
Submitted 28 February 2018
Accepted 31 May 2018
Published 25 June 2018

Corresponding author
Elżbieta Żbikowska, ezbikow@umk.pl

Academic editor
Kenneth De Baets

Additional Information and
Declarations can be found on
page 10

DOI 10.7717/peerj.5045

Copyright
2018 Marszewska et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Potamopyrgus antipodarum as a
potential defender against swimmer’s
itch in European recreational water
bodies—experimental study
Anna Marszewska1, Anna Cichy1, Jana Bulantová2, Petr Horák2 and
Elżbieta Żbikowska1

1Department of Invertebrate Zoology, Faculty of Biology and Environment Protection, Nicolaus Copernicus
University of Torun, Toruń, Poland

2Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic

ABSTRACT
Swimmer’s itch is a re-emerging human disease caused by bird schistosome cercariae,
which can infect bathing or working people in water bodies. Even if cercariae fail after
penetrating the human skin, they can cause dangerous symptoms in atypical mammal
hosts.One of the naturalmethods to reduce the presence of cercariae in the environment
could lie in the introduction of non–host snail species to the ecosystem, which is known
as the ‘‘dilution’’ or ‘‘decoy’’ effect. The caenogastropod Potamopyrgus antipodarum—
an alien in Europe—could be a good candidate against swimmer’s itch because of its
apparent resistance to invasion by European bird schistosome species and its high
population density. As a pilot study on this topic, we have carried out a laboratory
experiment on how P. antipodarum influences the infestation of the intermediate host
Radix balthica (a native lymnaeid) by the bird schistosome Trichobilharzia regenti. We
found that the co–exposure of 200 P. antipodarum individuals per one R. balthica to
theT. regentimiracidia under experimental conditionsmakes the infestation ineffective.
Our results show that a non–host snail population has the potential to interfere with
the transmission of a trematode via suitable snail hosts.

Subjects Ecology, Parasitology, Zoology, Public Health, Freshwater Biology
Keywords Potamopyrgus antipodarum, Radix balthica, Trichobilharzia regenti, Miracidia, ‘‘Decoy
effect’’

INTRODUCTION
Biodiversity loss and disease emergence have become two of the most challenging issues
confronting science and society (Johnson et al., 2009). Different authors indicate the strong
correlation between parasite success in ecosystems and the biodiversity of ecological
communities (Johnson et al., 2012; Lagrue & Poulin, 2015). Mitchell et al. (2003), Begon
(2008), Allan et al. (2009) as well as many others underlined that rapid loss of populations
significantly increase disease emergence. Studies concerning the causal relationship
between biodiversity and disease emergence in an environment are focused on testing
the ‘‘dilution effect’’, which parasitologists refer to as a ‘‘decoy-effect’’ hypothesis (Combes
& Moné, 1987; Johnson & Thieltges, 2010). According to these authors, the ‘‘decoy effect’’
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mechanisms, observed in the case of high biodiversity of ecological communities, concern:
(i) degeneration of invasive parasite stages penetrating the non-target host, (ii) exhausting
of these stages by trying to penetrate the non-target host and (iii) stimulation of defense
mechanisms of the non-target host against invasive stages of parasite. Regardless of the
mechanism, the non-target host becomes the dead-end host, that is the real factor reducing
the parasitic disease emergence (Mehlhorn, 2008).

One of the re-emerging worldwide medical problems connected to parasites of complex
life cycle is cercarial dermatitis, also known as swimmer’s itch (Cort, 1936; Hunter et al.,
1949; Jarcho & Van Burkalow, 1952; Macy, 1952; Hoeffler, 1974; Leedom & Short, 1981;
Eklu-Natey et al., 1985; Blankespoor & Reimink, 1991; Loken, Spencer & Granath Jr, 1995;
Pilz, Eisels & Disko, 1995; Lindblade, 1998; Kolářová, Skírnisson & Horák, 1999; Horák
et al., 2015). Marszewska et al. (2016) observed this medical problem in many bathing
localities in Polish Lowland Lakes during the last two years. The dermatitis appears as
an itchy, lumpy rash on the skin that persists for several weeks (Żbikowska, Wójcik &
Grygon-Franckiewicz, 2002). The skin lesions resemble the early stage of chickenpox, and
are a result of penetration by cercariae of bird schistosomes (Żbikowska, 2003). Normally,
cercariae of bird schistosomes develop inside the host snail for six to seven weeks (Amen
& Meuleman, 1992). Cercariae then abandon the mollusk, swim in the water environment
seeking to penetrate the skin of an avian final host; once in the skin they transform to
schistosomulae, then they migrate through the blood or nervous pathway, mature, and
reproduce sexually (Soldánová et al., 2013). If a human becomes the accidental target of
a cercariae attack, an allergic skin reaction may follow, but the worms do not mature in
humans (Kolářová, Horák & Skírnisson, 2010; Horák et al., 2015).

The current increase in the number of swimmer’s itch cases in temperate climate
might be a consequence of both: (i) climate change accompanied by the extension of the
period of active vegetation in freshwater ecosystems, linked with abundant populations
of host snails releasing bird schistosome cercariae, and (ii) people spending more time
in recreational activities (Angilletta Jr, 2006; Rempfer et al., 2010). Biomass of cercariae of
the bird schistosome Trichobilharzia szidati can even reach 4.65 tons per year for a small
eutrophic reservoir (Soldánová, Selbach & Sures, 2016).

The above factors limit safe water recreation (Chamot, Toscani & Rougemont, 1998;
Lévesque et al., 2002; Farahnak & Essalat, 2003; Skírnisson & Kolárová, 2005; Jouet et al.,
2008). Efforts to reduce human cercarial dermatitis have been made by using some
trematode species or by lowering the density of first intermediate host snail populations;
however, such efforts were not always successful (Chapter 1; Loker & Hofkin, 2015). The
mechanical removal of potential intermediate hosts of bird schistosomes brings only
limited positive effects (Dubois, 2003), and the use of molluscicides, however successful
for a short period, has a clear limitation (see as review: King & Bertsch, 2015) or even a
negative impact on local fauna (McCullough, 1992).

The increasing number of cases of human cercarial dermatitis together with our
knowledge on migration of bird schistosomes in mammalian hosts (Horák & Kolářová,
2001; Horák et al., 2008; Horák et al., 2015) foster research on natural methods that may
decrease the risk. As for human schistosomes, biological control has been tested in some
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areas (see review: Pointier, David & Jarne, 2011) and promising results have been obtained
for the use of applied alien or even invasive snail species for reduction of parasite prevalence
in the snail hosts. The ‘‘decoy effect’’ described by Combes & Moné (1987) can be another
mode of resolving the problem. Combes & Moné (1987) indicate that Schistosoma mansoni
miracidia can fail to actively penetrate non-host snails. We suspect that the same variant
of biological control can be useful in the case of bird schistosomes, especially when
using the planned alien species for human cercarial dermatitis control—Potamopyrgus
antipodarum, which has been present in European waters for years (Boycott, 1936; Walter,
1980; Dorgelo, 1987; Ponder, 1988; Simoes, 1988; Hinz, Boeters & Guenther, 1994; Berg et
al., 1997; Carlsson, 2000; Wagner, 2000; Mouthon & Dubois, 2001). The presence of this
New Zealand native species has been recorded in several European countries (Gérard & Le
Lannic, 2003; Zettler & Richard, 2004; Sousa, Guilhermino & Antunes, 2005; Alonso, 2006;
Lewin & Smolinski, 2006; Soler, 2006; Cianfanelli, Lori & Bodon, 2007; Múrria, Bonada &
Prat, 2008; Son, Nabozhenko & Shokhin, 2008; Zieritz & Waringer, 2008; Radea, Louvrou
& Economou-Amilli, 2008; Arle & Wagner, 2013), but only a few reports have given it the
status of invasive species (Brzeziński & Kołodziejczyk, 2001; Gaino et al., 2008; Thomsen
et al., 2009). P. antipodarum spreads easily thanks to its wide tolerance to environmental
factors and its parthenogenetic reproduction, so a population can start from a single female.
In some non–native regions even up to six generations per year can develop (Piechocki
& Wawrzyniak-Wydrowska, 2016). P. antipodarum can create populations with densities
reaching thousands of individuals per square meter under favorable conditions (Richards,
Cazier & Lester, 2001; Hall Jr, Tank & Dybdahl, 2003), but densities may undergo a drastic
collapse in a few months (Extence, 1981;Moffitt & James, 2012) or in a longer term (Moore
et al., 2012; Gérard, Hervé & Hechinger, 2017). These top-down and bottom-up changes in
invaded ecosystems can be extremely temporally dynamic and connected to environmental
factors (Moore et al., 2012). Among the reasons for a collapse, an impact of acquired
parasites was postulated. Even if parasites cannot complete the life cycle in P. antipodarum
due to host–parasite incompatibility (Żbikowski & Żbikowska, 2009), the penetration of
miracidia or cercariae through the tegument can be devastating for snails. The expansion
of P. antipodarum in European waters and scarce cases of its stable association with a
trematode species (Gérard & Le Lannic, 2003; Morley, 2008; Gérard, Hervé & Hechinger,
2017; Żbikowska & Nowak, 2009) resulted in the hypothesis that the introduction of P.
antipodarum to the European bathing localities may help eliminate the risk of dermatitis
in a safe way.

Our pilot laboratory experiments aimed at evaluating the potential impact of
P. antipodarum on the effectiveness of T. regenti (an avian schistosome) miracidia to
infect the natural, native host snail Radix balthica.

MATERIALS AND METHODS
Snails
Radix balthica (Linnaeus, 1758) (Pulmonata: Basommatophora: Lymnaeidae) is one of
the most common pond snails in Poland (Piechocki & Wawrzyniak-Wydrowska, 2016).
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Based on external morphology, these snails are similar to R. labiata (Rossmassler, 1835).
Therefore, the species-level taxonomy within the Radix genus was verified on the basis
of anatomical features of the reproductive system (Schniebs et al., 2011). R. balthica is
the intermediate host for many digenean species, such as bird schistosomes, including
T. regenti (Horák, Kolářová & Dvořák, 1998; Cichy, Faltynkova & Żbikowska, 2011). In the
experiment, 40 R. balthica individuals with shell height of 8–10 mm (mean size: 9.0 ± 0.1)
and shell width of 4–6 mm (mean size: 5.1 ± 0.1) (very susceptible to parasitic invasion)
were used. All R. balthica individuals came from laboratory breeding cultures of the
Department of Invertebrate Zoology at Nicolaus Copernicus University in Toruń, Poland.

Potamopyrgus antipodarum (Gray, 1843) (Caenogastropoda, Hydrobioidea, Tateidae) is
a mud snail species introduced from New Zealand to Europe in the mid 1850s (Hubendick,
1950). In Poland it was first found in Lake Trląg (Urbański, 1938). Nowadays it is common
in Pomerania, Greater Poland, Masurian Lakeland and Upper Silesia (Cichy, Faltynkova &
Żbikowska, 2011). In the experiment, parthenogenetic females with shell height of 4 mm
(most prevalent during summer season in Poland) were used. The snails were collected
from Sosno Lake (53◦20′15′′N, 19◦20′55′′E) in May 2016.

Bird schistosome
Trichobilharzia regenti (Schistosomatidae, Bilharziellinae) was described by Horák,
Kolářová & Dvořák (1998). As for the maintenance of parasites in the laboratory, the
intermediate host snails of Radix lagotis were kept in aquaria with sponge filters, fed on
lettuce leaves, and repeatedly collected and placed in glass beakers to stimulate release
of cercariae after lighting. The definitive hosts, ducks (Anas platyrhynchos f. dom.), were
kept in cages approved for this purpose (accreditation no. 13060/2014-MZE-17214). Their
infection with cercariae was performed as described by Meuleman, Huyer & Mooij (1984).
After 22 days, the ducks were sacrificed by decapitation to obtain eggs with developing
miracidia, and adult trematodes living in the nasal mucosa. The maintenance care and
sacrificing of experimental animals was carried out in accordance with European Directive
2010/63/EU and Czech law (246/1992 and 359/2012) for biomedical research involving
animals. Experiments have been performed under legal consent of the Expert Committee
of the Section of Biology, Faculty of Science, Charles University, Prague, Czech Republic,
and the Ministry of Education, Youth and Sports of the Czech Republic under ref. no.
MSMT-31114/2013-9.

Four ducks in the patent period (22 days post infection) were sacrificed, and their heads
immediately (within 10 h) transported to the Polish laboratory at the temperature of 8 ◦C.
In the laboratory nasal conchae were removed from the duck beaks and torn apart in Petri
dish with conditioned tap water to release eggs and hatched miracidia, which were then
placed in a dark flask with conditioned tap water at 20 ◦C. The flask was placed under
artificial light. After a fewminutes, hatched miracidia were concentrated under illuminated
water surface. The larvae were then individually collected with a micropipette.
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Experiment I: the infection of P. antipodarum snails with miracidia of
T. regenti
P. antipodarum individuals were experimentally infected in Petri dishes (50 mm in
diameter) with conditioned tap water at 20 ◦C. In the experiment two variants were
applied—one miracidium per one snail, and five miracidia per one snail. The experiment
was performed in 25 replicates. The time of exposure was 20 h, and was adjusted to the
duration of the miracidia life span (Horák et al., 2015). Then snails were carefully placed
into beakers with conditioned tap water at 20 ◦C, and water in Petri dishes was checked
under a stereomicroscope for presence of living or dead miracidia.

Twice a week, the water in incubation beakers was changed, and the P. antipodarum
individuals were fed. Every day the activity of snails was tested. Dead individuals were
immediately checked for parasite infestation. After 60 days all surviving snails were killed
and autopsied.

Experiment II: the infection of R. balthica in the presence of
P. antipodarum with miracidia of T. regenti
During this experiment snails were exposed to miracidia in Petri dishes (50 mm in
diameter) filled with conditioned tap water at 20 ◦C. In the experiment, three variants
of non–host snail density were applied: 50, 100 and 200 individuals of P. antipodarum
per one individual of R. balthica. The size of experimental P. antipodarum groups was
determined according to the ratio of number specimens of both snail species per square
meter in different Polish water bodies (Żbikowski & Żbikowska, 2009; Strzelec, Krodkiewska
& Królczyk, 2014). R. balthica were placed individually in the central part of the dish,
whereas P. antipodarum specimens were arranged around them. For each dish with snails,
three newly hatched miracidia of T. regenti were added, according to a common laboratory
procedure (Lichtenbergová et al., 2011). The dishes were covered and placed in the incubator
(SANYO, Osaka, Japan) at 20 ◦C and natural photoperiod for 24 h (adjusting the time
to the maximum survival of larvae). The experiment was performed in 10 replicates. The
three control groups of snails constituted (i) separately placed individual of R. balthica
with three miracidia (without P. antipodarum), and (ii) separately placed individual of
P. antipodarum with three miracidia (without R. balthica)—both in 10 replicates. The
additional, third control consisted of only one Petri dish with fifty P. antipodarum snails
incubated together with fifty miracidia (Table 1). After 24 h, the control snails were rinsed
with water and placed separately in beakers with conditioned tap water at 20 ◦C. Similarly
to experiment I, the water was changed and the snails were fed twice a week. Every day their
activity was observed. Dead individuals were immediately checked for parasite infestation.
After 60 days all remaining (living) snails were killed and autopsied.

Statistical analysis
The prevalence of T. regenti in both snail species populations was counted as percent of
specimens of R. balthica or P. antipodarumwith bird schistosome larvae (sporocysts and/or
cercariae). In order to verify if the density of P. antipodarum accompanying R. balthica can
affect T. regenti miracidia infectivity, logistic regression was used, with the Potamopyrgus
antipodarum abundance as a predictor variable and infection status of Radix balthica as
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Table 1 The exposure of host and/or non-host snails on Trichobilharzia regentimiracidia at 20 ◦C—
Experiment II.

Number of snails exposed to
parasitic larvaea

Number of
miracidia

Number of
replicates

Experimental
condition

1 R. balthica + 50 P. antipodarum 3 10 Experimental
1 R. balthica + 100 P. antipodarum 3 10 Experimental
1 R. balthica + 200 P. antipodarum 3 10 Experimental
1 R. balthica 3 10 Control
1 P. antipodarum 3 10 Control
50 P. antipodarum 50 1 Control

Notes.
aAnimals were placed in Petri dishes of 50 mm diameter.

a dependent variable. Snail life time since exposure to miracidia, expressed in number
of days, was analyzed by one–way ANOVA, followed by post–hoc Tukey test. Significant
differences in the survival rates between infected and uninfected R. balthica were tested
using Mann–Whitney U test.

RESULTS
None of the P. antipodarum individuals exposed to T. regentimiracidia in Experiment I or
Experiment II were found to be infected. During Experiment I, after 20 h of incubation
we did not find parasitic larvae in the water of the Petri dishes, where P. antipodarum
snails were individually exposed to three miracidia. Also, no patent infection (with
fully developed cercariae) was found in R. balthica specimens experimentally exposed to
T. regentimiracidia. Inside the infected snails only sporocysts or sporocysts with immature
cercariae were noticed. The effective infestation of R. balthica by T. regenti (Table S1)
depended on the number of accompanying P. antipodarum individuals during exposure to
miracidia (Table S2). Abundance of Potamopyrgus antipodarum significantly decreased the
probability of infection of Radix balthica (logistic regression: Wald statistic = 9.5, df = 1,
p= 0.002) (Fig. 1). Almost all control R. balthica individuals (90%), and all R. balthica
snails co-incubated with 50 specimens of P. antipodarum exposed to miracidia had
parasite sporocysts. The infestation of R. balthica was completely ineffective in the density
combination of 200 P. antipodarum per one R. balthica specimen (p< 0.0001). When 100
P. antipodarum individuals were co–exposed to miracidia, up to 40% R. balthica snails
were non–infected, however, the difference was not statistically significant if compared
with the P. antipodarum—absent control (p= 0.0867).

Experimental conditions had an impact on the life span of snails. All P. antipodarum
individuals survived until the end of the experiment (60 days), whereas the life span for
R. balthica varied (Table S3). The average survival of R. balthica ranged from 35 to 58
days, and depended on the presence of non–host P. antipodarum snails during exposure
to miracidia (one–way ANOVA F3,36= 16.85, p< 0.001)). Post–hoc tests indicated that
the longest survival rate occurred in the case of R. balthica exposed to miracidia in the
presence of 200 individuals of P. antipodarum (Fig. 2). Additionally, the Mann–Whitney
U test (p< 0.001) indicated that infected R. balthica lived shorter than non–infected ones
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regardless of experimental condition (avg. 34 ±1 and 57 ±1 days respectively) (Table S4,
Fig. 2). Infected R. balthica survived for 18–40 days (range) after exposure to miracidia,
while most non-infected R. balthica lived until the end of the 60 day experiment.

DISCUSSION
Our study indicates that T. regenti larvae cannot use P. antipodarum as an intermediate
host succesfully. This is not surprising because all known Trichobilharzia species use only
Lymnaeidae and Physidae as intermediate hosts (Horák et al., 2015). On the other hand, the
lack of miracidia in water after 20 h exposure to snails is extremely interesting. It could be
the effect of parasitic larvae entering the snail shell or even possible attachment to non-host
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P. antipodarum body. Sapp & Loker (2000) observed miracidia which tended to adhere
to incompatible snails, but these larvae could not develop inside a non-host mollusk. It
should be noted that according to King, Jokela & Lively (2011) trematodes have only one
chance when they attach to a snail body—succesful infection or death. Combes & Moné
(1987) described the impact of non-target hosts on parasite success as a ‘‘decoy effect’’ and
suggested the ‘‘decoy effect’’ as potentially useful in schistosomiasis control. Unfortunately,
the protocol of our experiment did not allow us to track the fate of T. regenti miracidia,
because the snails were stored in the incubator during the exposure period. Observations
after the end of exposure revealed the lack of invasive larvae on Petri dishes, which could
be the result of them being swallowed by snails or the effect of the degeneration of the
unsuccessful larvae that died during the experiment. The only certainty is that the presence
of non–host snails (P. antipodarum) of bird schistosome (T. regenti) in the neighborhood
of native host (R. balthica) can affect the parasite transmission success of miracidia. The
hatched larvae respond to different environmental stimuli, such as light or gravity, and
various chemical compounds released by potential host species (Hertel et al., 2006). Smyth
& Halton (1983) when using the choice–chamber to study miracidial chemo–orientation
indicated that nearly half of the tested larvae were attracted by chemical attractants other
than those released by their specific host snail. P. antipodarum individuals co–exposed
to miracidia may have successfully disturbed the access of parasitic larvae to the specific
host. However, the lack of data on the chemical composition of P. antipodarum mucus
does not allow a clear conclusion that the lack of miracidia in water after 20 h exposure to
individuals of this species during Experiment I could support our hypothesis.

According to Sullivan & Yeung (2011), miracidia that were experimentally injected
into snails were encapsulated inside incompatible hosts, but survived and developed in
the compatible ones only. The result shows that real recognition of the intruder by the
immune system of the host depends on the internal milieu of the snail. This fact allows us
to understand why the imprecise identification of the host by miracidia does not result in
snail—Digenea compatibility (Combes & Moné, 1987). We suggest that the probable lack
of precision in T. regenti miracidia orientation could be used for the biological control of
this trematode invasion in the environment.

The introduction of an alien snail species into the environment, even to protect people
against parasites, may raise doubts concerning long-term consequences of manipulation in
the environment: (i) the influence on populations of native snail species, and (ii) the danger
of a new parasite–snail association. As for the first consequence, data on the displacement
of native European snail species by P. antipodarum seem to be exaggerated. Some statistical
analysis has shown the coincidence between the appearance of P. antipodarum in water
bodies and a drop in Simpson’s diversity index. Such an analysis was presented by Strzelec,
Spyra & Krodkiewska (2006) who used number of individuals as currency in the Simpson’s
diversity index. It should be emphasized that the large numbers of the small P. antipodarum
could easily drive down the Simpson index (or any other abundance-based diversity index)
if numbers are used as currency. In our opinion the biomass would be more appropriate
currency in such analysis.
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The threat of new snail-parasite association seems to bemore serious collateral damage to
plannedmanipulation in the environment (Morley, 2008). However, it must be emphasized
that P. antipodarum already occurs in European waters, and the possible introduction into
recreational waters would only slightly increase its range (Städler et al., 2005). From
New Zealand, where this mud snail plays the role of intermediate host for many avian
parasite species, there are no reports of infection of P. antipodarum with Trichobilharzia
species (Hechinger, 2012), even if Trichobilharzia quequedulae was noted in birds of the
Southern Hemisphere (Ebbs et al., 2016). The facts above indicate potentially safe use of P.
antipodarum against swimmer’s itch.

The absence of patent infection in R. balthica individuals after an experimental exposure
is also of interest. Huňová et al. (2012) underlined that the intramolluscan development
of T. regenti needs several weeks. In our experiments, none of the successfully infected
R. balthica lived longer than 40 days. The increased mortality of snails experimentally
infected with trematodes is widely known (Muñoz Antoli et al., 2007; Kalinda, Chimbari
& Mukaratirwa, 2017), especially when juvenile snails are exposed to miracidia. In our
experiments, the R. balthica snails that remained uninfected after exposure to T. regenti
lived longer than the infected ones (Fig. 2). Many of them survived until the end of
the 60 day experiment. As the limiting factor for parasite invasion of R. balthica seems
to be the presence of P. antipodarum individuals, it can be concluded that the presence
of non–host snails during exposure to miracidia indirectly increased the survival of R.
balthica hosts. Although the results do not show clear evidence of the non–invasive nature
of P. antipodarum, they may suggest an additional, indirect effect of this snail species on
nativemalacofauna in new areas. Our results highlight the additional aspect of the influence
of alien snail species on native malacofauna. Ecologists emphasize the direct changes caused
by newcomers (Riley, Dybdahl & Hall Jr, 2008). In our opinion, especially in the case of
research on freshwater snails, the aspect of their association with trematodes should be
taken into account in analyses concerning the impact of alien species introduction.

CONCLUSION
The data represent a pilot study that precedes a wide–planned series of field and laboratory
studies focused on the influence of alien molluscan species, namely P. antipodarum,
on possible reduction of swimmer’s itch in European recreational water bodies. Our
experimental work demonstrates that a high population density of P. antipodarum lowers
the transmission of bird schistosomes miracidia to suitable snail hosts such as R. balthica.
Further research will focus on the potential ability of P. antipodarum to limit native
gastropod infections in natural conditions.
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