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Abstract

Motivation: Virus phylogeographers rely on DNA sequences of viruses and the locations of the

infected hosts found in public sequence databases like GenBank for modeling virus spread.

However, the locations in GenBank records are often only at the country or state level, and may re-

quire phylogeographers to scan the journal articles associated with the records to identify more

localized geographic areas. To automate this process, we present a named entity recognizer (NER)

for detecting locations in biomedical literature. We built the NER using a deep feedforward neural

network to determine whether a given token is a toponym or not. To overcome the limited human

annotated data available for training, we use distant supervision techniques to generate additional

samples to train our NER.

Results: Our NER achieves an F1-score of 0.910 and significantly outperforms the previous state-

of-the-art system. Using the additional data generated through distant supervision further boosts

the performance of the NER achieving an F1-score of 0.927. The NER presented in this research

improves over previous systems significantly. Our experiments also demonstrate the NER’s cap-

ability to embed external features to further boost the system’s performance. We believe that the

same methodology can be applied for recognizing similar biomedical entities in scientific

literature.

Contact: Matthew.Scotch@asu.edu

1 Introduction

The steady increase in global travel over the past decades has led to

a great concern for public health officials, and recent events like

Zika and Ebola outbreaks make it even more important to track the

origin and spread of infectious diseases, both geographically and

over time. In order to model the spread of the virus, phylogeogra-

phers utilize DNA sequences of the virus as well as additional meta-

data describing the virus and the infected host. The National Center

for Biotechnology Information (NCBI) maintains GenBankVR , one of

the largest open access and publicly available databases of biological

information that includes viral nucleotide sequences (https://www.

ncbi.nlm.nih.gov/genbank/ Accessed: 20 March 2018). The database

is organized by records, and each record’s metadata contains

information such as organism, strain, host, gene, date and location

of collection and when available, a link to the PubMed CentralV
R

art-

icle describing the research that produced the virus sequence

(https://www.ncbi.nlm.nih.gov/pubmed/ Accessed: 20 March 2018).

While the record metadata usually contains country name, a more

precise geolocation of the infected host is often unavailable, making

it unsuitable for localized phylogeography studies. Previous analyses

have shown that the percentage of GenBank records that have insuf-

ficient location information range from 64% to 80% (Scotch et al.,

2011; Tahsin et al., 2014). In such cases, the articles associated with

the records have to be parsed to extract a more precise location of

the virus. Due to the exponential increase in GenBank data each

year (Lathe et al., 2008), it is not feasible to manually curate the lo-

cation metadata.

In this article, we present a named entity recognizer (NER) to de-

tect toponym mentions, i.e. names of places, in scientific articles

associated with GenBank records. While the ultimate goal of the

end-to-end pipeline is to find the precise location associated with a

given record, a goal which involves the disambiguation of the
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location (Paris in France versus Paris in Texas) and its association

with the event of interest i.e. virus collection and virus isolation, the

proposed work focuses solely on the toponym detection task. The

toponym detection task is defined as the automatic identification of

the boundaries of all toponyms mentions in selected articles. Like

many Natural Language Processing (NLP) tasks, detection of topo-

nyms is challenging due to the inherent ambiguity of the natural lan-

guage. For instance, words like ‘May’ which appear in ‘was

extracted in May, Russia’ needs to be tagged as toponym, but not in

‘found in May 2013’

Previous solutions for toponym detection have included diction-

ary lookups, rule based and machine learning (ML) based

approaches but they suffer from well known limitations, such as

coverage or scalability among others (Piskorski and Yangarber,

2013). Dictionary based approaches are unable to resolve correctly

the ambiguities between phrases in documents and entries in the

dictionary, resulting in many false positives. Rule based techniques

encode the contexts where toponyms appear to solve these ambigu-

ities. However, the rules, written manually, never describe all pos-

sible contexts, resulting in many false negatives (Tamames and de

Lorenzo, 2010; Weissenbacher et al., 2015). ML systems, classifiers

or sequence labelers, are able to learn the rules from annotated

examples. With better performances, they have been dominant over

rule-based approaches in recent times. ML systems rely on features

describing the examples to learn the rules. Features, which common-

ly include orthographic, lexical, syntactic and semantic information

about the phrase and its context, are typically manually selected and

encoded. Features are valuable in decision making in NLP systems,

but feature engineering can be challenging because it is never known

in advance if a feature or a combination of features contribute to

increased performance of the ML system (Tang et al., 2014).

Moreover, many basic features are often computed from other NLP

systems that are individually error-prone (e.g. part-of-speech taggers

or dependency parsers) and, as a consequence, can be susceptible to

adding noise when combined. Noisy features make the inferences of

ML systems harder during their training and quickly degrade their

deductions at runtime (Goldman and Sloan, 1995; Zhu and Wu,

2004).

Our NER relies on classification with deep neural networks and

word embeddings. NERs based on deep learning (DL) have been

shown to be effective at selecting and computing the features

required for their tasks directly from vectors representing words. In

this representation, also known as word embedding, each word of a

predefined vocabulary is represented by, or embedded in, a vector of

n floating point numbers. n is often called the dimensionality of the

word embeddings and it is the length of the word vector. n is fixed

for all words in the vocabulary. Each vector encodes the position of

the word it embeds in a high dimensional space. Word embeddings

are initialized randomly and trained on a large unlabeled corpus to

adjust the values based on the idea that words which are used in

similar contexts must have vectors with similar values. Hence, in a

pre-trained word embedding, the vectors for words in the vocabu-

lary are clustered such that words with similar meaning lie close to

each other in the n dimensional space (Kusner et al., 2015; Li et al.,

2015a).

Word embeddings have been shown to capture morphological,

lexical, syntactical and shallow semantic properties of phrases in

their raw representation of the vectors (Mikolov et al., 2013;

Pennington et al., 2014). The use of word embedding removes the

need to encode manually basic features into the architecture and

limits the errors caused by noisy features during their inference.

Leveraging this knowledge representation has shown to improve

performance in a multitude of NLP tasks that rely on semantics (dos

Santos and Guimar~aes, 2015). Many advanced neural network

architectures like convolutional neural networks (Xu et al., 2016),

recurrent neural networks (RNNs; Socher et al., 2013) and long

short term memory (LSTM; Lample et al., 2016) systems have since

been explored to accomplish state-of-the-art performances in NLP

tasks. However, their optimal performances are limited by the avail-

ability of human annotated data for training. We propose a solution

to this problem by using distant supervision to generate additional

training instances for greater coverage.

Distant supervision is a form of weak supervision where the idea

is to leverage weakly structured data to obtain labeled data (Liu

et al., 2003; Mintz et al., 2009). As most ML systems have the po-

tential to improve their performance with more training data, dis-

tant supervision techniques have been used for multiple relation

extraction tasks where labeled data for training ML systems are lim-

ited or not available (Krause et al., 2012; Nguyen and Moschitti,

2011; Takamatsu et al., 2012). In NER tasks, labeled data are also

difficult or expensive to obtain (Purver and Battersby, 2012; Roth

et al., 2013). To overcome limited labeled data available for training

our NER, we employ distant supervision to generate additional posi-

tive and negative examples from publicly available articles on

PubMed Central that are linked to GenBank articles. We rely on dis-

tant supervision data within the domain as opposed to annotated

geographic mentions in other domains (Richman and Patrick, 2008)

for multiple reasons. Firstly, the differences in effective vocabulary

between the domains can be quite large (as shown later) and such

differences can affect the performance of the NER task. Secondly,

our method to generate the examples uses the geographic location of

the infected host i.e. the virus location in GenBank metadata.

Hence, we hypothesize that this method may prioritize the identifi-

cation of geographic locations that helps the eventual task for

resolving the geographic location of the infected host.

Sequence labelers such as Conditional Random Fields (CRF) and

most recently recurrent neural models such as RNNs (Li et al.,

2015b), LSTMs (Lample et al., 2016; Limsopatham and Collier,

2016) and Gated Recurrent Units (Yang et al., 2016), are popularly

used for NER due to their fundamental design to factor in previous

decisions into the current decision, a design well adapted to fit the

sequential nature of the natural language. However, in this work we

use a feedforward neural network (also known as multi-layer per-

ceptron) to make use of a very large volume of training data

obtained from distant supervision. A choice uncommon but not un-

precedented, deep neural networks have been previously used for

NER tasks (Godin et al., 2015) including works in the biomedical

domain (Wu et al., 2015). The distant supervision method used in

this paper reveals only some of the toponyms contained in sentences

whereas the others remain unlabeled. This prevents the use of se-

quence labelers which require all toponyms to be labeled during the

training phase.

Previous work on the dataset evaluated in this paper such as

Weissenbacher et al. (2015) and Weissenbacher et al. (2017) have

used rule based and CRF based NER systems, respectively. The first

paper introduces the dataset and provides baseline performance

scores using a rule based classifier. The second improves over the

previous classifier using a CRF labeler that uses handcrafted lexical,

morphological and semantic features to improve the performance.

The second paper suggests the use of distant supervision data for

improving the performance of the labeler through additional train-

ing and lists the steps involved in creating a distant supervision data-

set. It uses a naive bayes classifier to evaluate the quality of the

distant supervision examples and reports a poor performance when
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tested on the gold-standard annotations. The paper stops short of

evaluating the contribution of distant supervision examples in con-

junction with gold-standard annotations on the overall NER task

using the CRF labeler. In this work, we propose a new NER model

with significantly better performance, make improvements in gener-

ating the distant supervision examples and perform a comprehensive

evaluation of multiple NER systems.

The contributions of this paper are as follows: (i) We present a

NER system based on deep neural networks which performs signifi-

cantly better than previously developed ML systems that use hand-

crafted features. (ii) For a robust comparison, we run experiments

with other variants of classifiers and off-the-shelf NER systems and

compare the methods and results of previous NERs trained on this

dataset. (iii) We demonstrate the capability of our system to add

handcrafted features into the neural network. (iv) We show how

improved distant supervision techniques can be used to generate

more training examples and further boost the performances of our

NER. The rest of the document is structured as follows. Section 2

describes the deep neural network architecture of our NER, the

training procedure for the NER and the distant supervision tech-

nique to generate additional examples. The Results and Discussion

Sections details the NER task results as well as the error analysis

and the efficacy of distant supervision.

2 Materials and methods

In Figure 1, we show the architecture of our NER system. As illus-

trated in the figure, there are three different phases of operation for

the NER: distant supervision, supervision and testing. At the core of

each phase is a deep neural network that forms the NER. The first

two phases involve training the NER to detect toponyms and the

last phase, the testing phase, uses a trained system to detect topo-

nyms. We begin by describing the components and steps involved in

training our NER.

2.1 Input
The annotated data consists of scientific articles in which toponyms

have been tagged by either human annotators or using distant super-

vision. Training instances created from the annotated data are used

as input during the NER’s training phase. Each training instance

consists of an input word, the word’s context and a label indicating

if the word is in a phrase which is a toponym. The context of the

word is formed by the words in its neighborhood, i.e. a window of

words where the given word is at the center. The size of the window

is fixed. For instance, the sentence ‘AIV H9N2 was detected in

domestic ducks in Hong Kong until 1985’ contains 13 tokens

including the period, thereby forming 13 training instances. For the

word Hong, the words ‘ducks in Hong Kong until’ form its context

when the window size is 5. We use the context of a word because it

helps in determining if the word is or is not in a toponym phrase.

Words in the beginning and end of the document that lack neighbors

are padded with the required number of start words or end words.

2.1.1 Word embeddings

Each word is represented by its word embedding obtained from un-

supervised pre-training. A word embedding consists of a vector

formed by a set of real numbers that represents its position in a

multi-dimensional space. A word’s context is represented by the

concatenation of individual word embeddings of the words in the

window to form a long input vector. We use a randomly initialized

vector to represent all words not present in the vocabulary of the

pre-trained word embeddings used during our experiments.

2.1.2 Feature embeddings

In addition to the word’s context, features describing properties of

the word, its context or properties of the document that may help in

decision making can also be concatenated into the input vector. For

instance, features could include information about the section of the

article the word was taken from (i.e. abstract, introduction, body,

table), or information if the word was found in a database of city

names. A feature is represented by a one-hot vector, (e.g. for binary

features, the corresponding index of either ‘Yes’ or ’No’ is set to 1

and the other is set to 0). To demonstrate the capability of embed-

ding features, we implement two simple word based binary features:

the word’s presence in a publicly available toponym dictionary, for

our experiments we used GeoNames (http://www.geonames.org/

Accessed: 20 March 2018) and the presence of full uppercase letters

in the word. For example, for the phrase ‘isolated from pigs, turkey

and quail in Canada’ in Figure 2, the feature to detect if ‘turkey’ is

an abbreviation will check if all letters of the word are uppercase

and since it is not, the index for ‘No’ is set to 1 and added to the in-

put vector. In the architecture proposed, embedding features are

Fig. 1. The NER architecture with distant supervision. The NER model is first trained on distant supervision data followed by human annotated data to obtain the

final model

Location mention extraction i567

Deleted Text: ,
Deleted Text: 1
Deleted Text: machine learning
Deleted Text: 2
Deleted Text: ,
Deleted Text: 3
Deleted Text: 4
Deleted Text: The Materials and Methods 
Deleted Text: ,
Deleted Text: ,
Deleted Text: &hx201C;
Deleted Text: <italic>.&hx201D;</italic> 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: E
Deleted Text: ,
Deleted Text: E
http://www.geonames.org/Accessed
http://www.geonames.org/Accessed
Deleted Text:  <sup>3</sup>,
Deleted Text: &hx201C;
Deleted Text: ,
Deleted Text: &hx201D; 


optional but we introduce them to demonstrate the NER’s capability

of using them.

2.2 Training
The NER model consists of weight matrices, where the weights

are real numbers initialized randomly and optimized during the

training procedure. The training phase of the NER involves a series

of matrix multiplication operations between the input matrix and

the NER model’s weight matrices in the hidden and output layers of

the model. The output of each training phase includes the collection

of matrices that form the NER model’s weights that have been

optimized during training and ready to be used in the NER system.

The model outputs from the training phase are used to initialize the

final NER system that processes articles and extracts toponyms

from the text.

The first two phases of the architecture in Figure 1 involve

training the NER that consists of two parts: forward estimation to

determine the probability of a word being in a toponym, and error

back-propagation to adjust the model weights and embeddings to

reduce error in future predictions. The testing phase involves only

the forward estimation part. A representation of the training phase

in a neural network with two hidden layers based on a window size

of 5 is shown in Figure 2.

2.2.1 Forward-estimation

The text from the input PubMed articles are tokenized into words

and punctuations which form an input stream of training data proc-

essed as windows of words. The input vector is constructed as

described earlier. From the training data, the tokens occurring in a

phrase labeled as toponym, i.e. inToponym(I), are encoded to the

value of 1 while others tokens, outToponym(O), are encoded to 0.

Hence, for the previous example the encodings will be ‘AIV¼0

H9N2¼0 was¼0 detected¼0 in¼0 domestic¼0 ducks¼0 in¼0

Hong¼1 Kong¼1 until¼0 1985¼0.¼0’.

The overall transformations for the two layer feedforward neural

network are shown following equations:

h1ðxiÞ ¼ ReLUðW1xi þ b1Þ (1)

h2ðxiÞ ¼ ReLUðW2h1ðxiÞ þ b2Þ (2)

y ¼ pðxiÞ ¼ softmaxðUh2ðxiÞ þ b3Þ (3)

Here, W1 2 Rd�w�n; W2 2 Rd�d, and U 2 R1�d represents the

first, second and output layer weights, respectively, where d is the

number of dimensions of the hidden layer. xi 2 Rw�n�1 represents

the input layer vector, where w is the number of words in the win-

dow and n is the number of dimensions in the word embeddings.

b1 2 Rd�1; b2 2 Rd�1 and b3 2 R1�1 represents the bias terms of

the first, second and final layer. After evaluating available activation

functions such as tanh and sigmoid, rectified linear units

(ReLU) were found to be most efficient. We use a dropout function

at layer 2 with a probability of 0.5 to prevent the model to overfit

the data, leading to poor generalization. More hidden layers (depth)

can be added to the architecture by repeating Equation (2). At

the output layer, a softmax function is used to decide the label of

the word.

2.2.2 Error back-propagation

During the training phase, we computed the error for each predic-

tion using the cross entropy function. This loss function computes a

score reflecting the scale of the difference between the expected out-

put value y and the probability estimated by our system for the

encoded label values 0 (for O) or 1 (for I). To minimize the loss, the

system uses stochastic gradient descent (Bottou, 1991) to determine

the values for U, b3, W2, b2, W1, b1 that maximizes the likelihood of

the predictions. We do not update or fine-tune the pre-trained word

embeddings during training as they did not show a significant in-

crease in performance. For purposes of brevity, the objective func-

tion and derivations of the equations are left out of the paper, but

they can be inferred from previous works (Collobert et al., 2011;

LeCun et al., 1998, 2012).

In addition to the word embeddings, handcrafted feature embed-

dings can be concatenated to the input layer along with the word

embeddings and be trained. Post-training, the matrices of the hidden

layers (i.e. U, b3, W2, b2, W1 and b1) form the model of the NER

system. The NER system can now be used to identify toponyms in

unseen articles by following the first six steps shown in Figure 2.

Fig. 2. The training procedure of the NER’s neural network with two hidden layers
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2.3 Corpus
To evaluate the performance of the system, we trained the system on

annotated data obtained from two different sources, manual annota-

tion and automatic generation with distant supervision, Ddist.

2.3.1 Distant supervision

The performance of deep neural networks have shown to improve

with increase in training size even when the training data may con-

tain a small amount of noise (Amodei et al., 2016; Chilimbi et al.,

2014). Distant supervision uses heuristic rules to generate both posi-

tive and negative training examples. Positive examples for NER

tasks refers to word windows where the center word is in a toponym

(e.g. ‘several regions of Spain, and infection’) and negative examples

are ones where the center word is not in a toponym (e.g. ‘samples

collected in December 2009 and January’). Distant supervision was

used to generate 8 million training examples that could be used to

train the NER in addition to the 260 000 instances from manually

annotated data. We estimated the quality of the distant supervision

examples generated by manually analyzing a random sample of 200

positive and 200 negative examples to find 19 false positives and 6

false negatives. The false positives were dominated by tokens that

were part of an organization, institution or strain. Due to the spars-

ity of toponym mentions in large documents, we restricted the ratio

of positive/negative examples to its ratio observed in the training set.

2.3.2 Generating positive examples

The following steps were used to generate positive examples: (i)

Find GenBank records for which a location in the location field of

the metadata and a link to the full text article are both available. (ii)

Annotate as toponyms in the article all phrases which match the

locations in the metadata of the records. (iii) Include the annotated

locations’ word windows as positive examples for training. A man-

ual inspection of positive examples generated revealed that the posi-

tive examples included many false positives which we needed to

eliminate. (iv) Analyze the false positives and manually create a list

of words called blacklistPOS that contains frequent words that

are collocated with the false positives. For instance, blacklistPOS

will contain words that indicate organization entities such as

University, Department, or Center and words that refer to organism

entities such as virus, isolate and strain. (v) Check for presence of

blacklistPOS words in positive examples from step 3 and move them

to negative examples because they are crucial in eliminating similar

false positives during NER training.

2.3.3 Generating negative examples

Negative examples were generated using similar steps as docu-

mented previously in Weissenbacher et al. (2017). We summarize

them: (i) Manually compile a list of words called whitelistNEG that

contain words collocated with toponyms in the word windows by

analyzing word windows from human annotated training data. The

whitelistNEG will contain words such as ‘isolated’, ‘locations’, ‘near’

or ‘from’. (ii) Process articles and select sentences that contain

phrases matching with toponyms in a dictionary based on case-

sensitive lookups. Sentences such as ‘Gene UL111A encodes

viral interleukin-10 (Lockridge et al., 2000)’ are selected where

Lockridge is a phrase matching a toponym in our dictionary,

GeoNames. (iii) Create negative examples by generating word win-

dows from the sentences where no words from whitelistNEG appear

in the examples.

2.3.4 Human annotated data

The second type of annotated data that the NER was trained on was

a publicly available annotated corpus of articles from PubMed

Central (Weissenbacher et al., 2015). The dataset contains 60 articles

manually annotated with 1881 toponym mentions and an inter-

annotator agreement of 97%. While the dataset also list the topo-

nym’s GeoNameID, latitude and longitude information, we do not

use this information for the NER task proposed in this work. Among

the 1881 toponym mentions, 343 toponyms are composed of more

than 1 token and the average token length per toponym was found to

be 1.21. For purposes of comparison, the proposed system uses the

same 48 articles (containing 1596 toponym mentions) for training,

data Dtrain and 12 articles (containing 285 toponym mentions) for

testing data, Dtest, as used in those tasks (Weissenbacher et al., 2015,

2017). Of the 48 articles available for training, 5 articles (containing

159 toponym mentions) were initially separated as held-out data for

validation and tuning the hyperparameters of the model. Although

the BIO schemes of annotation is popular in multiple word named

entities (e.g. [. . .]in(O) Papua(B) New(I) Guinea(I) and(O)[. . .]), we

use the IO scheme because it reduces the NER task from choosing be-

tween three labels to a binary classification problem. In the annotated

corpus containing 1881 toponym instances, there was only one occur-

rence (0.0005%) where a toponym immediately followed a multi-

word toponym i.e. a B-I-B sequence.

2.4 Pre-trained word embeddings and model

hyperparameters
In our experiments, we used publicly available pre-trained word

embeddings from two different data sources: glove (Pennington

et al., 2014) uses text gathered by CommonCrawl (http://common

crawl.org/Accessed: 20 March 2018), and wiki-pm-pmc uses a col-

lection of abstracts and articles from PubMed and Wikipedia

(Pyysalo et al., 2013). We observed that dimensions of the word

embeddings and the effective vocabulary (i.e. the set of different

words found in the word embedding vocabulary) for the annotated

dataset vary greatly, 300 and 152 786 for glove, and 200 and

201 380 for wiki-pm-pmc. We also compose a baseline word embed-

ding with random numbers using the largest vocabulary and the

largest dimension among the embeddings that are updated during

the training.

The performance of the proposed NER model depends on the

tuning of hyperparameters of the deep neural network during the

training phase. We limit the architecture to use two hidden layers

because additional hidden layers did not improve the performance

significantly. We set the number of dimensions of both hidden layers

to 150 and learning rate was set to 0.001. For initializing the weight

matrices in the hidden layers, U, W1 and W2, random numbers from

a uniform distribution in the range (–r,þr) were used, where

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ðmþ nÞ2

p
and m and n are the dimensions of the said matrix.

The bias terms, b1, b2 and b3 are all initialized to zeros.

The deep neural network based NER was built using the

TensorFlow (https://www.tensorflow.org/Accessed: 20 March

2018) framework and trained on a Dell Precision T3610 worksta-

tion equipped with an Intel Xeon Processor E5-1620 v2 with 8 cores

and NVIDIA Titan Xp GPU for faster training time.

2.5 Comparison with other classifiers
For the purpose of comparison, we train additional models using the

random forest and support vector machine (SVM) (Vapnik, 2013)

classifiers which use the same concatenated input of word embed-

dings and custom features. For these models, we train on the entire
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training dataset under 10-fold cross-validation (by training instan-

ces) to pick the best model and evaluate them on Dtest. The random

forests classifier (Breiman, 2001) works by constructing multiple de-

cision trees on sub-samples of the training data that optimize the

decisions for the labels given the inputs (i.e. the concatenated word

embeddings and features). In the final model, the labels are chosen

by averaging predictions from the individual decision trees. In our

experiment with the random forest classifier we construct 10 indi-

vidual trees where the minimum number of samples i.e. leaves

required for a split is 1. The SVM classifier on the other hand is fun-

damentally very similar to the single layered feedforward neural net-

work, in that both classifiers try to find a linear separation between

the classes (I and O) in high dimensional vector space. However, the

key difference lies in the usage of kernel functions in the SVM classi-

fier to assist linear separations for non-linear classification prob-

lems. Feedforward neural networks typically do not employ kernel

functions although they could be added into the network. In our ex-

periment with the SVM classifier, we use the radial basis function as

the kernel function.

3 Results

We evaluate our NER on Dtest containing 12 manually annotated

articles. For our experiments, the NER model was trained for 50 epochs

with each of the three word embeddings described above and the one

with the highest accuracy on the validation set was selected. The results

for the models running under the three different configurations in add-

ition to the random forest and SVM classifiers are shown in Table 1.

For comparison with previous systems on this dataset, the strict

tokenwise scheme of evaluation (Tsai et al., 2006) was used, i.e. the

predictions of the system were evaluated only on words in toponyms

and words predicted as toponyms, words outside of toponyms and

correctly predicted with the value 0 (for O) were ignored. In stand-

ard NER tasks where an entity can span across tokens, tokenwise

evaluation may not be a suitable evaluation scheme because partially

extracted entities such as ‘Hong’ in ‘Hong Kong’ may not be suffi-

cient in disambiguating geographic locations. Hence, the phrasal

evaluation scores are used for measuring performance. In this evalu-

ation, a multi-token entity is counted as a true positive only when all

tokens in the entity exactly match the gold standard entity. We re-

port the phrasal evaluation scores on the best model in the following

sub-section for future comparisons.

We observe a significant improvement in performance when

using pre-trained word embeddings over randomly initialized word

embeddings. We also observe that there is an increase in the per-

formance of the deep (two layer) neural network over a simple (one

layer) feedforward network that demonstrates the need for non-

linear classification models for the task. The wiki-pm-pmc word

embeddings performs consistently better with its high coverage on

vocabulary despite having low dimensionality. The glove word

embeddings perform equally well under all models despite being

from a generic domain and having less coverage on the vocabulary

compared to wiki-pm-pmc. We believe that its high dimensionality

i.e. 300 as compared to wiki-pm-pmc’s 200 is the reason behind

such good performance. This motivates the creation of pre-trained

word embeddings of higher dimensionality from the same domain

for better performance. The basic handcrafted features implemented

in this model provided a combined boost of 0.46% on the best

model. The GeoNames lookup feature and capitalization feature in-

dividually provided 0.32% and 0.25% increase in F1-score, respect-

ively, to the 2-layer feedforward model.

Both Random Forest and SVM classifiers trained on similar fea-

tures on the wiki-pm-pmc word embeddings achieve F1-scores mar-

ginally lower than the single layer feedforward neural network. We

find that repeated experiments with various combinations of kernel

functions may be necessary to draw strong conclusions when com-

paring the performance of the SVM classifier and the single layer

feedforward model. While we only use binary features in this imple-

mentation for the sake of demonstration, advanced orthographic, se-

mantic features and domain-specific pragmatic features can be

encoded in vector format both at the word and context level as

described by Limsopatham and Collier (2016).

4 Discussion

4.1 Error analysis
To understand the nature of the errors, we analyze errors found in the

predictions in Dtest from the model built on the wiki-pm-pmc word

embeddings with features. In Table 2, we show examples of some of

these errors. In total, 255 out of 285 toponyms in the test data were

fully matched and there were 32 false positives and 30 false negatives.

A majority of the errors were associated with multi-token entities

where the entity was matched only partially. Such partial matches lead

to both false positives and false negatives in a strict phrasal evaluation.

Among the false positives and false negatives, 16 such errors were asso-

ciated with partial matches as shown in examples 1–4 in the table.

Among the remaining 16 false positives, 10 instances were names of

places that were used as part of names of organizations, group of coun-

tries, gene pools, or strains as shown by examples 5–7. Among the

false positives, three were toponyms that seemed to be wrongly or par-

tially annotated. For instance, example 8 in the table shows that ‘BJ’

and ‘Bei’ could have been annotated as geographic locations as both

refer to the location ‘Beijing’. The remaining three errors were associ-

ated with capitalized tokens confused as abbreviated toponyms. The

14 false negatives seemed to belong in two categories. The first class is

toponyms not recognized due to their presence in tables which do not

follow natural language syntaxes and semantics. Example 9 in the

table shows three out of eight such errors. The remaining six toponyms

belonged to the second class where they seemed to stay unrecognized

and untagged because their contexts were not present in annotated

training data. Examples 10 and 11 show such examples.

4.2 Improving supervised NER with distant supervision
The error analysis reveals the need to increase the number of train-

ing examples to present additional contexts to the NER for reducing

false negatives. For this reason, we trained our NER on examples

Table 1. Precision, Recall and F1 scores using strict tokenwise

evaluation for toponym detection where the NER was trained on

Dtrain and tested on Dtest

Configuration Word embedding P R F1

FFNN 1-layer No pre-training 0.97 0.65 0.779

Glove 0.89 0.87 0.883

Wiki-pm-pmc 0.92 0.82 0.878

FFNN 2-layers Glove 0.92 0.86 0.891

Wiki-pm-pmc 0.93 0.88 0.906

FFNN 2-layers þ features Glove 0.94 0.87 0.903

Wiki-pm-pmc 0.96 0.86 0.910

Random forest þ features Wiki-pm-pmc 0.82 0.91 0.862

SVM þ features Wiki-pm-pmc 0.83 0.92 0.875

Bold indicates highest scores in the performance measure.
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generated with distant supervision. The resulting model shown in

Figure 1 used both Ddist and Dtrain for training, and achieved the

best F1 score of 0.927, as indicated in Table 3. The 1.7 p.p. (percent-

age points) improvement over the NER trained only on manually

annotated examples Dtrain showed the results to be significantly dif-

ferent at 95% confidence level (v2 ¼ 4:45) when a McNemar’s test

(McNemar, 1947) was performed on the individual words. The

positive and negative examples from the distant supervision were

used to train the NER and subsequently reinforced with the human-

annotated training examples to achieve the best performance. The

training examples from Ddist provide extended coverage for the con-

texts appearing around the toponyms, thus shaping the weights for

the NER task. In comparison to the error analysis in the earlier sec-

tion, from the 285 toponyms in the test set, the number of true posi-

tives increased from 255 to 265, false positives decreased from 32 to

29 and false negatives decreased significantly from 30 to 20.

Overall, it was observed that errors associated with multi-token

entities were greatly reduced.

The training on distant supervision data improved the recall by

3%. Table 3 shows the performance comparison of the proposed

NER system with previous NERs developed on the same dataset: (i)

a rule based approach (Weissenbacher et al., 2015), and (ii) a CRF

based NER system (Weissenbacher et al., 2017) that used hand-

crafted features. For a robust comparison, we also train (iii) the

Stanford NER on the entire training set. While both classifiers 2

(CRF-All) and 3 (Stanford-NER) are based on the CRF classifier

that looks for the best sequence of tokens given the input features

for each word sequence, there are significant differences between the

number and type of features used in the models. The ‘CRF-All’

model applied previously on this dataset combines features such as

N-grams (up to 4), capitalization, POS-tags, dictionary lookups and

k-means clustered word vectors that total approximately 80 000 fea-

tures per token. However, the ‘Stanford-NER’ combines features

such as N-grams (upto 6), word shape features and a multitude of

sequence features that total approximately 230 000 features per

token. The sequence features implemented in ‘Stanford-NER’ alone

contributed to a 5 p.p. improvement out of the 7.2 p.p. total per-

formance increase over ‘CRF-All’. In comparison, the features used

in the feedforward models used in this work are merely around

1000 per token (i.e. 5 concatenated 200 dimensional word vectors

along with binary shape and knowledge features). The ‘CRF-All’

classifier uses similar word embeddings used in this work, hence we

speculate that the factors affecting the performance could be attrib-

uted to k-means clustered word vectors, the noisy or redundant fea-

tures, or a combination of both.

All NERs proposed in this paper (F1¼0.88 to 0.927) outper-

form the previous best system ‘CRF-All’ (F1¼0.80) and the

‘Stanford-NER’ (F1¼0.87). We confirm the findings of previously

proposed DL based NER architectures (Lample et al., 2016) that it

is possible to obtain state-of-the-art results without the use of hand-

crafted features. For future comparison as per standard NER tasks,

we find the phrasal classification scores for the best model with dis-

tant supervision to be P/R/F1 scores of 0.901, 0.929 and 0.915.

4.3 Generalizability
Although our research specifically looks at geographic location extrac-

tion, we find that the approach can be used for named entities across

other domains where the availability of human annotated data is very

limited. In contrast to human annotated data, the cost and manual ef-

fort involved in generating weakly supervised data is significantly

lower and the volume of data obtained is much higher. Although, this

Table 2. Examples of errors made by the NER trained on supervised annotated data

Error type No Category Examples

Partial match 1 Tagged prefix Probable person to person transmission of novel avian influenza A (H7N9) virus in Eastern

China, 2013.

2 Tagged suffix Surveillance was conducted in live poultry markets in Fujian, Guangdong, Guangxi,

Guiyang, Hunan and Yunnan Provinces.

3 Tagged suffix University of Ibadan, Oya State, Ibadan and Nigeria.

4 Unrecognized token The overwhelming majority (94.2%) of H9N2 influenza viruses were isolated in Asia, with >

65% coming from mainland and Hong Kong of China

False positive 5 Other entities Phylogenetic analyses show that it is a recombinant virus containing genome segments

derived from the Eurasia and North America gene pools.

6 Other entities Thus, current G1-like viruses in southern China might have originally been introduced from

Middle Eastern countries, or it is also likely that the virus spread the other way around,

similar to the transmission of FIG.

7 Other entities This work was supported by a Natural Sciences and Engineering Research Council of

Canada discovery grant.

8 Partial annotation Abbreviations: BJ and Bei, Beijing; Ck, chicken; Dk, duck.

False negative 9 Table entries Virus Group State of isolation Date of isolation A/chicken/Nigeria/1071-1/2007 EMA1/

EMA2-2: 6-R07 Plateau Jan 2 A/chicken/Nigeria/1071-3/2007 EMA2 Sokoto Jan 5.

10 Unrecognized toponym The characterization of the swH3N2 / pH1N1 reassortant vi- ruses from swine in the prov-

ince of Quebec indicates that reassortment of gene segments had occurred between the

North American swine H3N2.

11 Unrecognized toponym Centers for Disease Control and Prevention, Atlanta, Ga.

Note: Underlined tokens indicate entities recognized by the NER. Italicized tokens are human annotated gold standard entities.

Table 3. Tokenwise scores for performance comparison of NERs

Implementation P R F1

Knowledge-based 0.58 0.88 0.70

CRF-All 0.85 0.76 0.80

Stanford-NER 0.89 0.85 0.872

TrainDtrain
and TestDtest

0.96 0.86 0.910

Train DdistþDtrain
and TestDtest

0.97 0.89 0.927

Bold indicates highest scores in the performance measure.
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data comes at the cost of quality, we find that it is possible to boost

the performance of a NER using using such weakly supervised data.

Entities like geographic locations that have millions of entries in

a database like Geonames.org, can contain numerous words such as

The and of that are part of a smaller but a widely used English vo-

cabulary. These along with ambiguous proper nouns like Turkey

and May make it challenging for generating valid distant supervision

examples. In this work, we demonstrate that it is possible to effect-

ively improve the NER’s performance by adopting distant supervi-

sion, even for such challenging named entities. Other named entities

such as organisms, genes, drugs and diseases that contain compara-

tively fewer terms in common with the general domain English vo-

cabulary do not demand extensive disambiguation measures using

blacklistPOS and whitelistNEG. Hence, we believe that distant super-

vision can contribute to significant improvements in NER tasks for

recognizing such entities with minimal effort.

4.4 Limitations
In spite of the considerable performance improvement, there are a

few limitations to the NER and the distant supervision system pro-

posed. Although the number of errors are reduced in the system after

the adoption of a deep neural network for NER and additional train-

ing on distant supervision data, many errors remain when the NER is

tested on Dtest. Most of the errors were due to unrecognized tokens,

many of which were present in a table structure in the source litera-

ture. Text extraction from such scientific articles flattens out the table

entries into individual tokens that lack the typical syntactic structure

found in natural language. Since the majority of training instances

(including distant supervision instances) contain some syntactic struc-

ture in the context windows, recognizing entities in tables often result

in errors. Such errors are consistent with similar statistical models

where syntactic features are used for NER or text classification tasks.

While the NER itself can be treated like a black-box for use in

similar applications, we find that there can be some challenges in

adoption of distant supervision for improving the NER’s perform-

ance. Firstly, distant supervision requires some amount of domain ex-

pertise to recognize the named entities and contexts of interest. In our

experiments, we found that it is necessary to populate the blacklistPOS

and whitelistNEG based on training instances in the gold standard

annotations and the accompanying annotation guideline. Secondly,

the quality of the distant supervision examples and its contribution to

performance improvements may demand some manual modifications

the blacklistPOS and whitelistNEG depending on the type of named

entities. One good approach would be to iteratively train on Ddist and

test on Dtrain to recognize false positives and false negatives. And fi-

nally, training the NER on weakly supervised data increases the train-

ing time, especially if the model hyperparameters have to be tuned

during the process. However, once the NER is trained and tuned for

performance, it’s execution time remains constant.

5 Conclusion and future work

The location metadata in a GenBank record is crucial in virus phylo-

geography as it enables for estimates of migration. We attempt to

improve the geographic scope of this metadata by developing a NLP

pipeline that automatically scans the journal article associated with

the record in order to identify more localized toponyms. This study

presents a deep neural network based NER for toponym detection

in biological publications which outperforms the previous state-of-

the-art systems without the use of any handcrafted features. All pro-

posed models are evaluated across two publicly available pre-

trained word embeddings. The paper shows how distant supervision

can be used to generate more training data to boost the NER’s per-

formance. All models presented in this research achieved a high per-

formance, with the best tokenwise F1-score being 0.927 and a

phrasal F1-score of 0.915. The proposed deep neural network based

NER is general enough to be used reliably for detecting similar

named entities in biomedical texts such as host, organism, date of

collection or genes. The dataset containing 60 annotated PubMed

articles is available at (https://healthlanguageprocessing.org/soft

ware-and-downloads/Accessed: 20 March 2018). The source code

of the generic feedforward NER is made available on github (https://

github.com/amagge/ner-topo-ff Accessed: 20 March 2018).

As future work, we intend to employ appropriate heuristics

(Limaye et al., 2010; Shen et al., 2012) to deal with toponyms in the

table data, an important cause of errors. Similar to the idea pro-

posed in this work, we intend to run additional experiments where

we use our current best NER to label additional full-text articles and

use such annotations in combination with gold-standard annota-

tions on RNN models such as LSTMs to test if they contribute to

increased performance. Having demonstrated the capability to

embed handcrafted features, a bigger goal of this research is to be

able to leverage character-level embeddings to capture orthographic

features and embed domain specific pragmatic knowledge features

in addition to features from external knowledge databases. Using

such techniques will be necessary to further boost the performance

of the NER close to human performance (97%).
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