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Abstract

Motivation: Most gene prioritization methods model each disease or phenotype individually, but

this fails to capture patterns common to several diseases or phenotypes. To overcome this

limitation, we formulate the gene prioritization task as the factorization of a sparsely filled gene-

phenotype matrix, where the objective is to predict the unknown matrix entries. To deliver more ac-

curate gene-phenotype matrix completion, we extend classical Bayesian matrix factorization to

work with multiple side information sources. The availability of side information allows us to make

non-trivial predictions for genes for which no previous disease association is known.

Results: Our gene prioritization method can innovatively not only integrate data sources describing

genes, but also data sources describing Human Phenotype Ontology terms. Experimental results

on our benchmarks show that our proposed model can effectively improve accuracy over the well-

established gene prioritization method, Endeavour. In particular, our proposed method offers

promising results on diseases of the nervous system; diseases of the eye and adnexa; endocrine,

nutritional and metabolic diseases; and congenital malformations, deformations and chromosomal

abnormalities, when compared to Endeavour.

Availability and implementation: The Bayesian data fusion method is implemented as a Python/

Cþþpackage: https://github.com/jaak-s/macau. It is also available as a Julia package: https://github.

com/jaak-s/BayesianDataFusion.jl. All data and benchmarks generated or analyzed during this study

can be downloaded at https://owncloud.esat.kuleuven.be/index.php/s/UGb89WfkZwMYoTn.

Contact: pooya.zakeri@esat.kuleuven.be or yves.moreau@esat.kuleuven.be

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The boom in high-throughput genomics results in the acceleration of

the identification of candidate genes in genotype-phenotype associ-

ation studies. Often, thousands of candidate genes are identified that

are potentially related to a phenotype (In human genetics, there are

many definitions for phenotypes, depending on the different import-

ance given to genetic and environmental factors that determine

an organism’s physical appearance and behavior. In this study, we

use technically ‘disease phenotypes’ for HPO terms). This creates

the need for costly and time-consuming wet lab experiments to val-

idate those candidates. Gene prioritization addresses the need of

selecting the most biologically relevant genes, among a large list of

candidate genes, for further investigation. For example, hunting

disease-associated genes is a demanding process and plays a crucial

role in understanding the relationship between a disease phenotype

and genes. It has various applications ranging from functional gen-

omics to drug design studies in both pharmacogenomics and person-

alized medicine.

In the last decade, gene prioritization has received growing atten-

tion and has established its credibility in genetic research. Various

approaches have been proposed for gene prioritization, based on dif-

ferent genomic data sources and machine learning strategies (Aerts

et al., 2006; Britto et al., 2012; Chen et al., 2009; De Bie et al.,

2007; Deo et al., 2014; ElShal et al., 2016; Gefen et al., 2010; Hutz

et al., 2008; Jiang et al., 2016; Kale et al., 2015; Moreau and

Tranchevent, 2012; Tranchevent et al., 2016; Zakeri et al., 2015;
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Zitnik et al., 2015). Most of these strategies exploit the ‘guilt-by-as-

sociation’ principle. They assume that causative genes for a disease

are indeed the ones similar to those already known to be associated

with that disease. As a result, most strategies based on ‘guilt-by-as-

sociation’ need a set of seed genes to train a model. Then, they rank

a set of candidate disease genes for the biological process, phenotype

or disease under investigation using the learned models (Aerts et al.,

2006). However, these models have the drawback that they fail to

handle diseases for which very few genes are known or for which

disease-causing genes are yet to be extensively characterized.

Moreover, the typical approaches for hunting causal disease

genes often model each disease separately, which fails to detect pat-

terns in the data common to several diseases or phenotypes.

Therefore, instead of modeling each disease individually, we design

a gene prioritization model through a multi-task approach that ena-

bles us to capture the common patterns in the data. This leads us to

formulate the gene prioritization task as the factorization of an

incompletely filled gene-phenotype matrix where the objective is

to predict the unknown values. By way of illustration, human gen-

ome disease association databases, such as the Online Mendelian

Inheritance in Man (OMIM; Amberger et al., 2011), can be seen as

an incomplete, partially observed matrix where each row corre-

sponds to a gene and each column corresponds to a disease (Fig. 1).

Matrix factorization is a strategy to fill partially observed matri-

ces. Matrix factorization methods aim at approximating an N�M

matrix as the product of two thinner factor matrices: an N�D row

factor and an M�D column factor, where D denotes the dimension

of the latent variables and is smaller than the minimum of N and M.

Then the objective is to provide a good approximation for the

matrix with the ability to generalize by evaluating its performance

on unseen data. Probabilistic Matrix Factorization (PMF;

Salakhutdinov and Mnih, 2007) and Bayesian PMF (BPMF;

Salakhutdinov and Mnih, 2008) are among the most successful

approaches to handle matrix factorization for partially observed

data. However, because of the extreme sparsity of the OMIM ma-

trix (the sparsity of about 0.006%), these approaches fail to provide

an accurate matrix completion. To deliver more accurate gene-

disease matrix completion, we propose an extended BPMF that inte-

grates multiple side information sources, such as biological

annotation-based data sources and literature-based data sources

extracted from PubMed. In particular, our approach allows us to

rank a gene with no known disease association in the gene-disease

matrix, among a large list of genes suspected of causing a disease

under study. In our proposed model, we combine information about

genes and phenotypes at the same time, whereas most of earlier

approaches for gene prioritization are limited to only integrating

data sources about genes (Aerts et al., 2006; Britto et al., 2012;

Chen et al., 2009; De Bie et al., 2007; Deo et al., 2014; ElShal et al.,

2016; Gefen et al., 2010; Hutz et al., 2008; Jiang et al., 2016; Kale

et al., 2015; Tranchevent et al., 2016; Zakeri et al., 2015; Zitnik

et al., 2015) (Gene prioritization methods that only integrate data

sources about genes also implicitly use knowledge on diseases be-

cause some data sources like GO partially carries such information.

But most of gene prioritization methods do not integrate data sour-

ces about diseases systematically and directly).

Furthermore, we address the limitation of the user of the Area

Under the Curve (AUC) score in evaluating the performance of gene

prioritization methods. To emphasize early discovery, we use the

Boltzmann-Enhanced Discrimination of ROC (BEDROC) score

(Truchon and Bayly, 2007) to assess our gene prioritization model.

It is recognized as a proper and robust evaluation measure for early

discovery. Accordingly, the advantages of the BEDROC score in

early enrichment are discussed in more details later in the paper.

We develop a benchmark based on OMIM associations

(Amberger et al., 2011). Experimental results on our benchmarks

demonstrate that our proposed model can effectively improve accur-

acy over a state-of-the-art gene prioritization method. Our proposed

model succeeds in ranking highly most of the disease-causing genes

in a majority of diseases. For 36 diseases of our benchmark of 65

diseases, at least half of the known disease gene rank in the top 1%

of prioritized genes, out of about 15 000 human genes considered in

this study.

2 Approach

Standard approaches for gene prioritization often model each dis-

ease or each phenotype individually, but this fails to capture patterns

common to several diseases or phenotypes. This motivates us to for-

mulate the prediction of gene-disease associations using Human

Phenotype Ontology (HPO) terms as a factorization of an incom-

pletely filled gene-disease-matrix (or gene-phenotype-matrix) where

the objective is to predict unknown values. For example, we can

consider the disease-specific association databases such as OMIM

(Amberger et al., 2011) as an incomplete matrix. OMIM focuses on

Fig. 1. The graphical representation of our proposed model. The left panel illustrates the OMIM data base as a partially observed matrix where each row is a gene

and each column is a disease phenotype. The goal of our proposed model is to express the OMIM matrix as the product of two matrices GT and P. The right panel

shows a graphical representation of our proposed model for Bayesian matrix factorization with side information on both genes and phenotypes
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the relationship between human genotype and associated diseases

(In fact, diseases in OMIM can be defined by HPO terms, where

each disease is associated with several terms). It can be considered as

a partially observed matrix where each row is a gene and each col-

umn is a disease or phenotype (Fig. 1). We also randomly diffuse

five times more 0’s than the known disease-gene relations (1’s) into

the incomplete OMIM matrix [Since in the gene prioritization task

we only have positive data (1’s in the OMIM matrix) we randomly

select negative data (0’s in the OMIM matrix) from unlabled data to

train our model]. Then, OMIM matrix is defined in the following

way:

OMIMi;j ¼

1 if gene i associated with disease j

0 diffused zeros where no relationship

between gene i and disease j

missing value otherwise

8>>>>><
>>>>>:

Now, we also defined IOMIM as the set of OMIM matrix row and

column indices whose value has been observed. Matrix factorization

is an elegant strategy to fill partially observed matrices. Matrix fac-

torization methods aim is to stage, for example, OMIMN�M matrix

as the product of two matrices GN�D and PD�M, where D� min

M;Nð Þ denotes the dimension of latent variable. Then the goal is to

find a rough approximation for the OMIM matrix with the ability

to generalize by evaluating its performance on unseen data. This

leads to predicting the relationship between gene i and disease j as

the dot product of GT
i and Pj (Fig. 1), which is expressed

dOMIMi;j ¼ GT
i � Pj (1)

PMF (Salakhutdinov and Mnih, 2007) is among the most successful

approaches to handle matrix factorization for partially observed

data. The main notion behind the PMF is to find a factorization that

minimizes the mean square error on the observed data, and maintain

good performance on those observed data considered for the test set,

with the assumption of Gaussian noise in the data (for more details

see Supplementary Material).

3 Materials and methods

The generalization ability of PMF will decrease when the sparsity of

the matrix increases. To overcome this issue, BPMF (Salakhutdinov

and Mnih, 2008) suggests a fully Bayesian treatment of the PMF

approach by introducing common multi-variate Gaussian priors for

latent variables; one for rows (genes G) and one for columns (pheno-

types P). Then, BPMF places the Normal-Wishart priors over the

row and column hyperparameters: HG and HP. HG ¼ flG;KGg and

flP;KPg are defined as the row and column hyperparameters, where

lG and KG (lP and KP) are the mean and precision matrices of the

Gaussian prior for genes (phenotypes). The BPMF model is then

expressed as

P G; lG;KGjh0ð Þ ¼
Y
i¼1

N GijlG;K
�1
G

� �
NW lG;KGjh0ð Þ (2)

P P;lP;KPjh0ð Þ ¼
Y
i¼1

N PijlP;K
�1
P

� �
NW lP;KPjh0ð Þ; (3)

where N and NW denote the normal and Normal-Wishart distribu-

tions respectively, and h0 are the fixed hyperparameters of the

Normal-Wishart prior. Like PMF, BPMF also uses a linear model

with Gaussian observation noise.

P OMIMjG;P; aOMIMð Þ ¼
Y

i;jð Þ2IOMIM

N OMIMi;jjGT
i Pj; a

�1
OMIM

� �
; (4)

where aOMIM > 0 is the precision parameter. In BPMF, aOMIM is

assumed to be known.

3.1 Proposed model
It has been shown that, in general, BPMF outperforms PMF, par-

ticularly on sparse and imbalanced datasets (Salakhutdinov and

Mnih, 2008). However, BPMF also fails where the data matrix

under study is extremely sparse. For example, the sparsity of OMIM

benchmark used in this study is approximately 0.006%. To deliver

more accurate OMIM matrix completion, we extend BPMF by

incorporating extra information available about genes and pheno-

types; which is referred to as side information in this article. This

leads to having more accurate factorization, especially for genes that

have not yet been investigated or characterized. Moreover, our pro-

posed model lets us integrate the corresponding phenotype data,

whereas typical gene prioritization models often utilize only genom-

ic data sources as the main feature to achieve their goal.

Similarly to BPMF, we suggest that OMIM matrix has a

Gaussian noise model with precision aOMIM > 0, as expressed in

Equation (4). To incorporate the available heterogeneous text

mining-based and omics data (genes features xi 2 RFgene ) and corre-

sponding phenotype data (the phenotypes features zi 2 RFphen ), we

integrate a term bT
genexi (bT

phenzi) into Gaussian mean lG (lP). Then,

we can rewrite the Equations (3) and (4), used in BPMF, as

P Gjxi; lG;KGð Þ ¼ N GijlG þ bT
genexi;K

�1
G

� �
(5)

P Pjzj;lP;KP

� �
¼ N PjjlP þ bT

phenzj;K
�1
P

� �
; (6)

where bgene 2 RFgene�D and bphen 2 RFphen�D is the link matrix for the

gene (or phenotype) features and Fgene (Fphen) is the dimension of the

gene (or phenotype) features. Equations (5) and (6) offer the linear

model for latent vectors. Technically, our proposed model learns the

link matrices bgenes and bphen to predict latent variables Gi and Pj

from xi and zj, respectively. This leads to an effective and consistent

improvement. For example, for those genes with no observation in

the OMIM matrix, their distribution of their latent variables is fully

determined by Equation (5). In contrast, for those genes with many

observations in the OMIM matrix, their features have only a small

effect.

The idea of incorporating side information in the Bayesian-based

matrix factorization approaches was first addressed by Porteous and

colleagues (2010), and later by Rai and colleagues (2015) and Rao

and colleagues (2015). However, their approaches seem to be in-

tractable for our application because of the high-dimensional nature

of the genomic and phenotypic feature spaces. Moreover, (Rao et

al., 2015) proposed a more scalable method in dealing with side in-

formation. They incorporate side information via graph as a regular-

ization term into matrix factorization process. The graph encodes

pairwise relationship between rows (columns). (Rao et al., 2015)

used k-nearest neighbor (k-NN) to construct such a graph. Their

methods offered promising results on investigated benchmarks with

low-dimensional feature vectors (about 20). Accordingly, they em-

ploy a 10-NN approach using Euclidean distance metric to construct

graph information. However, their approach is not suitable for our

application because of the high dimensionality of our side informa-

tion. In fact, it is indeed well known that k-NN suffers from the

curse of dimensionality and its predictive performance can be
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severely reduced by the presence of noisy or irrelevant features,

which is a typical situation in biological data.

Indeed, Equations (5) and (6) are at the heart of all Bayesian-

based matrix factorization. As described in Salakhutdinov and Mnih

(2008), from these equations, it is straightforward to derive a block

Gibbs sampler for each latent vector Gi and Pi. This allows us to

generate multiple samples of Gi and Pi latent matrices, and then get

a better prediction out of it.

3.2 Sampling the link matrix
We can simply extend this block Gibbs sampler to include genomic

or phenotypic side information by placing a prior distribution on

bgene and bphen (Supplementary Material); for instance, Rai and col-

leagues (2015) puts a zero mean Gaussian on the link matrix. Then,

the Gibbs sampler iteratively samples each model variable from its

conditional distribution while keeping others fixed. For example,

the latent variable Gi (Pj) is sampled while keeping the latent vari-

able P (G), the link matrix bgene (bphen), the OMIM matrix, and the

gene features x (and in the case of phenotype z), fixed. In the similar

way, the bgene (bphen) is sampled using Gi (Pj) and x (z).

But, the typical methods to sample from multi-variate Gaussian

distribution quickly become expensive and demanding as the feature

dimension becomes large. In fact, the main issue of proposed

sampling-based Bayesian approaches for matrix factorization with

side information is that they first need to explicitly compute the co-

variance matrix of size (Fgene � Fgene) (Porteous et al., 2010; Rai et

al., 2015). This requires a computational cost of the order O F3
gene

� �
.

For example, even for the average dimension of 10 000 for genomic

data (Fgene), the size of the precision matrix is 108, which is compu-

tationally intensive. Moreover, they need to employ the Cholesky

decomposition to sample the link vector bgenei
. On the contrary, to

sample from our model we design a block sampler which scales well

with respect to the number of genes and phenotypes features.

To have a full Bayesian treatment for bgene (bphen), we also con-

sider a zero mean multi-variate normal as its prior. However, our

proposed prior on bgene (bphen) scales with the precision of latent

variables.

P bgenejKgene; kbgene

� �
¼ N vec bgene

� �
j0;K�1

G � kbgene
I

� ��1
� �

; (7)

where � denotes the Kronecker product, and vecðbgeneÞ denotes the

vectorization of bgene, and kbgene
� 0 is the diagonal element of the

precision matrix, and KG is the precision matrix of the latent vari-

able for genes, which has a key role in the development of an effi-

cient computational noise injection sampler discussed next.

In fact, this prior is natural as the scale of G is not predeter-

mined. Accordingly, we place a gamma distribution hyperprior

on kbgene
because the choice of kbgene

is problem dependent

(Supplementary Material). The same full Bayesian treatment is

developed for bphen. Then, as illustrated in Figure 1, our suggested

model jointly learns G, P, bgene; bphen; kbgene
and kbphen

through the

block Gibbs sampler.

The outline of Gibbs sampling procedure for our proposed

model is presented in the Supplementary Material. For the all varia-

bles except bgene and bphen, our proposed block Gibbs sampler uti-

lizes the straightforward strategy as used in BPMF. As demonstrated

in the Supplementary Material, while in BPMF the Gaussian priors

model the latent variables Gi (Pj), in our proposed work the

Gaussian priors model the residual Gi � bT
genexi (Pj � bT

phenzj), in-

stead; this being the key difference in comparison with BPMF.

Rather, to sample from our model, exclusively for bgene and bphen,

we design a noise injection sampler which uses the fact that strength

of its prior is dependent on the scale of the latent variables.

The main intuition behind our proposed noise injection sampler

is to first form a particular structured linear system whose solution

is equivalent to drawing a sample from conditional posterior of bgene

(bphen). Alternatively, a sample of bgene can be generated by solving

the following linear system.

XTXþ kbgene
I

� �bb ¼ XT U þ E1ð Þ þ
ffiffiffiffiffiffiffiffiffiffi
kbgene

q
E2; (8)

where X represents X ¼ x1; . . . ; xN½ � and U ¼ G1 � lG; . . . ;½
GN � lG�, and each row of matrices E1 2 RNgene�D and E2 2 RFgene�D

is sampled from N 0;K�1
G

� �
. When X is sparse, we can speed up the

process of solving this linear system by using an iterative method, such

as conjugate gradient (Supplementary Material).

Note that the sample of bphen can be generated by solving the lin-

ear system with exactly the same form.

3.3 Benchmark
We developed a benchmark based on OMIM associations

(Amberger et al., 2011). OMIM connects genes and diseases for

Mendelian inheritance schemes (Amberger et al., 2011). It provides

a list of disease-gene annotations based on experimental evidence.

We used the 2013 version of OMIM, which released 6733

experimental-based disease-gene associations. The annotation list is

one long combination of disease-gene entries that contains both con-

firmed and non-confirmed entries, as well as different mapping evi-

dence codes. Furthermore, many OMIM entries refer to the same

disease concept. We refine this list as we discussed by Elshal and col-

leagues (2016). To refine the OMIM experimental-based disease-

gene associations, we follow the same procedure as it was used in

Elshal and colleagues (2016) and Zakeri and colleagues (2015). This

leads to 314 disease entries that have at least three genes annotated.

This results in about 2600 disease-gene annotations reported in

OMIM 2013 (1’s in the incomplete OMIM Matrix), giving a spars-

ity of about 0.006% for the OMIM matrix (for more details about

the benchmark see Supplementary Material).

3.4 Genomic and phenotypic data sources
Many successful gene prioritization methods use multiple genomic

data sources to deliver more accurate rankings (Aerts et al., 2006;

Chen et al., 2009; De Bie et al., 2007; Hutz et al., 2008;

Tranchevent et al., 2016; Zakeri et al., 2015; Zitnik et al., 2015).

Finding an efficient technique for integrating heterogeneous

biological data sources has received growing attention. Indeed,

while a single data source might not be sufficiently effective, fusing

several complementary genomic data sources deliver more accurate

predictions.

In this study, we consider several genomic data sources including

annotation-based data sources, such as Interpret domains (Mitchell

et al., 2015), Gene Ontology (GO) (The Gene Ontology

Consortium, 2015) and Swiss Prot (SW; Braconi Quintaje and

Orchad, 2008) annotation, as well as literature-based data sources

extracted from PubMed (Gene Text), just as in (Aerts et al., 2006;

De Bie et al., 2007; ElShal et al., 2016; Tranchevent et al., 2016;

Zakeri et al., 2015). We also incorporate the literature-based pheno-

typic (Phen Text) information on each disease as it was prepared by

Elshal and colleagues (2016). To combine genomic data sources, we

use full (raw) integration strategy which is a fast and easy approach

to combine multiple data sources. To do that, we first normalize all

data matrices to have the same Forbenius norm. The architecture of
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our Bayesian data fusion model for gene prioritization is shown in

Figure 2.

3.5 Hunting disease-associated genes strategy
As shown in Figure 2, after incorporating information about the

genes and diseases as side information, we factorize the incomplete

OMIM matrix using our proposed Bayesian data fusion

(GeneHound). Then, we are able to complete the OMIM matrix

using the gene factor and the disease factor. Afterwards, we sort and

rank all genes in each phenotype column of OMIM matrix separate-

ly. Finally, we determine the rank of test genes in each column to as-

sess our model.

A separate issue is the effect of the number of latent dimensions

on the performance of our model. In fact, different latent dimensions

result in different predictions. Nevertheless, we have observed that

our model is robust to overfitting even with large latent dimensions.

We use 25 (GeneHound 25LatDims), 30 (GeneHound 30LatDims)

and 40 (GeneHound 40LatDims) latent dimensions as we observed

that they are adequate for accurate predictions. To deliver more ac-

curate prediction, our proposed Bayesian data fusion is developed

by fusing the prediction results of three models with different latent

variables (GeneHound GeoAgg). We design a final model by first

taking the geometric mean of gene ranks produced by each model,

and then sorting the results in decreasing order. From the perspec-

tive of biological data, we assume that the presence of at least one

good ranking suggests that the gene is plausibly relevant, even if the

other data sources do not agree. The idea is that a true association

can be seen through some data source, while being invisible in the

other data sources. In that sense, we expect that taking the minimum

rank is better than taking the arithmetic mean of the ranks.

However, the minimum rank focuses on a single source and does

not allow to discriminate clearly, among genes with several good

ranks. The geometric mean allows taking all rankings into account,

while providing a solution that is fairly similar to that of the min-

imum rank (Dwork et al., 2003).

4 Results

4.1 Assessment strategy
We, first, randomly diffuse five times disease-relations 0 (just for

training) into the incomplete OMIM matrix. These zeros relations

are only used for training the model. Then, among disease-gene

annotations in OMIM matrix (when gene i associated with disease

j), six random splits into 90% training and 10% test data are pre-

pared (OMIM1 benchmark). The test sets in average contains 138

diseases.

We also investigate the performance of our model on 65 diseases

that have at least 10 genes in the OMIM database. Then, the per-

formance of our models is assessed using 5-fold cross validation on

65 diseases-genes annotations (OMIM2 benchmark). The 65 dis-

eases that we tested in our study are listed in the Supplementary

Table S1.

4.1.1 Evaluation method

Receiver Operating Characteristic (ROC) curve is often used to

evaluate the performance of gene prioritization methods (Aerts et

al., 2006; Chen et al., 2009; De Bie et al., 2007; Moreau and

Tranchevent, 2012). A ROC curve for a specific disease is a plot of

the recall versus false-positive rates for all genes. In early discovery,

there is often the need to summarize the ROC curve into a single

number without losing its information. For this purpose, the area

under the ROC curve (AUC) has been widely used (Aerts et al.,

2006; Chen et al., 2009; De Bie et al., 2007; Moreau and

Tranchevent, 2012). It can be interpreted as the probability of a

disease-associated gene randomly selected being ranked earlier than

a not-disease-associated gene selected at random by a uniform

distribution.

As demonstrated by Truchon and Bayly (2007), we can show

that when the ratio of disease-associated genes (n) to total number

of disease-associated genes and unknown genes (N) (Ra ¼ n
N)

becomes too small, which is a typical situation in gene prioritization

tasks, AUC score equals to the area under the accumulation curve

(AUAC). If TP(x) represents the probability of a disease-associated

Fig. 2. Concept of gene prioirtization using matrix factorization. In the first step, a gene-disease asscociation database (OMIM in our case) is represented as a pari-

tally observeed matrix. In the second step, extra information available about genes and phenotypes are prepared to be incorporated into the matrix factorization

procedure. Both literature-based phenotypic (Phen Text) and literature-based genomic information are extracted from PubMed. A raw fusion approach is

employed to integrate multiple genomic data sources. In the third step, our Bayesian data fusion model jointly learns two thin matrices (Gene and Disease fac-

tors) and two link matrix (namely, bgene and bphen). In fact, this step illustrates the architecture of our matrix factorization approach model(GeneHound) for gene

prioritization. In the fourth step, we complete the OMIM matrix using the learned gene and disease factors. Finally, in the fifth step, (GeneHound) ranks all genes

in each phenotype column of fully predicted OMIM matrix, separately. For each diseases, genes with the highest predicted value are colored in red
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genes will be ranked earlier than a gene randomly selected from

an uniform distribution (in other words, the sensitivity), then AUAC

is given by AUAC ¼
Ð 1
0 TP xð Þdx. As shown by Truchon and

Bayly (2007), for n disease-associated genes ranked < ri >
n
k¼1 and

then normalized < pi ¼ ri

N

� �
>n

k¼1, AUAC can be obtained by

1� 1
n

Pn
k¼1 pi. Another interesting relationship between these two

metrics is that it has been shown that, in general, AUC score is just a

Min-Max normalization of AUAC scores (Truchon and Bayly,

2007).

As a result, to estimate the AUC value of a prioritization model,

for each disease, we can simply use the normalized rank of disease-

associated genes considered for the test set and obtain the AUAC

score. Then, the average of all AUAC scores is used to evaluate the

performance of a gene prioritization model for all diseases under in-

vestigation. However, both AUAC and AUC scores often lead to a

misinterpretation of the model performance in early discovery of

disease-associated genes. For instance, late recognition has a strong

influence on AUAC and AUC scores. Truchon and Bayly (2007),

and later on Zhao et al. (2009), have addressed the limitation of

AUC score in early discovery and have investigated various early dis-

covery performance measurements.

To emphasize early discovery, we need to provide the probability

of a disease-associated gene being ranked before a gene randomly

selected from a distribution that top-ranked genes have a higher

chance to be chosen. As a result, Truchon and Bayly (2007) have

discussed the weighted version of AUAC by introducing the decreas-

ing exponential function as the weight function w(x) in the integral

of calculating AUAC. Then, Truchon and Bayly (2007) have

exploited the idea of linear transformation of AUAC scores to AUC

score, and have proposed the BEDROC as a proper and robust

evaluation measurement for early discovery. In fact, BEDROC score

is just a Min-Max normalized version of weighted AUAC scores.

For n disease-associated genes ranked < ri >
n
i¼1 among N genes

(n<<N), the BEDROC score is estimated as follows:

BEDROC �
1

n

Xn

k¼1
e�api

a
N

1� e�a

ea=N � 1

� �þ 1

1� ea
; (9)

where the parameter a tunes the importance given to early recogni-

tion. For example, when a equals 228.5, 80% of the BEDROC score

is being accounted for in the top 100 of the ranked genes in our

study. BEDROC values can be interpreted as the probability that a

disease-associated gene being ranked better than a gene selected at

random from an exponential probability distribution function of

parameter a.

In this study, we consider values of a equal a ¼ 5:3;

a ¼ 16:1; a ¼ 32:2; a ¼ 160:9 and a ¼ 228:5, which correspond to

80% of the BEDROC being assigned to the top 30%, 10%, 5%,

1% and top 100 prioritized genes, respectively.

To compare the results of our proposed methods on our bench-

marks with gene prioritization tools, already proven to be success-

ful, we develop the BEDROC Score Variation (BSV) curve which is

a plot of average BEDROC scores versus the increasing value of

alpha in the BEDROC Equation (9). In the BSV curve, the greater

alpha, the heavier the weight for early discovery.

4.2 OMIM matrix completion results
4.2.1 Advantage of fusing side information through GeneHound

The performance of incorporating various genomic data and pheno-

typic data as side information on both genes and phenotypes, on our

first benchmark (OMIM1) described before, are illustrated in

Supplementary Figure S1. As we can see, restricting our model to

use no gene side information is not effective at all to hunt disease-

associated genes. However, incorporating the text mining-based

data on the genes side (GeneHound Text) can effectively improve

the performance of our model. In fact, BPMF fails to provide an ac-

curate prediction [compared to our simplest proposed model

(GeneHound Text)]. This is because the sparsity of the OMIM ma-

trix is very high.

Next, to see the advantage of fusing heterogeneous data sources

for gene prioritization through our proposed Bayesian data fusion

setup, we add more genomic data sources on the gene side. As

shown in Supplementary Figure S1, integrating the four genomic

data sources [GeneHound Text þGOþ IPþ SWð Þ] considered in

this study leads to improved predictions of early gene discovery at

the top 100, 1%; 5%; 10% and 30% ranked genes. To this end, we

investigate the effect of incorporating phenotypic side information

and genomic side information simultaneously. This leads to the

best average BEDROC scores of 0.82, 0.69, 0.59, 0.36 and 0.31 at

a ¼ 5:3; a ¼ 16:1; a ¼ 32:2 a ¼ 160:9 and a ¼ 228:5, respectively.

This compares to 0.82, 0.67, 0.57 0.35 and 0.3 when no side infor-

mation on disease side is used (GeneHound Text þGOþ IPþð
SWÞ). It is observed that GeneHound Text þGOþ IPþ SWð Þ
Phenð Þ offers the best average BEDROC scores at the top 100, 1%,

5%, 10% and 30% discovery focuses.

4.2.2 GeneHound versus Endeavour

To compare the results of our proposed methods on our benchmark

with gene prioritization tools, already proven to be successful, we

run the updated version of Endeavour (Aerts et al., 2006;

Tranchevent et al., 2016, 2008). Endeavour is trained using the four

genomic data sources mentioned earlier, except the phenotypic side

information. Five-folds cross validation are carried on the proposed

known disease-related genes benchmark (OMIM2). The same train-

ing and testing gene sets are used to evaluate Endeavour.

Table 1 provides the performance of GeneHound GeoAgg and

Endeavour on our benchmark (OMIM2). As listed in Table 1, com-

pared with Endeavour, our proposed geometric-based aggregation

approach (GeneHound GeoAgg) results in the best average 1-AUC

error of 0.048, which is significantly better than that proposed by

Endeavour (0.068).

Although we observe that our proposed model offers better aver-

age 1-AUC error on OMIM2 benchmark, we explore the perform-

ance of GeneHound models and Endeavour in terms of early

enrichment using the BEDROC scores at five pre-defined a values.

In addition, to investigate the effect of latent dimensions, we suggest

three models with different latent dimensions. We use 25, 30 and 40

latent dimensions. To assess this, in Table 2, we summarize the

BEDROC scores for GeneHound with different latent dimensions,

and this for our proposed data fusion model (GeneHound GeoAgg)

and Endeavour. As shown in Figure 3 and Table 2, both GeneHoun

d 30LatDims and GeneHound 40LatDims results in a competitive

average BEDROC score of 0.70 at a ¼ 32:2. This compares to 0.69

when using 25 latent dimensions. While GeneHound with 40 latent

dimensions reaches the best average BEDROC scores of 0.61, 0.42

and 0.38 at a ¼ 32:2; a ¼ 160:9 and a ¼ 228:5 respectively,

GeneHound with 30 latent dimensions offers a higher average

BEDROC score of 0.83 at a ¼ 5:3 which corresponds to the top

30% discovery focus. Moreover, both GeneHound 40LatDims and

GeneHound 30LatDims results are more robust given different

folds compared to GeneHound 25LatDims.
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As we discussed earlier, our proposed GeneHound GeoAgg is

developed by aggregating the prediction results of theses three mod-

els through taking the geometric mean of gene rank results produced

by these models. As illustrated in Table 1, GeneHound GeoAgg

offers the best average BEDROC results in this setting, which corres-

pond to an average BEDROC scores of 0.85, 0.73, 0.65, 0.46 and

0.42 at a ¼ 5:3; a ¼ 16:1; a ¼ 32:2; a ¼ 160:9 and a ¼ 228:5, re-

spectively. This indicates that fusing the results of three GeneHound

models with different latent dimensions through our geometric-

based aggregation approach can improve the performance of hunt-

ing disease-associated genes according to our benchmark (OMIM2).

We also observe that GeneHound GeoAgg results in robust 5-fold

predictions. Moreover, It has been observed that the improvement is

more significant in early discovery.

Moreover, according to Figure 3, BEDROC scores of

GeneHound with the size of 40 latent dimensions are slightly higher

than Endeavor at the top 30%, 10% and 5% enrichment focuses.

Nonetheless, both GeneHound 40LatDims and Endeavour yield

competitive results at early discovery focuses. As shown in Figure 3,

we observe that the results of GeneHound GeoAgg is consistently

outperforming Endeavour at all pre-defined a’s. Furthermore, the

BSV curves are plotted to compare the performance of GeneHound

GeoAgg and Endeavour (Fig. 4). Figure 4 illustrates that GeneHoun

d GeoAgg achieves a higher average BEDROC scores at all a values.

This demonstrates that GeneHound GeoAgg is more sensitive and

specific in hunting known disease-associated genes for all early en-

richment focuses.

Moreover, Supplementary Figure S2 illustrates the average

BEDROC scores over diseases grouped based on number of known/

training genes at top 1% and 10% enrichment focuses. Most of

investigated diseases in this study (44 out of 65) have less than 20

known genes. Supplementary Figure S2 shows that while both

GeneHound and Endeavour obtain competitive results at the 1%

and 10% enrichment focus for diseases with less than 20 and more

than 12 known genes, GeneHound offers better results than

Endeavour at top 1% and 10% enrichment focuses for other disease

groups. For example, according to Supplementary Figure S2,

GeneHound improves the predictive performance at top 1% enrich-

ment focus by almost 10% on diseases with 10, 11 and 12 known

genes. This show the effectiveness of our method, particularly in

handling gene prioritization for diseases with very few known genes.

Moreover, when we compare the performances of GeneHound and

Endeavour, we see that GeneHound can enhance the predictive per-

formance of gene prioritization task by exploiting the multi-task

approach.

Lastly, we investigate the results of GeneHound GeoAgg on

OMIM2 benchmark in more details. The OMIM diseases investigated

in this study are grouped based on the 10th version of the

International Statistical Classification of Diseases and Related Health

Problems (International Classification of Diseases (ICD), 2015–10),

which is a medical classification list introduced by the World Health

Organization (WHO). This leads to 14 ICD-10-based disease groups

that for them we have at least one disease in OMIM2 benchmark.

Each of the 65 diseases belongs to exactly one chapter of ICD-10, ex-

cept mitochondrial complex deficiency, which is not classified in ICD-

10, and Alzheimer, Parkinson and cataract diseases, which are classi-

fied in two chapters of ICD-10. To assess the results of GeneHound

Table 1. Comparison of the averaged 1–AUC error for GeneHound

and Endeavour

Methods Averaged 1-AUC error

GeneHound GeoAgg 0:048 6 0:007

Endeavour 0:068 6 0:008

P-value 0.00096

Notes: The 95% confidence intervals are reported over folds. The lower

1-AUC error is better.

The minimum Averaged 1-AUC error is in bold.

Table 2. Comparison of the average BEDROC scores calculated with various a, for GeneHouds and Endeavour

Methods Averaged BEDROC score

a a ¼ 228:5 a ¼ 160:9 a ¼ 32:2 a ¼ 16:1 a ¼ 5:3

Early enrichment focus TOP 100 TOP 1% TOP 5% TOP 10% TOP 30%

GeneHound 25LatDims 0.358 6 0.057 0.396 6 0.06 0.595 6 0.056 0.686 6 0.045 0.818 6 0.023

GeneHound 30LatDims 0.36 6 0.016 0.40 6 0.017 0.608 6 0.028 0.70 6 0.029 0.829 6 0.019

GeneHound 40LatDims 0.383 6 0.023 0.421 6 0.024 0.614 6 0.027 0.699 6 0.026 0.824 6 0.017

GeneHound GeoAgg 0.418 6 0.031 0.458 6 0.031 0.651 6 0.031 0.733 6 0.029 0.85 6 0.018

Endeavour 0.387 6 0.031 0.422 6 0.030 0.609 6 0.029 0.694 6 0.029 0.817 6 0.021

Notes: The confidence intervals are reported over folds. a tunes the early enrichment. For example, in our study when a ¼ 228:5, 80% of BEDROC score is

given to the top 100 ranked genes. The best performance for each a is shown in boldface. All models are benchmarked on OMIM2.

The maximum BEDROC scores at different early enrichment focuses are highlighted in bold.

Fig. 3. BEDROC scores result: GeneHound versus Endeavour.The perform-

ance of GeneHound with various latent dimensions, our final mod-

el(GeneHound GeoAgg), and Endeavour are evaluated on our OMIM2

benchmark. The label of each panel corresponds to the value of a used to

evaluate the model. Note that we highlight the black solid lines in the box

plots correspond to the median value
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GeoAgg and Endeavour on individual diseases, we report the

BEDROC scores at a ¼ 16:1 and a ¼ 160:9 over all cross-validated

genes for each disease. For example, Supplementary Figures S8 and S9

show the results of diseases in OMIM2 benchmark belongs to the dis-

eases of the nervous system and diseases of the eye and adnexa (H).

GeneHound GeoAgg succeeds to offer BEDROC scores of more than

0.5 for 25 diseases of our benchmark (out of 65 diseases) at the top

1% enrichment focus. The results of other disease groups are shown

in the Supplementary Figures S3–S17. Moreover, to see the advantage

of using GeneHound in more details, we set up a challenge between G

eneHound GeoAgg and Endeavour in terms of early discovery

improvements (Supplementary Table S2). It is observed that

GeneHound boosts the BEDROC score at a ¼ 160:9 for Endeavour

by more than 50% for 12 diseases. This compares to three diseases by

more than 50% BEDROC score improvement using Endeavour.

Furthermore, GeneHound offers more than 100% BEDROC score

improvement for three diseases as compared to Endeavour. However,

Endeavour does not improve any diseases BEDROC scores provided

by GenHound by more than 100%.

Among these fourteen ICD-10-based disease groups, there are

nine groups for which them we have at least three diseases in the

OMIM2 benchmark. These nine groups include certain infectious

and parasitic diseases (A), neoplasms (C), diseases of the blood and

blood-forming organs and certain disorders involving the immune

mechanism (D), endocrine, nutritional and metabolic diseases (E),

mental and behavioural disorders (F), diseases of the nervous sys-

tem (G), diseases of the eye and adnexa (H), diseases of the circula-

tory system (I) and congenital malformations, deformations and

chromosomal abnormalities (Q). As illustrated in Figure 5, both

GeneHound and Endeavour achieve the competitive results at the

10% enrichment focus for A, E and I disease groups in ICD-10.

According to Figure 5, while Endeavour offers slightly better

results for diseases in group D, GeneHound GeoAgg achieves a

higher average BEDROC score at a ¼ 16:1 for diseases in group C.

In addition, the performance of our proposed model GeneHound

GeoAgg for diseases in groups F, G, H and Q is considerably

higher than that of Endeavour. For example, GeneHound GeoAgg

yields an average BEDROC score of 0.87 at the top 10% enrich-

ment focus on diseases of the eye and adnexa (H), which is

significantly higher than a BEDROC score of 0.76 using

Endeavour. In summary, we observed that GeneHound GeoAgg

improves an average BEDROC score at a ¼ 16:1 for diseases in

groups F, G, H and Q by 17%, 8%, 14%, 11% respectively, as

compared to Endeavour.

Figure 5 also shows the average BEDROC score at a ¼ 160:9,

which corresponds to the 1% enrichment focus. Both GeneHound

GeoAgg and Endeavour exhibit a similar performance for diseases

in the group Q. For diseases in groups C, E and I, GeneHound Geo

Agg does slightly outperform Endeavour in terms of the 1% discov-

ery focus. Rather, for diseases in group A and D, Endeavour

achieves a bit higher BEDROC scores. Moreover, GeneHound Geo

Agg does significantly outperform Endeavour on diseases in groups

F, G and H, achieving an average BEDROC score of 0.52, 0.48 and

0.66, respectively. This compares to 0.31 and 0.37 and 0.6 using

Endeavour. Both methods show their worst performance for group C.

This demonstrates the inherent complexity of neoplasms. Nevertheless,

GeneHound GeoAgg performance on neoplasms diseases is still better

than that of Endeavour; 0.52 versus 0.48 at a ¼ 16:1. Together, all

theses assessments verify the effectiveness of our proposed approach in

comparison with the well-established gene prioritization method

Endeavour (Aerts et al., 2006; Tranchevent et al., 2008, 2016).

5 Discussion

In modern biology, there is often the need to select the most promis-

ing genes for further investigation among a large list of candidate

genes. While a single genomic data source might not be sufficiently

informative, the integration of several complementary genomic

data sources delivers more accurate predictions. We present an

innovative multi-task method to address the gene prioritization

task, which combines genomic data and phenotypic data sources

using matrix factorization. Accordingly, we propose an extended

Bayesian matrix factorization with the ability to work with multiple

side information sources. Because of the extreme sparsity of gene-

disease matrices, BPMF fails to provide accurate predictions.

However, our method delivers the largest advantage when the gene-

phenotype association matrix is sparsely observed. Our methods

provide a BEDROC score of more than 0.5 for 25 diseases of our

benchmark (out of 65 diseases) at the top 1% enrichment focus.

This confirms the effectiveness of our proposed approach to hunt

disease-associated genes.

Fig. 4. Comparison of the BSV curve for our proposed models and

Endeavour. BSV curve is a plot of average BEDROC scores versus the increas-

ing value of alpha in BEDROC Equation (9). In the BSV curve, the greater a,

uses the heavier the weight for early discovery. The performance of GeneHou

nd GeoAgg and Endeavour are evaluated on OMIM2 benchmark

Fig. 5. The average BEDROC scores of ICD-10-based disease groups: GeneHo

und GeoAgg versus Endeavour.The average BEDROC scores of nine ICD-

10-based disease groups with at least three diseases in OMIM2 benchmark.

The a are set to 16.1 and 160.9
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Moreover, whereas the state-of-the-art gene prioritization meth-

ods, such as Endeavour(Aerts et al., 2006; Tranchevent et al., 2016)

and ToppGene (Chen et al., 2009), are restricted to only integrate

genomic data sources, in our proposed model, we can not only inte-

grate data sources describing genes, but also data sources describing

phenotypes, simultaneously. In a recent work, (Zitnik et al., 2015)

proposed a data fusion approach that combines several heteroge-

neous datasets to prioritize gene in an unsupervised fashion. In con-

trast, our proposed method formulates the gene prioritization task as

the factorization of a partially observed matrix with side information

in a supervised learning setting. Experimental results on 65 rare dis-

eases investigated in this study show that our proposed method,

GeneHound GeoAgg, results in an average 1-AUC error of 0.048,

which is significantly better than that proposed by the state-of-the-art

gene prioritization method Endeavour (0.068). GeneHound GeoAgg’s

effectiveness on early discovery is evaluated using the BEDROC score.

Experimental results demonstrate that GeneHound GeoAgg consist-

ently outperforms the last version of Endeavour, the best established

and successful gene prioritization method hitherto published, at all

early enrichment focuses.

Furthermore, in contrast with the fact that most of gene priori-

tization methods deal with each disease separately, we design a gene

prioritization model through a multi-task approach in which it is

possible to detect patterns in the data common to several diseases or

phenotypes. The advantage of multi-task approach for gene priori-

tization through kernel methods was also discussed by Mordelet and

Vert (2011). This particularly appealing aspect of our method,

alongside with combining the phenotypic similarity of diseases, ena-

bles us to tackle diseases with few or no known genes and genes that

have not yet been extensively characterized. For example, our

method offers an average BEDROC score of 0.48 at the top 1% en-

richment focus (and the average true positive rate of 0.61 at top

1%) on diseases with less than 13 known genes. This compares to

0.44 (and 0.58) using Endeavour.

Besides, GeneHound GeoAgg, like the state-of-the-art gene

prioritizations methods, suffers from relying upon exploiting the

‘guilt-by-association’ principle. In fact, developing a gene priotiza-

tion model solely based on this assumption might not be enough to

understand complex diseases, such as neoplasms. Nevertheless, our

proposed methods, by detecting patterns in the data common to sev-

eral diseases through our multi-task setting, could be less sensitive to

a known genetic profile of diseases and consequently delivers less

biased results and more accurate hints for researchers. For example,

whereas, both Endeavour and GeneHound GeoAgg fail to offer a

good performance to hunt disease-associated genes for neoplastic

diseases, GeneHound GeoAgg still deliver significantly better results

on those diseases than that of Endeavour. Our proposed approach

also offers promising results on diseases of the nervous system, men-

tal and behavioral disorder, diseases of the eye and adnexa, endo-

crine, nutritional and metabolic diseases, congenital malformations,

deformations and chromosomal abnormalities, and diseases of the

blood and blood-forming organs and certain disorders involving the

immune mechanism, as compared to Endeavour.

An important limitation of our approach is that, like other gene

prioritization methods, it only uses biological annotation-based

sources and literature-based data sources extracted from PubMed.

These data sources themselves suffer from missing information, false

positive annotations, bias studies of human genome and leakage of

information across multiple sources, which in case of unreliable in-

formation could considerably diminish the advantage of data fusion.

It is also pertinent to mention that some researchers expect that

it might be possible to perform perfectly the prioritization task for a

biological problem under investigation using a versatile gene priori-

tization method. However, this view regarding gene prioritization

seems too optimistic. In a more realistic interpretation, gene priori-

tization based on the available incomplete and inconsistent data

sources, which themselves incorporate multiple biases, just offers

relevant hypotheses to researchers to further investigate.

As future work, it is also worth drawing attention to the fact

that one of GeneHound GeoAgg’s assets is its flexibility to support

multiple gene disease databases at the same time. We have recently

developed our Bayesian matrix factorization model (Arany et al.,

2015; Simm et al., 2017), which manages the factorization of a wide

range of data models, such as tensor relations and multiple relations.

As a result, several relations (matrices) with their side information

can be factorized together (for example gene-disease and gene-

phenotype association matrices). In the future, this will enable us to

develop an integrative-based gene prioritization model by combining

multiple gene disease databases, such as OMIM (Amberger et al.,

2011), Genetic Association Database (GAD) (Becker et al., 2004),

DisGenNET (Pinero et al., 2015) and the literature-derived human

gene-disease network (Bauer-Mehren et al., 2011).

6 Conclusions

Our work presents an innovative approach to gene prioritization by

combining genotype and phenotype data sources using matrix fac-

torization. Here, we reformulate the problem of gene prioritization

as the task of factorizing of a very sparsely filled gene-disease-matrix

with the goal of predicting the missing values of the matrix. To ad-

dress this task, we propose a generalization of BPMF that makes it

possible to work with multiple side information sources (which is

impossible in BPMF). Our gene prioritization method can for the

first time not only integrate data sources describing genes, but also

data sources describing phenotypes and in this way improve over

the state of the art. Moreover, we discuss the advantages of using

the BEDROC score in evaluating the performance of gene prioritiza-

tion algorithms, as opposed to the more classical AUC Score.

Finally, experimental results on our benchmarks show that our pro-

posed model can effectively improve accuracy over the state-of-the-

art gene prioritization method, Endeavour.
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