by

the unipath.

We can exploit this observation in pufferfish to allow sampling

of the k-mer positions. That is, rather than storing the position of

each k-mer in the unipath array, we store the position only for some

subset of k-mers, where the rate of sampling is given by a user-

defined parameter s. For those k-mers that are not sampled, we

store, instead, three pieces of information; the extension that must

be applied to move toward the closest k-mer at a sampled position

(the QueryExt vector), whether or not the corresponding k-mer in

useq is canonical (the isCanon vector), and whether the extension

to reach the nearest sampled position should be applied by moving

to the right or the left (the Direction vector). The QueryExt vec-

tor encodes the extensions in a 3-bit format so that variable-length

extensions can be encoded, though every entry in this vector is

reserved to take the same amount of space (3 times the maximum

extension length, e). The isCanon vector is set to 1 whenever the

Fig. 1. An illustration of searching for a particular k-mer, x, in the dense pufferfish index. The minimum perfect hash yields the index, p
hðbx Þ in the pos vector where

the k-mer appears in the unipath array. The k-mer is validated against the sequence recorded at this position in useq (and, in this case, it matches). A rank oper-

ation on p
hðbx Þ is performed in the bv, which yields the corresponding unipath-level information in the utab. If desired, the relative position of the k-mer within the

unipath can be retrieved with an extra select and rank operation. Likewise, the rank used to determine this unipath’s utab entry can also be used to look up the

edges adjacent to this unipath in the etab table if desired
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corresponding k-mer appears in useq in the canonical orientation,

and is set to 0 otherwise. The Direction vector is set to 1 when-

ever the corresponding, non-sampled, k-mer should be extended to

the right, and it is set to 0 when the corresponding k-mer should be

extended to the left. We additionally store an extra bit vector with

the same size as useq (the isSamp vector) that is set to 1 for any

k-mer whose position is sampled and 0 for all other k-mers.

This idea of sampling the positions for the k-mers is similar to

the idea of sampling the suffix array positions that is employed in

the FM-index (Ferragina and Manzini, 2001), and the idea of walk-

ing to the closest sampled position to verify a k-mer occurs is closely

related to the shallow forest covering idea described by Belazzougui

et al. (2016) for verifying membership of a k-mer in their fully-

dynamic variant of the de Bruijn graph. This scheme allows us to

trade off query time for index space, to allow the pufferfish index to

better scale to large genomes or collections of genomes.

3.3.1 k-mer query in the sparse pufferfish index
k-mer query in the sparse pufferfish index is the same as that in the

dense index, except for the first step—determining the position of

the k-mer x in useq. When we query the MPHF with x to obtain

i ¼ hðbxÞ, there are three possible results.

1. In the first case, if i � N, this implies, just as in the dense case,

that x is not a valid k-mer.

2. In the second case, if i < N and isSamp ½i� ¼ 1, this implies that

we have explicitly stored the position for this k-mer. In this case

we can retrieve that position as pi ¼ pos ½rank ðisSamp ; iÞ�
and proceed as in the dense case to validate x and retrieve its ref-

erence positions.

3. In the third case, if i < N and isSamp ½i� ¼ 0, this implies we do

not know the position where x would occur in useq, and we

must find the closest sampled position in order to decode the

position of x (if it does, in fact, occur in useq). This is accom-

plished by Supplementary Algorithm S1.

Intuitively, Supplementary Algorithm S1 appends nucleotides

stored in the QueryExt array to x to generate a new k-mer, x0,

which either has a sampled position, or is closer to a sampled pos-

ition than is x. The extension process is repeated with x0; x00, etc.

until either an invalid position is returned by h, or a sampled pos-

ition is reached. If an invalid position is returned at any point in the

traversal, the original k-mer cannot have been a valid query. On the

other hand, if a sampled position is reached, one still needs to verify

that the k-mer implied by the query procedure is identical to the ori-

ginal k-mer query x (or �x). To check this, one simply traverses back

to the position in useq for the original k-mer x that is implied

by the sampled position and sequence of extension operations. The

rest of the search proceeds as for the dense case. The whole process

of a (successful) k-mer query in sparse index is illustrated in

Supplementary Figure S2 through an example.

By altering the stored extension size e and the maximum sam-

pling rate s, one can limit the maximum number of extension steps

(and hence the maximum number of hash lookups) that must be per-

formed in order to retrieve the potential index of x in useq. A

denser sampling and longer extensions require fewer possible exten-

sion steps, while a sparser sampling and shorter extensions require

less space for each non-sampled position. If e � s�1
2 , one can guaran-

tee that at most a single extension step needs to be performed for

any k-mer query, which allows k-mer queries to remain practically

very fast while still reducing the index size for large reference

sequences.

Even though the sparse index maintains a number of extra bit

vectors not required by the dense index, it is usually considerably

smaller. Assume a case where the extension length e ¼ s�1
2 is ap-

proximately half of the sampling factor (the minimum length that

will guarantee each query requires at most a single extension step).

Since we keep the extension required to get to the closest position in

the left or right direction, we need to keep e bases for a k-mer, with

each base represented using 3 bits (since we need to allow encoding

extensions of length < e, for which the encoding must allow a de-

limiter). Hence, this requires 3e bits per k-mer for the QueryExt

vector. The isCanon and Direction vectors each require a

single bit per non-sampled k-mer, and the isSamp vector requires a

single bit for all N of the valid k-mers. Assume, for simplicity of

analysis, that the sampled k-mers are perfectly evenly-spaced

(which is not possible in practice since e.g. we must require to

sample at least one k-mer from each unipath), so that the

number of sampled k-mers is simply given by N
s ¼ N

2eþ1. Further,

since we are ignoring unipath boundary effects, assume that N¼Ls.

Since the space required by the rest of the index components

(e.g. the MPHF, utab, etc.) is the same for the dense and sparse

index, the sparse index will lead to a space savings whenever
N

2eþ1 dlgðNÞe þ N þ N � N
2eþ1

� �� �
ð3eþ 2Þ

h
� < NdlgðNÞe. Under

this analysis, in a typical dataset, such as the human genome with

lgðLsÞ � lgðNÞ � lgð3� 109Þ � 30 bits, and choosing s¼9 and e¼4,

so that we sample every ninth k-mer on average, and require at most

one extension per query, we save, on average, �14:5 bits per k-mer.

Of course, the practical savings are less because of the boundary effects

we ignored in the above analysis. In Supplementary Figure S3, the sizes

of different components for sparse indices are demonstrated both for

human transcriptome and human genome.

4 Indexing and lookup results

We explored the size of the index along with the memory and time

requirements for index building and k-mer querying (a fundamental

building block of many mapping and alignment algorithms) using

pufferfish and two other tools, BWA [BWA-maximal exact match

(ME)M (Li, 2013), specifically] and kallisto.

Though BWA is not a graph-based index, it was chosen as it

implements the highly memory-efficient FMD-index (Li, 2013),

which is representative of a memory-frugal approach. It is also

worth noting that, although we only test querying for fixed-length

k-mers here, BWA is capable of searching for arbitrary length

patterns—an operation not supported by the kallisto or pufferfish

indices. On the other hand, kallisto (Bray et al., 2016) adopts a

graph-based index, and provides very fast k-mer queries. Both BWA

and kallisto implement all phases of index construction (i.e. the in-

put to these tools is simply the FASTA files to be sequenced). For

pufferfish, however, we first need to build the compacted de Bruijn

graph. We build the compacted de Bruijn graph and dump it in GFA

format using TwoPaCo (Minkin et al., 2016). Then (as the output

does not satisfy our definition of a compacted de Bruijn graph) we

need to further prepare the GFA file for indexing. We call this pro-

cess pufferization. It converts the GFA file to the format accepted by

pufferfish (i.e. each k-mer should appear only once in either orienta-

tion among all the unipaths, and all unipaths connected in the com-

pacted de Bruijn graph should have an overlap of exactly k � 1

bases). Finally, we build both dense and sparse pufferfish indexes

and benchmark the time and memory for all steps of the pipeline in-

dividually. All experiments were performed on an Intel(R) Xeon(R)

CPU (E5-2699 v4 @2.20 GHz with 44 cores and 56MB L3 cache)
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with 512GB RAM and a 4TB TOSHIBA MG03ACA4 ATA HDD

running ubuntu 16.10, and were carried out using a single thread ex-

cept for compacted de Bruijn graph building step using TwoPaCo.

For all datasets, we consider k¼31, and the sparse pufferfish index

was constructed with s¼9 and e¼4.

4.1 References and query datasets
We performed benchmarking on three different reference datasets,

selected to demonstrate how the different indices scale as the under-

lying reference size and complexity increases. Specifically, we have

chosen a common human transcriptome (GENCODE version 25,

201 MB, having 79 334 030 distinct k-mers), a recent build of the

human genome (GRCh38, 2.9 GB, having 2 652 229 049 distinct

k-mers), and an ensemble of >8000 bacterial genomes and contigs

(18G, having 5 350 807 438 distinct k-mers) downloaded from

RefSeq (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/). The

human transcriptome represents a small reference sequence (which

nonetheless exhibits considerable complexity due to e.g. alternative

splicing), the human genome represents as a moderate (and very

common) size reference, and the collection of bacterial genomes acts

as a large reference set. For the k-mer query experiments, we search

for all the k-mers from an experimental sequencing dataset associ-

ated with each reference. To query the human transcriptome, we use

k-mers from SRA accession SRR1215997, with 10 683 470 reads,

each of length 100 bases. To query the human genome, we use

k-mers from SRA accession SRR5833294 with 34 129 891 reads,

each of length 76 bases. Finally, to query the bacterial genomes, we

use k-mers from SRA accession SRR5901135 (a sequencing run of

E. coli) with 2 314 288 reads of variable length.

4.2 Construction time
The construction time for various methods depends, as expected, on

the size and complexity of the references being indexed (Table 1).

No tool exhibits faster index construction than all others across all

datasets, and the difference in construction time between the fastest

and slowest tools for any given dataset is less than a factor of three.

All tools perform similarly for the human transcriptome. For index-

ing the human genome, BWA is the fastest, followed by pufferfish

and then kallisto. For constructing the index on all bacterial

genomes, kallisto finished most quickly, followed by BWA and then

pufferfish. The time (and memory) bottleneck of index construction

for pufferfish is generally TwoPaCo’s construction of the compacted

de Bruijn graph. This is particularly true for the bacterial genomes

dataset where TwoPaCo’s compacted de Bruijn graph construction

accounts for �85% of the total index construction time. This moti-

vates considering potential improvements to the TwoPaCo algo-

rithm for large collections of genomes (as well as considering other

tools which may be able to efficiently construct the required com-

pacted de Bruijn graph input for pufferfish).

4.3 Construction memory usage
Unlike construction time, the memory required by the different tools

for index construction follows a clear trend; BWA requires the least

memory for index construction, followed by pufferfish, and kallisto

requires the most memory. There are also larger differences in the

construction memory requirements than the construction time

requirements. For example, to construct an index on the human

genome, kallisto requires �34 times more memory than BWA (and

�5:5 times more memory than pufferfish). With respect to the cur-

rent pipeline used by pufferfish, we see that TwoPaCo is the memory

bottleneck for the human transcriptome and bacterial genomes data-

sets, while pufferize consumes the most memory for the human gen-

ome. For the bacterial genomes dataset in particular, TwoPaCo

consumes over three times as much memory as the next most inten-

sive step (pufferize) and �4:8 times as much memory as actually

indexing the input compacted de Bruijn graph. We note that

TwoPaCo implements a multi-pass algorithm, which can help con-

trol the peak memory requirements in exchange for performing

more passes (and therefore taking longer to finish). However, we

did not thoroughly explore different parameters for TwoPaCo’s

Bloom filter size (which indirectly affects the number of passes).

4.4 Query time and memory
To measure the query time required for k-mer lookup by the differ-

ent methods, we performed experiments in which k-mer queries

were issued from sequencing read sets related to each of the refer-

ence sequences (see the description of the query datasets above).

Specifically, for each method and each dataset, we measure the time

it takes to load the index into memory, stream through each valid

k-mer in each read (i.e. k-mers not containing non-ATCG charac-

ters), and record the total number of occurrences of all queried

k-mers in the corresponding reference index. By querying with ex-

perimental data, we mimic a realistic distribution of queries for both

present and absent k-mers in the index. Since we only perform

Table 1. Upper half of the table shows construction time and memory requirements for BWA, kallisto and pufferfish (dense and sparse) on

three different datasets

Tool Memory (MB) Time (h:m:s)

Human transcriptome Human genome Bacterial genomes Human transcriptome Human genome Bacterial genomes

BWA 292 4443 32 213 0:02:56 0:58:27 13:11:45

Kallisto 3552 150 657 315 387 0:03:05 3:27:42 9:07:35

Pufferfish dense 1466 27 438 75 342 0:04:13 2:09:25 13:10:00

Pufferfish sparse 1466 27 438 75 342 0:04:41 2:28:53 13:46:11

TwoPaCo 1466 9380 17 407 0:02:47 0:34:43 9:59:05

Pufferize 584 27 438 75 342 0:0:10 0:21:53 1:03:17

Pufferfish dense index 438 20 000 50 459 0:01:16 0:51:20 2:07:38

Pufferfish sparse index 331 17 745 50 457 0:01:44 1:10:48 2:43:49

In the lower half of the table, the construction statistics are provided for different phases of pufferfish pipeline. The time requirement for pufferfish is the sum

of different subparts of the workflow, where the memory requirement is the max of the same. All of the tools in this table with the exception of TwoPaCo have

single-threaded execution. We report here the timing results for running TwoPaCo with 16 threads. Timing results for TwoPaCo using a single thread are

provided in Supplementary Table 4.

i174 F.Almodaresi et al.

Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: &hx2009;
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
http://ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/
Deleted Text: ,
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: 3
Deleted Text: 3 
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty292#supplementary-data


k-mer queries here (and not read mapping or alignment), we con-

sider only the first end of paired-end read datasets. Comparing the

times recorded in Table 2, we can see that pufferfish (both the dense

and sparse variants) and kallisto generally tend to complete the

query task faster than BWA, except in the bacterial genomes dataset,

where BWA takes less time than kallisto (partly because of the time

required by kallisto to load its large index on this dataset). Again, this

can be attributed, at least in part, to the fact that both pufferfish and

kallisto are k-mer -based indices, while BWA provides a full-text

index. However, much of the speed of the hashing-based solutions

may also be attributed to the efficiency of hashing as a lookup scheme

and to the ability of the compacted de Bruijn graph to efficiently rep-

resent highly-repeated patterns. As expected, query in the sparse puf-

ferfish index is slower than in the dense index, though the sparse

index still remains practically fast in these benchmarks.

When examining the memory required for querying, we observe

a pattern similar to that which we saw with construction memory.

That is, BWA requires the least memory, followed by pufferfish, and

kallisto requires the most memory. Herein, however, the gap be-

tween BWA and pufferfish is reduced, as the final pufferfish index

typically consumes considerably less memory than is required during

construction (especially for the bacterial genomes dataset). In fact,

we see that the disk space and query memory requirements of puffer-

fish are very similar, as is the case with BWA. For kallisto, however,

the hash table consumes much more memory than does the serial-

ized index on disk. Obtaining these numbers required removing a re-

dundant call to memset from the kallisto index loading code.

Otherwise, on large sequences (e.g. the human genome and bacterial

genomes), kallisto required a large amount of time to load the index

into memory on our test systems. The difference in memory require-

ments is particularly striking for the large and diverse bacterial

genomes dataset.

5 Applying the pufferfish index to taxonomic
read assignment

In addition to benchmarking index construction and the primitive

lookup operations, we also decided to apply the pufferfish index to

a problem where we thought its characteristics might be useful. To

this end, we implemented a prototype system for taxonomic read

assignment based on pufferfish and a minor modification of the

Kraken algorithm, described in the seminal work of Wood and

Salzberg (2014).

Specifically, we consider a pufferfish index built over complete

bacterial and archaeal genomes (this is Kraken’s bacteria data-

base), and we implement a lightweight mapping algorithm where, for

each read, we seek a consistent (i.e. co-linear) chain of unique max-

imal exact matches [uni-MEMs (Liu et al., 2016)]. To determine to

which node in the taxonomy a read should be assigned, we adopt

Kraken’s basic algorithm with the following modification. Instead of

scoring each root-to-leaf path based on the number of k-mers shared

between the read and the taxa along the path, we consider the union

of all the intervals of the read that are covered by consistent chains of

uni-MEMs (i.e. number of nucleotides covered in the mapping). For

example, consider a read r that has uni-MEM matches with respect to

the genomes of two species s1 and s2, where the corresponding inter-

vals of the read covered by matches to s1 are ½i; j�; ½i0; j0� and with re-

spect to s2 are ½k; ‘�; ½k0; ‘0� such that the covered intervals on each

genome are consistent (i.e. co-linear and nearby in the reference).

In this case, we define the coverage score of the read with respect to

s1 to be Sðr; s1Þ ¼ jfi; . . . ; jg [ fi0; . . . ; j0gj, and likewise for Sðr; s2Þ.
Further, let g be the parent genus of s1 and s2. We define

Sðr; gÞ ¼ jfi; . . . ; jg [ fi0; . . . ; j0g [ fk; . . . ; ‘g [ fk0; . . . ; ‘0gj. This pro-

cess is repeated up to the root of the tree such that the score for any

given node n is determined by the union of the covered intervals for

the subtree rooted at n. Using this definition for the score, we then

simply adopt Kraken’s algorithm of assigning the read to the node

with the highest-scoring root-to-leaf path (or assigning the read to the

lowest common ancestor (LCA) of all such nodes in the case of ties;

see Supplementary Fig. S4).

The main potential benefit of this approach over the k-mer

-based approach of Kraken is that this notion enforces positional

consistency among the substrings of the read and leaf taxa that are

used as evidence of a match. Additionally, this approach favors

greater coverage of the read instead of simply a larger shared k-mer

count—a notion that we believe is likely to be more indicative of a

good alignment when these measures disagree.

We implemented our prototype tool for taxonomic read assign-

ment and benchmarked it against both Kraken (Wood and Salzberg,

2014) and Clark (Ounit et al., 2015). We adopt a subset of the

benchmarks, and simulated data (LC1-8, HC1 and HC2) considered

by McIntyre et al. (2017). The metrics under which we evaluate the

tools are the Spearman correlation, mean absolute relative differ-

ence, and the F1 score. However, rather than considering these met-

rics at any specific taxonomic rank, which leads to the problem of

how to evaluate false positives that are assigned at a different rank,

we consider these metrics aggregated over the entire taxonomy. In

this full-taxonomy evaluation, we consider the maximally specific

predictions made by each method. Then, we recursively aggregate

the counts up the taxonomy to higher ranks (such that a parent node

receives the sum of the assigned reads of its children, plus any reads

Table 2. The time and memory required to load the index and query all k-mers in reads of the input FASTQ files for different datasets

Tool Memory (MB) Time (h:m:s)

Human transcriptome Human genome Bacterial genome Human transcriptome Human genome Bacterial genome

BWA 308 4439 27 535 0:17:35 0:50:31 0:14:05

Kallisto 3336 110 464 232 353 0:02:01 0:19:11 0:22:25

Pufferfish dense 454 17 684 41 532 0:02:46 0:10:37 0:06:03

Pufferfish sparse 341 12 533 30 565 0:08:34 0:22:11 0:08:26

Table 3. Disk space required for the index of each tool on different

datasets

Tool Human

transcriptome

Human

genome

Bacterial

genomes

BWA 347M 5.12G 31G

Kallisto 1.7G 58G 120G

Pufferfish dense 397M 16.7G 39G

Pufferfish sparse 278M 11.4G 27.2G
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that were assigned directly to this node). The same aggregation was

performed on the true counts (see Supplementary Fig. S5).

This metric provides a single statistical evaluation, over the en-

tire taxonomic tree, that prefers reads mapped (i) along the correct

root-to-leaf path and (ii) closer along this path to the true node of

origin compared to assignments that are either on the wrong path

entirely, or further from the true node of origin. In addition to this

comprehensive measure, we provide further collection of different

accuracy metrics on this data (broken down by specific taxonomic

ranks) in Supplementary Section S8.

We evaluate the output of these tools in both their unfiltered

modes (which assign any read with a single k-mer/uni-MEM match

between the query and reference) and using their default filtering

criteria (where some score or confidence threshold must be attained

before a read can be assigned to a taxon; explained further in

Supplementary Section S7). The results depicted in Figure 2 show

that pufferfish provides the best estimates under all metrics, fol-

lowed by Clark in unfiltered mode and by Kraken in filtered mode.

We also consider the time and memory required by these tools to

perform taxonomic read assignment on a real experimental dataset

consisting of �100M reads (Supplementary Table S3).

6 Conclusion and future work

In this paper, we proposed a new efficient data structure for index-

ing compacted colored de Bruijn graphs, and implement this data

structure in a tool called pufferfish. We showed how pufferfish can

achieve a balance between time and space resources. By building

upon a MPHF (Limasset et al., 2017), we provide practically fast

k-mer lookup, and by carefully organizing our data structure and

making use of succinct representations where applicable, we greatly

reduce the space compared to traditional hashing-based implemen-

tations. The main components of the data structures are a MPHF

built on k-mers, the concatenated unipath array from which the

k-mers are sampled, a bit vector that marks the boundary of unitigs

in the concatenated array, a vector containing the offset position for

the k-mers, and a utab enumerating the occurrences of each unipath

in the reference sequences.

Moreover, we presented two variants of the pufferfish data

structure; namely, a dense and a sparse variant. The first is opti-

mized for fast queries and the second provides the user with the abil-

ity to trade off space for speed in a fine-grained manner. In the

sparse index, we only keep offset positions for a subset of k-mers.

To query a k-mer whose position is not sampled, the sparse repre-

sentation is aided with a few auxiliary data structures of much

smaller size. Since the largest component of the index is the pos

vector, adopting this sparse representation significantly reduces

the required memory and disk space. Our analyses suggest that

pufferfish (dense) achieves similar speed to existing hash-based

approaches, while greatly reducing the memory and disk space

required for indexing, and that pufferfish (sparse) reduces the

required space even further, while still providing fast query capabil-

ities. We consider indexing and querying on both small (human

transcriptome) and large (>8000 bacterial genomes) reference data-

sets. Pufferfish strikes a desirable balance between speed and space

usage, and allows for fast search on large reference sequences, using

moderate memory resources.

Finally, we demonstrate the application of pufferfish to the prob-

lem of taxonomic read assignment. We show that, using essentially

the same algorithm as Kraken, pufferfish can enable faster and more

accurate taxonomic read assignment while using less memory. The

accuracy benefit mostly results from replacing the k-mer -centric

scoring of reads to taxa with a score based on the coverage of reads

by taxa under consistent chains of uni-MEMs. This scoring scheme

enforces positional consistency, and is enabled by the pufferfish

index. It more closely approximates a natural intuition of what it

means for a read to match a taxon well, but can still be computed

very efficiently.

Having built an index for a reference genome, transcriptome, or

metagenome using pufferfish, the immediate future work consists of

implementing more relevant applications based on this index. Many

of these applications fall into the categories of problems that need

mapping or alignment as their initial step. In our prototype

(a) (b) (c)

(d) (e) (f)

Fig. 2. Full taxonomy classification evaluation for three tools of Kraken, Clark and Pufferfish. (a–c) We compare the F-1, spearman correlation and mean absolute

relative difference metrics for the results of the three tools over the 10 simulated read datasets of LC1-8 and HC1, 2 without using any filtering options. In the plots

in the second row, we evaluate accuracy of reports after running each tool with their default filtering option (which filters out any mapping with <20% k-mer

coverage for Kraken, 44 nucleotide coverage for Pufferfish and without a ‘high-confidence’ for Clark.)
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taxonomic read assignment system, we have already implemented a

basic mapping procedure, and this could easily be extended into a

selective-alignment-style algorithm (Sarkar et al., 2017) to provide

true edit distances or edit scripts. An aligner based around the puf-

ferfish index could be used to quickly align against collections of

transcripts and genomes, and this could be useful in downstream

tasks, such as contaminant detection, metagenomic abundance esti-

mation (related to but distinct from taxonomic read assignment),

etc. Finally, we believe that having a single graph against which we

can align reads that is capable of representing many sequences sim-

ultaneously will admit an efficient approach for the joint alignment

of RNA-seq reads to both the genome and the transcriptome. We

can construct a de Bruijn graph that contains both the reference gen-

ome as well as the annotated transcript sequences. Reads which are

then well-explained by annotated transcripts can be aligned effi-

ciently and accurately, while the genomic sequence can simultan-

eously be searched for evidence of new splice junctions; potentially

improving both the efficiency and accuracy of existing RNA-seq

alignment methods. We expect the memory efficiency of pufferfish

will be beneficial in working with larger collections of genomic,

transcriptomic and metagenomic datasets.
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