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Abstract

Explaining the genetics of many diseases is challenging because most associations localize to 

incompletely characterized regulatory regions. We show that transcription factors (TFs) occupy 

multiple loci of individual complex genetic disorders using novel computational methods. 

Application to 213 phenotypes and 1,544 TF binding datasets identifies 2,264 relationships 

between hundreds of TFs and 94 phenotypes, including AR in prostate cancer and GATA3 in 

breast cancer. Strikingly, nearly half of the systemic lupus erythematosus risk loci are occupied by 
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the Epstein-Barr virus EBNA2 protein and many co-clustering human TFs, revealing gene-

environment interaction. Similar EBNA2-anchored associations exist in multiple sclerosis, 

rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, juvenile idiopathic arthritis, and 

celiac disease. Instances of allele-dependent DNA binding and downstream effects on gene 

expression at plausibly causal variants support genetic mechanisms dependent upon EBNA2. Our 

results nominate mechanisms that operate across risk loci within disease phenotypes, suggesting 

new paradigms for disease origins.

Introduction

The mechanisms generating genetic associations have proven difficult to elucidate for most 

diseases, since the vast majority of the pertinent variants are presumed to be components of 

a yet to be sufficiently understood regulome. Gene-environment interactions add another 

layer of complexity that may help explain the etiology of many autoimmune diseases1–3. In 

particular, Epstein-Barr virus (EBV) infection has been implicated in the autoimmune 

mechanisms and epidemiology of systemic lupus erythematosus (SLE)4–7, increasing SLE 

risk by as much as 50-fold in children4. SLE patients also have elevated EBV loads in blood 

and early lytic viral gene expression6. Despite intriguing relationships between EBV and 

multiple autoimmune diseases, the underlying molecular mechanisms remain unknown8,9.

Genome wide association studies (GWASs) have identified >50 convincing European 

ancestry SLE loci (Figure 1a), providing compelling evidence for germline DNA 

polymorphisms altering SLE risk10–13. Like most complex diseases, the great majority of 

SLE loci occur in likely gene regulatory regions14,15. We therefore asked if any of the DNA-

interacting proteins encoded by EBV preferentially bind SLE risk loci. Our analyses reveal 

powerful associations with an EBV gene product (EBNA2), providing a potential origin of 

gene-environment interaction, along with a set of human transcription factors and co-factors 

(TFs) in SLE and six other autoimmune diseases. We present allele and EBV-dependent TF 

binding interactions and gene expression patterns that nominate cell types, molecular 

participants, and environmental contributions to disease mechanisms for these and 85 other 

diseases and physiological phenotypes.

Results

Intersection of disease risk loci with TF-DNA binding interactions

To identify TFs that bind a significant number of risk loci for a given disease, we developed 

the RELI (Regulatory Element Locus Intersection) algorithm. RELI systematically estimates 

the significance of the intersections of the genomic coordinates of plausibly causal genetic 

variants and DNA sequences immunoprecipitated (through ChIP-seq) by a particular TF. 

Observed intersection counts are compared to a null distribution composed of variant sets 

chosen to match the disease loci in terms of the allele frequency of the lead variant, the 

number of variants in the linkage disequilibrium (LD) block, and the LD block structure 

(Figure 2a and Supplementary Figure 1; see Online Methods). RELI is an extension of 

previous methods such as XGR16, which estimates the overlap between an input set of 
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regions and genome-wide annotations, although XGR does not explicitly replicate LD block 

structure in the null model.

We first gauged the ability of RELI to capture known or suspected relationships between 

TFs and diseases. The androgen receptor (AR) plays a well-established role in prostate 

cancer17, and RELI analysis revealed that AR binding sites in VCaP cells significantly 

intersect prostate cancer-associated loci (17 of 52 loci, Relative Risk (RR) = 3.7, Bonferroni 

corrected P-value (Pc)<10−6, Table 1). Similarly, binding sites for GATA3 in MCF7 cells 

significantly intersect breast cancer variants (Pc<10−10, Table 1), concordant with the 

established GATA3 disease role18. Consistent with EBV contributing to multiple sclerosis 

(MS)19–22, RELI reveals that the EBV-encoded EBNA2 protein occupies 44 of the 109 MS 

loci in Mutu B cells (Pc<10−29, Table 1). Prostate and breast cancer loci do not significantly 

intersect EBNA2 peaks, nor do the loci of certain inflammatory diseases such as systemic 

sclerosis (Table 1). Collectively, these observations illustrate that predictions made by RELI 

are specific and consistent with previously established disease mechanisms.

We assembled 53 European ancestry SLE loci (all with P<5x10−8 in case-control studies) 

with risk allele frequencies >1%, in aggregate constituting 1,359 plausibly causal SLE 

variants (Supplementary Data Set 1). To explore the possible environmental contribution 

from EBV, we evaluated the ChIP-seq data from EBV-infected B cells for the EBV gene 

products EBNA1, EBNA2 (three datasets), EBNA3C, EBNA-LP, and Zta (Supplementary 

Data Set 2). EBNA2 occupies loci that significantly intersect SLE risk loci in all three 

available ChIP-seq datasets (Table 1). For example, variants present in 26 of 53 European 

SLE GWAS loci intersect EBNA2 ChIP-seq peaks from the Mutu B cell line, an almost 6-

fold enrichment (Pc<10−24). No association was detected for the other EBV-encoded 

proteins. To examine the possibility that these results might simply be explained by 

enrichment of SLE loci in B cell open chromatin regions, we restricted the RELI null model 

to variants located in DNase hypersensitive regions in EBV-infected B cells. With this higher 

stringency null model, all of the EBNA2 associations remained significant (Table 1). Thus, 

the associations we detect between SLE risk loci and EBNA2 cannot simply be explained by 

the previously established strong co-localization between SLE risk loci and B cell regulatory 

regions in the genome23.

We next applied RELI to a large collection of human TF ChIP-seq datasets (1,544 

experiments evaluating 344 TFs and 221 cell lines) (Supplementary Data Set 2). In total, 132 

ChIP-seq datasets involving 60 unique TFs strongly intersect SLE loci (10−53<Pc<10−6). We 

chose a stringent corrected P-value cutoff of 10−6 based upon results from a simulation 

procedure aimed at estimating the false positive rate of our approach (see Online Methods). 

109 (83%) of the significantly associated ChIP-seq datasets were performed in EBV-infected 

B cell lines, with impressive fidelity between datasets (Supplementary Data Set 3). Nearly 

identical results were obtained using a null model that also takes the distance to the nearest 

gene transcription start site into account (Supplementary Figure 2) and similar results were 

obtained using the null model employed by the GoShifter24 method (Supplementary Figure 

3). Similar results were also obtained with an expanded set of all 83 SLE risk loci published 

to date (regardless of ancestry)10–13 or when separately examining SLE risk loci by ancestry 

(Supplementary Data Set 3). Strikingly, 20 of these 60 TFs participate in “EBV super-
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enhancers”, which enable proliferation and survival of EBV-infected B cells25. The human 

TFs in question largely bind the same loci occupied by EBNA2, comprising an optimal 

cluster of 28 SLE risk loci (Figure 1a).

If EBV is involved in SLE pathogenesis, then the absence of EBV, and hence EBNA2, 

should diminish the observed associations with SLE risk loci. For eight TFs, ChIP-seq 

datasets are available in both EBV-infected and EBV negative B cell lines (Supplementary 

Table 1). Notably, the four TFs with the strongest RELI P-values in EBV-infected B cells 

(BATF, IRF4, PAX5, and SPI1) have much weaker P-values in EBV negative B cells (Figure 

1a bottom left panel, Supplementary Data Set 4), consistent with these TFs occupying many 

SLE risk loci only in the presence of EBV. Further, all of the datasets for the ten TFs with 

the strongest RELI P-values were performed in EBV-infected B cells, and none of the other 

cell types available for these TFs show significant association (Figure 1a, bottom right 

panel). For example, 22 ChIP-seq datasets are available in EBV-infected B cells for the 

NFκB subunit RELA. Of these, 20 significantly intersect with SLE risk loci 

(10−53<Pc<10−17), while none of the remaining 14 available RELA datasets in any other cell 

type have significant intersection. Previous studies have demonstrated that EBV activates the 

NFκB pathway, supporting the validity of this result26–28. Combined with the striking 

intersection between EBNA2 binding and SLE loci, these data strongly suggest an important 

role for EBV-infected, EBNA2-expressing B cells in SLE.

EBNA2-occupied genomic sites intersect autoimmune-associated loci

We applied RELI to 213 diseases and phenotypes obtained from the NHGRI GWAS 

catalog29 and other sources (see Online Methods), revealing nine phenotypes displaying 

strong EBNA2 association in addition to SLE and MS: rheumatoid arthritis (RA), 

inflammatory bowel disease (IBD), type 1 diabetes (T1D), juvenile idiopathic arthritis (JIA), 

celiac disease (CelD), chronic lymphocytic leukemia (CLL), Kawasaki disease (KD), 

ulcerative colitis (UC), and immunoglobulin glycosylation (IgG) (Supplementary Data Set 

3). We designate the seven disorders among these with particularly strong EBNA2 

associations (Pc<10−8) the “EBNA2 disorders.” A recent study performed statistical fine-

mapping of the variants for six of the seven EBNA2 disorders (IBD was not included)30. Of 

the resulting 1,953 candidate causal variants in that study, 130 overlap with EBNA2 ChIP-

seq peaks in Mutu B cells (RR=8.7, Pc<10−132). Notably, this represents the second-ranked 

ChIP-seq dataset out of the 1,544 considered in our study, trailing only POLR2A ChIP-seq 

performed in CD4+ T cells (Supplementary Data Set 3). Thus, the overlap between EBNA2 

ChIP-seq peaks and loci associated with the EBNA2 disorders is even stronger when only 

considering statistically likely causal variants.

Consistent with the SLE results (Figure 1a), the same TFs tend to cluster with distinguishing 

loci for each disorder (Figure 1b–g, Supplementary Data Set 5). Further, there is a stronger 

association in EBV-infected than in EBV negative cells for many TFs, and the 10 most 

associated TFs consistently intersect more strongly in EBV-infected B cells than in other cell 

types (Figure 1b–g, Supplementary Data Set 5). Hierarchical clustering identifies a core set 

of 47 TFs binding to 142 risk loci across the seven EBNA2 disorders (Supplementary Figure 

Harley et al. Page 4

Nat Genet. Author manuscript; available in PMC 2018 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4). RBPJ, an established EBNA2 co-factor31–33, has the most similar binding profile to 

EBNA2 across loci, as expected.

NFκB proteins RELA, RELB, REL, NFKB1, and NFKB2 comprise many of the strongest 

associations with EBNA2 disorder loci (Supplementary Data Set 3). We therefore collected 

the 348 loci associated with at least one of the EBNA2 disorders, and removed the 179 

among these loci that contain at least one disease-associated variant located within a ChIP-

seq peak for any NFκB protein in EBV-infected B cells. Among the remaining 169 loci, 19 

still contain disease-associated variants falling within EBNA2 ChIP-seq peaks (2.15-fold 

enrichment, P=0.00012), indicating that many of these loci may be occupied by EBNA2 

independent of NFκB involvement.

In order to identify candidate EBNA2 co-factors, we isolated EBNA2 disorder-associated 

variants located within EBNA2 ChIP-seq peaks and evaluated them using RELI. This 

analysis confirms the importance of RBPJ, followed by members of the basal transcriptional 

machinery (TBP and p300), and NFκB subunits (which are involved in EBNA2-mediated 

gene activation34) (Figure 2b). Interestingly, predicted EBNA2 co-factors vary with disease 

phenotype; for example, EBNA2 and EBNA3C are highly synergistic at the disease loci of 

three of the EBNA2 disorders (IBD, MS, and CelD), but rarely coincide at loci for the other 

four diseases (Supplementary Data Set 6).

The particular TFs tend to be shared across the EBNA2 disorders, but the loci they occupy 

are less frequently shared. No EBNA2-bound locus is associated with all seven EBNA2 

disorders; most loci are unique to only one disorder (Figure 2c). Thus, the loci occupied by 

EBNA2 in each disorder are largely distinct from one another. One counterexample involves 

the IKZF3 locus encoding the Aiolos TF, a key regulator in B lymphocyte activation35, with 

genetic variants from five different EBNA2 disorders intersecting EBNA2 ChIP-seq peaks 

(Supplementary Figure 4).

If changes in gene regulation explain these results, then expression quantitative trait loci 

(eQTLs), ChIP-seq peaks for Pol-II, and histone marks associated with active gene 

regulatory regions should be relatively concentrated at the risk loci occupied by EBNA2. 

These predictions are indeed true for each of the seven EBNA2 disorders (Figure 2d and 

Supplementary Data Set 3). For example, <1% of all common variants in the human genome 

are eQTLs in EBV-infected B cell lines (Figure 2d). This value rises to 2.3% for common 

variants located within open chromatin in EBV-infected B cell lines, and rises further to 

2.7% for common variants within EBNA2 ChIP-seq peaks (Figure 2d, upper left panel, bars 

labeled “Common variants”). Thus, there is a slight trend for a common variant located 

within an EBNA2 ChIP-seq peak to influence gene expression in EBV-infected B cell lines. 

Strikingly, this relationship is >10-fold increased for EBNA2 disorder-associated variants - 

27.8% of EBNA2 disorder variants that are located within EBNA2 ChIP-seq peaks are also 

eQTLs, a value significantly greater than EBNA2 disorder variants located within open 

chromatin in EBV-infected B cell lines (20.5%, P<10−5, Welch’s one-sided t-test) or EBNA2 

disorder variants in general (10.4%, P<10−8) (Figure 2d, upper left panel, bars labeled 

“EBNA2 disorder variants”). Similar trends hold for the other data types examined (Figure 
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2d). In aggregate, these results hint at the potential magnitude of the environmental influence 

of EBNA2 upon host gene expression within EBNA2 disorder loci in EBV-infected B cells.

EBNA2 participates in allele-dependent formation of transcription complexes at disease 
risk loci

The observed associations (Figure 1) are genetic if and only if they are driven by causal 

allele-dependent differences. Since EBNA2 imitates the binding of NOTCH to RBPJ36, 

genetic variants at these loci could alter the binding of RBPJ (or another TF to which 

EBNA2 binds) or enable allele-dependent binding of a TF that requires the presence of 

EBNA2 by modulating the local chromatin environment (Figure 3a). Re-analysis of ChIP-

seq data provides a means to identify allele-dependent protein binding events on a genome-

wide scale - in cases where a given variant is heterozygous in the cell assayed, both alleles 

are available for the TF to bind, offering a natural control for one another since the only 

variable that has changed is the allele. We therefore developed the MARIO (Measurement of 

Allelic Ratios Informatics Operator) pipeline to identify allele-dependent protein binding by 

weighing imbalance between the number of sequencing reads for each allele of a given 

genetic variant, the total number of reads available at the variant, and the number and 

consistency of available experimental replicates (see Online Methods). MARIO is an easy-

to-use, modular tool that extends existing methods37–40 by (1) calculating a score that 

explicitly reflects reproducibility across experimental replicates; (2) reducing run-time via 

utilization of multiple computational cores; and (3) allowing the user to directly provide 

genotyping data as input. To identify heterozygotes for analysis, we genotyped five EBV-

infected B cell lines with available ChIP-seq data and performed genome-wide imputation 

(see Online Methods). We applied MARIO and a related method, ABC37, to a deeply 

sequenced (~190 million reads) GM12878 ATAC-seq dataset (GEO accession 

GSM1155957) and observed strong agreement between the 2,214 resulting scores 

(Spearman correlation of 0.98 (P<10−15)).

We next applied MARIO to 271 ChIP-seq datasets performed in one of the five genotyped 

cell lines, altogether assessing 98 different molecules. Since EBNA2 binds DNA indirectly 

as a co-factor, we first asked if the variants displaying EBNA2 allele-dependent binding 

might coincide with similarly altered binding of other TFs. This analysis revealed strong 

concordance of allele-dependent binding events both within and across cell types. For 

example, we identified 68 heterozygous common variants located within allele-dependent 

EBNA2 GM12878 ChIP-seq peaks. EBF1, whose binding is globally influenced by 

EBNA236, has a coincident ChIP-seq peak favoring the same allele at 39 (57%) of these loci, 

as opposed to only 8 (11%) on the opposite allele (P<10−4, binomial test, Figure 3b). Similar 

results were obtained when pairing EBNA2 binding in GM12878 with EBNA2 binding in 

Mutu cells, with established partners SPI1 and RBPJ, or with ATAC-seq chromatin 

accessibility data (Figure 3b). Analogous results are obtained for EBNA2 ChIP-seq data in 

Mutu and IB4 cell lines (Supplementary Figure 5). In total, MARIO confidently identified 

21 variants associated with 15 different autoimmune diseases displaying allele-dependent 

EBNA2 binding in at least one cell type (Table 2, Supplementary Data Set 7). We note that 

the number of heterozygous autoimmune variants for which EBNA2 prefers one allele over 

the other is not significantly more than expected by chance (see Online Methods). We also 
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note that several variants might involve the HLA genes, and the current view is that coding 

alleles in the HLA class II in general are likely (though not certainly) causal for autoimmune 

diseases. Nevertheless, most of these variants also involve allele-dependent host protein 

binding, chromatin accessibility, or presence of histone marks such as H3K27ac 

(Supplementary Data Set 8). Together, these results suggest that many autoimmune-

associated variants may act by modifying host gene regulatory programs via altered binding 

of EBNA2 and additional proteins.

To detect potential downstream effects of allele-dependent EBNA2 binding, we measured 

genome-wide gene expression levels by RNA-seq in Ramos, an EBV negative B cell line 

that can support an EBV infection. We confirmed the expected presence or absence of 

EBNA2 by sequencing (Online Methods) and western blot (Supplementary Figure 6). We 

identified a total of 80 genes with significant EBV-dependent alterations in gene expression 

(Supplementary Data Set 9), confirming that EBV modulates the expression of human 

genes. These results are highly consistent with a previous gene expression study and the 

literature (see Online Methods).

We next searched for autoimmune-associated variants that might impact EBNA2 binding, 

resulting in allele-dependent expression of a nearby gene. This analysis was dependent on 

the small subset of genetic variants satisfying four necessary criteria: the variant must be (1) 

plausibly causal for an autoimmune disorder; (2) immunoprecipitated by EBNA2 antibodies; 

(3) heterozygous in the cell line assayed; and (4) proximal to a plausible target mRNA that 

contains a heterozygous variant in Ramos cells (to detect allele-dependent expression). For 

example, the 21 EBNA2 variants listed in Table 2 satisfy the first three criteria, but only five 

satisfy the fourth criterion of being within 50kb of a potential target gene containing a 

heterozygous variant in the Ramos cell line.

Despite these limitations, our approach identified autoimmune-associated variants 

displaying allele-dependent EBNA2 binding and allele-dependent expression of a nearby 

gene. For example, rs3794102, a variant strongly associated with vitiligo (P<10−9 for case/

control association), has significantly skewed allele-dependent binding of eight proteins - 

EBNA2, its suspected co-factor EBF136, and chromatin accessibility all favor the non-

reference ‘G’ vitiligo risk allele (Figure 3c, Table 2, Supplementary Data Set 8). 

Intriguingly, the proteins favoring the ‘G’ allele are considered activators, whereas the two 

proteins that prefer the ‘A’ allele are repressors, suggesting that the variant and virus might 

act synergistically as an allelic switch. rs3794102, which is located within an intron of 

SLC1A2 (a gene for which we detect no RNA-seq reads), loops to the promoter of the 

neighboring CD44 gene based on Hi-C experiments performed in GM12878 cells 

(Supplementary Figure 7). rs3794102 is also an established eQTL for CD44 in EBV-infected 

B cell lines (P<10−11, ‘MRCE’ dataset, RTeQTL database41), and particular isoforms of 

CD44 are dependent on the presence of EBNA242. In our experiments, CD44 expression is 

6.8-fold higher in EBV-infected Ramos cells compared to uninfected Ramos cells (P = 

0.00015, Supplementary Data Set 9). Further, we identified a heterozygous genetic variant 

(rs8193) in strong LD with rs3794102 (r2=0.87) located within the CD44 gene body with 12 

‘T’ allele RNA-seq reads and only 5 ‘C’ allele reads in EBV-infected Ramos cells, and no 

detectable reads in Ramos cells lacking EBV (Supplementary Data Set 10). We 
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independently confirmed this result with allelic qPCR, observing a significant increase in 

expression for the T relative to the C allele in EBV-infected Ramos cells, with significantly 

lower levels of expression in the absence of EBV (Figure 3d). CD44 is a transmembrane 

glycoprotein involved in B cell migration and activation. Taken together, these results 

suggest that the ‘G’ vitiligo risk allele enhances formation of an EBNA2-dependent gene 

activation complex, resulting in elevated expression of CD44, and consequent increased B 

cell migration and/or activation. We also identified a variant (rs947474) associated with T1D 

and RA (Table 2) located near PRKCQ, another gene with allele- and EBV-dependent 

expression in our data (Supplementary Data Set 10). Intriguingly, PRKCQ plays an 

established role in activation of the EBV lytic cycle43. Together, these examples establish 

that multiple autoimmune variants may alter binding events of protein complexes containing 

EBNA2 and host proteins, resulting in EBV-controlled allele-dependent host gene 

expression.

Autoimmune-associated genetic mechanisms in EBV-infected B cells

We next used RELI to rank cell types by their relative importance to each of the EBNA2 

disorders, based on the intersection between disease-associated variants and likely regulatory 

regions in that cell type. This procedure revealed a clear enrichment for EBV-infected B 

cells in SLE. For example, of the 175 H3K27ac ChIP-seq datasets available, the highest 

ranked 30 datasets are all from EBV-infected B cell lines (Figure 4a). Analogous results are 

obtained for “active chromatin marks” (a model based on combinations of various histone 

marks44) (Figure 4b), H3K4me3, and H3K4me1, for SLE and virtually all of the seven 

EBNA2 disorders (Supplementary Data Set 3, Supplementary Data Set 11). Collectively, 

these results support the EBV-infected B cell being an origin for genetic risk for each of the 

seven EBNA2 disorders. This analysis also reveals a likely involvement of other immune 

cell types in these disorders, including T cells, natural killer cells, and monocytes 

(Supplementary Data Set 3). Although there are limited TF ChIP-seq data available for these 

cell types, one or more of the EBNA2 disorders are associated with 17 of the available T cell 

TF ChIP-seq datasets (Supplementary Data Set 3). Further, several EBNA2 disorder loci 

appear to be specific to T cells. For example, six MS-associated loci are largely T cell-

specific, collectively intersecting 67 T cell ChIP-seq datasets, compared to only 12 EBV-

infected B cell datasets for these same loci (Supplementary Data Set 12). Together, these 

results are consistent with multiple shared regulatory mechanisms acting across autoimmune 

risk loci, some common between cell types (e.g., B and T cells) and others being exclusive 

to a certain cell type.

RELI identifies relationships between particular TFs and many diseases

Extension of RELI analysis to GWAS data for 213 phenotypes identified 2,264 significant 

(Pc<10−6) TF-disease relationships (Supplementary Data Sets 1 and 3). In addition to the 

EBNA2-related associations, clustering of these results reveals a large grouping of 

hematopoietic phenotypes and well-established blood cell regulators such as GATA1 and 

TAL1 (Figure 4c). Other associations suggest additional mechanisms, many of which are 

supported by independent lines of evidence from other studies, such as GATA3, FOXA1, 

and TCF7L2 in breast cancer (Figure 4d), and AR, NR3C1, and EZH2 in prostate cancer 

(Supplementary Data Set 3). In total, application of these methods produces results 
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nominating global disease mechanisms for 94 different diseases or phenotypes 

(Supplementary Data Set 3), providing new directions for understanding their origins.

Discussion

Our efforts to understand the gene-environment interaction of SLE loci with EBV have 

revealed that EBNA2 and its associated human TFs occupy a significant fraction of 

autoimmune risk loci. In particular, NFκB subunits such as RELA, RELB, NFKB1, and 

NFKB2 also strongly intersect many of these loci, suggesting that NFκB is important in the 

mechanisms that confer risk in these inflammatory diseases. Further analyses suggest that 

multiple causal autoimmune variants may act through allele-dependent binding of these 

proteins, resulting in downstream alterations in gene expression. In this scenario, the 

relevant TFs and gene expression changes must occur in the cell type that alters disease risk. 

Collectively, our data identify the EBV-infected B cell as a possible site for gene action at 

select loci in multiple autoimmune diseases, with the caveat that existing data are biased, 

having been predominantly collected in this cell type.

Notably, four of the top 20 TFs that co-occupy EBNA2 disorder loci with EBNA2 can be 

targeted by at least one available drug (MED1, p300, NFKB1, and NFKB2)45, and a recent 

study shows that the C-terminal domain of the BS69/ZMYND11 protein can bind to and 

inhibit EBNA246. These results offer promise for the development of future therapies for 

manipulating the action of these proteins in individuals harboring risk alleles at EBNA2-

bound loci.

Our current data nominate particular TFs and cell types for 94 phenotypes, providing 

mechanisms possibly explaining the molecular and cellular origins of disease risk for 

experimental verification and exploration. No doubt, as new genetic association and TF 

binding data are collected, approaches such as ours will reveal additional disease 

mechanisms.

Online Methods

Collection and processing of datasets

Phenotype-associated genetic variants were largely obtained from the NHGRI GWAS 

catalog29. This catalog does not contain candidate gene studies, including those from the 

widely-used ImmunoChip platform60. Thus, for SLE, MS, SSc, RA, and JIA, peer-reviewed 

literature was curated (Supplementary Data Set 13). Only genetic associations exceeding 

genome-wide significance (P<5x10−8) were considered. Datasets were separated and 

annotated by ancestry, except where noted. Only phenotypes with five or more associated 

loci separated by at least 500 kb were considered, following Farh et al.30. Loci were 

anchored by the single most strongly associated variant and expanded to incorporate variants 

in strong linkage disequilibrium (LD) (r2>0.8) using Plink61, collectively constituting the 

plausibly causal variants. Final variant lists for each disease and phenotype are provided 

(Supplementary Data Set 1).
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Functional genomics data were obtained from ENCODE62 (downloaded on 4/14), Roadmap 

epigenomics63 (6/15), Cistrome64 (12/15), PAZAR65 (4/14), ReMap-ChIP66 (8/15), and 

Gene Expression Omnibus67 (Supplementary Data Set 2). ChIP-seq datasets containing less 

than 500 peaks were removed. eQTLs were obtained from GTExPortal49 (1/16), the 

Pritchard lab eQTL database (http://eqtl.uchicago.edu/) (4/14), and the Harvard eQTL 

database (https://www.hsph.harvard.edu/liming-liang/software/eqtl/) (4/14). TF binding 

motif models were obtained from Cis-BP (build 1.02)68.

Regulatory Element Locus Intersection (RELI)

RELI takes a set of genetic variants as input, expands the set using LD blocks, and calculates 

the statistical intersection of the resulting loci with every dataset in a compendium (e.g., 

ChIP-seq datasets) (Figure 2a and Supplementary Figure 1). In Step 1, sequencing data from 

1,000 Genomes69 are used to identify all variants with linkage (r2>0.8) to any input variant 

within each major ancestry (European, African, Asian), thereby assigning them to LD 

blocks. In Step 2, overlapping genomic coordinates determine whether an observed 
intersection is recorded between each LD block and each dataset. In Step 3, the expected 
intersection is estimated between each LD block and each dataset. The most strongly 

associated variant is chosen as the reference variant for the LD block. A distance vector is 

generated providing the distance (in bases) of each variant in the LD block from this 

reference variant. A random genomic variant with approximately matched allele frequencies 

to the reference variant is then selected from dbSNP70, and genomic coordinates of artificial 
variants are created that are located at the same relative distances from this random variant 

using the distance vector. Members of this artificial LD block are intersected with each 

dataset, as was done for the observed intersections. This strategy accounts for the number of 

variants in the input LD block and their relative distances, while prohibiting ‘double 

counting’ due to multiple variants in the block intersecting the same dataset. We repeat this 

procedure 2,000 times, generating a null distribution with stable P-values. The expected 

intersection distributions are used to calculate Z-scores and P-values for the observed 

intersection. The final reported P-values are Bonferroni corrected (Pc) for the 1,544 TF 

datasets tested. We calculate the relative risk by dividing the observed intersection by the 

mean expected intersection. We also considered a higher-stringency null model that only 

considers variants located within DNase-seq peaks in any of the 22 available EBV-infected 

B cell line datasets, which controls for the known association of autoimmune variants and B 

cell regulatory regions23.

We validated the RELI procedure as follows. First, we compared the Z-score-based P-values 

produced by RELI to empirically calculated P-values. We selected 187 ChIP-seq datasets 

with European SLE GWAS RELI corrected P-values that are evenly distributed between 1 

and 10−7. An upper bound of 10−7 was chosen due to the amount of time required to run the 

simulations. Overall, we observe very strong concordance between these 187 empirically-

derived P-values and the P-values estimated by RELI (Supplementary Figure 8, Panel A), 

with a Pearson correlation coefficient of 0.82 (P<10−45). We also performed 200,000,000 

simulations examining the EBNA2 Mutu ChIP-seq vs. European SLE variant relationship. 

Across these simulations, we observed a maximum of 16 loci intersecting EBNA2 Mutu 

ChIP-seq peaks (Supplementary Figure 8, Panel B), conservatively setting an empirically-
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determined P-value lower bound at 5 x 10−9 and further supporting our estimated P-value of 

Pc<10−24 for the 26 observed locus intersections. To validate our choice of 2,000 

simulations, we compared the P-values obtained for the 187 datasets when using 2,000 vs. 

5,000,000 simulations. Nearly identical P-values were obtained (Supplementary Figure 8, 

Panel C).

We also estimated RELI false positive rates. We first generated a “false library” of 1,544 

ChIP-seq datasets that match the “real library” by randomly repositioning each peak within 

the genome. This random “false library” of ChIP-seq results matches the number of datasets, 

the number of peaks each dataset contains, and the width of those peaks. Upon running the 

European SLE variants with RELI using 10 different “false libraries”, only one of the 15,440 

datasets achieved a P-value less than our Pc<10−6 threshold (Supplementary Data Set 3). 

Further, the P-value for this dataset (Pc<10−8) is much less significant than those for 

EBNA2, RELA, etc. (Pc ≪ 10−20). We thus estimate our overall false positive rate to be ~ 

1/15,440 (~0.006%).

Identification of optimal clusters

We identified optimal clusters (red outlines in Figure 1) by comparing the observed number 

of TF/locus intersections to results from simulations. First, loci (X-axis) and TFs (Y-axis) 

were sorted in decreasing order of the number of intersections (colored boxes in the 

heatmap). We then iteratively considered every possible sub-matrix boundary, starting at the 

upper left corner. In each trial, the total number of intersections is kept fixed, but the 

locations of the intersecting positions are randomly permuted across loci. A Gaussian null 

distribution was obtained from 10,000 random trials. P-values were calculated for each sub-

matrix by comparing the observed number of intersections within the sub-matrix to the null 

distribution, using a standard Z-score transformation. The optimal cluster was defined as the 

sub-matrix with the best P-value.

Cell line genotyping and imputation

We genotyped five EBV-infected B cell lines with available ChIP-seq data (Supplementary 

Table 2) on Illumina OMNI-5 arrays, as previously described71. Genotypes were called 

using the Gentrain2 algorithm within Illumina Genome Studio. Quality control was 

performed as previously described71. Quality control data cleaning was performed in the 

context of a larger batch of non-disease controls to allow for the assessment of data quality. 

Briefly, all cell lines had call rates >99%; only common variants (minor allele frequency 

>0.01) were included; and all variants were previously shown to be in Hardy-Weinberg 

equilibrium in control populations at P>0.000171. We performed genome-wide imputation 

using overlapping 150 kb sections of the genome with IMPUTE272 and a composite 

imputation reference panel of pre-phased integrated haplotypes from 1,000 Genomes (June 

2014). Included imputed genotypes met or exceeded a probability threshold of 0.9, an 

information measure of 0.5, and the same quality-control criteria described above for the 

genotyped markers.
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Detection of allele-dependent sequencing reads using MARIO

We developed the MARIO (Measurement of Allelic Ratios Informatics Operator) pipeline to 

identify allele-dependent behavior at heterozygous genetic variants in functional genomics 

datasets. In brief, the pipeline downloads a set of reads, aligns them to the genome, calls 

peaks using MACS2 (parameters: --nomodel --extsize 147 -g hs -q 0.01), identifies allele-

dependent behavior at heterozygotes within peaks (described below), and annotates the 

results (Supplementary Figure 9).

To estimate the significance of the degree of allelic imbalance of a given dataset at a given 

heterozygote, we developed the Allelic Reproducibility Score (ARS), which is based on a 

combination of two predictive variables: the total number of reads overlapping the variant 

and the imbalance between the number of reads for each allele. Other variables tested were 

uninformative (below). The ARS value also accounts for the number of available 

experimental replicates and the degree to which they agree. ARS values were calibrated 

using seven TFs with four replicate ChIP-seq experiments available in the same cell line 

(GM12878 or K562): SPI1 (set 1), SPI1 (set 2), NRSF, REST, RNF2, YY1 and ZBTB33.

ARS values were calculated as follows:

1. Determine the number of reads mapping to each allele of each heterozygous 
variant in each replicate. We applied our pipeline to each experimental replicate 

and counted the number of reads for each allele that overlap each heterozygous 

variant. Insertions and deletions were not considered. All duplicate reads were 

removed using the “MarkDuplicates” tool from the PICARD software package 

(https://broadinstitute.github.io/picard/). Before mapping reads using Bowtie273 

(parameters -N 1 --np 0 --n-ceil 10 --no-unal), we masked all common variants in 

the GrCh37 (hg19) reference genome to N, which removes bias generated by 

reads carrying non-reference alleles. We designate the allele with the greater 

number of reads the strong allele, and the other the weak allele (Supplementary 

Figure 10a).

2. Identify predictive variables of reproducible allele-dependent behavior across 
replicates. We collected a set of seven datasets, {D}, with each dataset comprised 

of four experimental replicates, {R} (Supplementary Figure 10b). Each replicate 

contains a set of variants {V} that are heterozygous in the given cell type. For 

each of these variants, we calculated the value of four variables {X}: the ratio 

between the number of weak and strong allele reads, the total number of reads 

available at the variant, distance to peak center, and peak width.

We evaluated the performance of each of these variables using a true-positive set 

of reproducible variants. This set was created by identifying all variants that 

share the same strong allele across all four replicates (Supplementary Figure 

10c). Each variable was assessed based upon its ability to effectively separate 

reproducible variants from non-reproducible variants (all other variants). The 

reproducible variants are enriched for allele-dependent behavior, whereas the 

non-reproducible variants are depleted (Supplementary Figure 10d, left-most 

panel). Of the four variables tested, two were predictive of reproducible allele-
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dependent binding: the ratio between the number of weak and strong allele reads 

(WS_ratio), and the total number of reads available at the variant (num_reads), 

which we designate the predictive variables.

3. Determine a function mapping the values of the predictive variables to a single 
ARS value. Our approach accommodates datasets containing any number of 

experimental replicates and rewards greater agreement between replicates. 

Within each of the seven datasets in the set {D}, we consider all possible 

combinations of one, two, or three replicates. Without loss of generality, we 

describe the procedure for the case of two replicates, which considers the subsets 

{R1,R2}, {R1,R3}, {R1,R4}, etc. We first identify the set {H} of reproducible 

variants (as described above) for each subset. We then threshold the WS_ratio 

into ranges, {(0 – 0.1), (0 – 0.2), (0 – 0.3), … (0 – 1 )}, and for each range, we 

calculate the fraction of variants that are contained in the reproducible variant set 

as a function of num_reads (Supplementary Figure 11a). At this stage, this 

fraction still accounts for all variants, both allele-dependent and non-allele-

dependent. We therefore adjust each curve by the normalized cumulative 

frequency of non-allele-dependent variants within the given range. For example, 

consider the WS_ratio=0.3 curve (Supplementary Figure 11a). Each point on this 

curve is divided by a single value representing the normalized cumulative 

frequency of the non-reproducible variants, which is obtained from the Y-axis at 

the X=0.3 position in the WS_ratio plot depicted in Supplementary Figure 10d. 

Before dividing, 1 is added to this value to avoid divide-by-zero errors. 

Collectively, this approach selectively penalizes non-allele-dependent behavior 

by accounting for the proportion of non-allele-dependent variants within each 

curve. These values were averaged across the seven datasets, yielding the final 

ARS values. This entire procedure is repeated for the cases of one, two, or three 

available replicates, generating the points shown in Supplementary Figure 11b. 

Curves were fit to these points using a saturating function:

ARSw =
Aw

1 + Bw × r − Aw,

where w is the WS_ratio, r is num_reads, and Aw and Bw are the fitting 

parameters. The resulting functions yield ARS values for any given heterozygous 

variant in any dataset, as a function of the number of experimental replicates, the 

WS_ratio, and num_reads. When multiple replicates are available, we only report 

an ARS value for a variant if the strong allele is consistent in the majority of 

cases. A direct interpretation of the ARS values can be seen in the relationship 

between ARS values and the WS_ratio (Supplementary Figure 11c).

Statistical significance of the number of EBNA2 allele-dependent binding events

We observed a total of 21 cases of allele-dependent EBNA2 binding to an autoimmune risk 

variant (Table 2). To establish the statistical significance of this observation, we collected the 

full set of 42 autoimmune-disease associated variants that are (1) located within a ChIP-seq 
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peak in at least one of the three available EBNA2 datasets and (2) heterozygous in the cell 

type from which that peak was obtained. This set represents all autoimmune variants for 

which we could have observed allele-dependent EBNA2 binding. We next created a pool of 

non-autoimmune-associated variants that also meet the above two requirements (resulting in 

a total of 4,160 variants). For each of the 42 autoimmune variants, we chose a corresponding 

non-autoimmune variant from this pool, while approximately matching for the total number 

of EBNA2 ChIP-seq reads in the peak (within 10% of the read count). This procedure thus 

creates a matched set of 42 non-autoimmune variants that have an equal chance of resulting 

in allele-dependent EBNA2 behavior. There were a sufficient number of variants to repeat 

the above procedure 10 times, without replacement. In total, we observed 256 significant 

EBNA2 allele-dependent binding events across these matched non-autoimmune variant sets, 

which is not significantly different from the frequency that we observed with the 

autoimmune variants.

EBV Infection of Ramos cells

All cells were confirmed to be free of mycoplasma infection using PlasmaTest (InvivoGen, 

San Diego, CA). Wild-type EBV was prepared from supernatants of B95–8 cells cultured in 

RPMI medium 1640 supplemented with 10% FBS for two weeks. Briefly, the cells were 

pelleted and the virus suspension was filtered through 0.45 μM Millipore filters. The 

concentrated virus stocks were aliquoted and stored at -80oC.

We infected ~2 x 106 Ramos Cells (ATCC CRL-1596) in the presence of growth medium 

containing 2μg/ml of phytohemagglutinin (PHA) for 4 hours. The infected cells were 

washed, cultured in growth media, and observed daily for multinuclear giant cell formation 

and morphological changes characteristic of EBV-infected B cells. After 10 passages, the 

infection was confirmed by measuring the expression of viral EBNA2 protein levels 

(Supplementary Figure 6).

RNA-seq

RNA was isolated from Ramos cell lines with and without EBV infection using the 

mirVANA Isolation Kit (Ambion). RNA sequencing targeting 150 million mappable, 125 

base pair reads from paired-end, poly-A enriched libraries was performed at the CCHMC 

DNA Sequencing and Genotyping Core Facility. Sequencing reads were aligned to the 

GrCh37 (hg19) build of the human genome using TopHat74 and Bowtie273 with Ensembl75 

RNA transcript annotations as a guide. In parallel, these data were aligned to the EBV 

genome (NCBI). As expected, 0 reads mapped in the EBV negative dataset, whereas 7,349 

reads mapped in the EBV-infected dataset. 82.8% of the sequence reads aligned specifically 

to the human transcriptome, with a 2.6% increase in the aligned reads in the EBV negative 

samples. No abnormal quality control (QC) flags were identified following QC analysis with 

the software FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). For 

allelic analysis, sequencing reads were aligned to the GrCh37 (hg19) build of the human 

genome using Hisat276. Differential expression analysis was performed using Cufflinks77.

As additional QC, we further compared our results to a study examining host gene 

expression changes to EBV infection in primary B cells28. Of the 80 genes whose expression 
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is significantly altered by the presence of EBV in our study, 18 of them are also significantly 

differentially expressed in this dataset. Further, among the 80 differentially expressed genes 

we detect, many of them represent classic host genes whose expression is modulated by 

EBV. Genes whose expression is concordantly activated by EBV include CD4478, 

TNFAIP279, MX180, and IFI4481; genes with lowered expression include VAV382 and 

CD9983.

Allelic qPCR

gDNA and RNA were extracted from Ramos cells with and without B95.8 EBV infection 

using the DNeasy Blood & Tissue Kit (Qiagen) and mirVana miRNA Isolation Kit 

(Invitrogen), respectively. RNA was treated with DNase using the TURBO DNA-free Kit 

(Ambion) and converted to cDNA using the High-Capacity RNA-to-cDNA Kit (Applied 

Biosystems). qPCR was performed with a single set of Taqman genotyping primers (Applied 

Biosystems) to rs8193 using the ABI 7500 PCR system. Fold change of expression was 

calculated with 2−ΔΔCT values, where cDNA was normalized to gDNA.

Statistical analyses

Details on statistical analyses are described in the corresponding sections. For statistical 

details on RELI and MARIO, see the corresponding sections above. The number of 

replicates or data points (N) is provided in the Figures and legends. Data are represented as 

means +/− one standard deviation, unless otherwise noted.

Data availability

RNA-seq data are available in the Gene Expression Omnibus (GEO) database under 

accession number GSE93709. Full datasets and results, including disease variants (with 

alleles) and all RELI and MARIO output, are provided in the Supplementary Material.

Code availability

The RELI and MARIO source code, with full documentation and examples, are freely 

available under the GNU General Public License on the Weirauch Lab GitHub page: https://

github.com/WeirauchLab/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Intersection between autoimmune risk loci and TF binding interactions with the 
genome
a. Results for SLE risk loci. X-axis displays SLE-associated loci. Y-axis displays the top 25 

TFs, based on RELI P-values, sorted by the number of loci. A colored box indicates that the 

given locus contains at least one SLE-associated variant located within a ChIP-seq peak for 

the given TF. The most significant ChIP-seq dataset cell type is indicated in parentheses. TFs 

that participate in “EBNA2 super-enhancers”25 are colored red. The red rectangle identifies 

those loci and TFs that optimally cluster together (see Online Methods). Bottom panel, left: 

comparison of EBV-infected B cell lines (grey bars) to EBV negative B cells (white bars). 
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The Y-axis shows the distribution of the RELI –log (Pcs) for each of the eight TFs with 

available data. Bars indicate mean. Error bars indicate standard deviation. Numbers indicate 

number of datasets. Horizontal line indicates the Pc<10−6 RELI significance threshold. 

Bottom panel, right: The top 10 TFs (based on RELI Pc-values) with data available in at 

least one EBV-infected B cell line (grey bars) and at least one other cell type (white bars). 

b–g. Results for the other six EBNA2 disorders. Full results are available in 

Supplementary Data Set 5.
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Figure 2. Properties of EBNA2-bound autoimmune disease loci
a. Schematic of the RELI algorithm. See Online Methods for details. b. TFs intersecting 
autoimmune risk loci occupied by EBNA2. RELI was re-executed using EBNA2 disorder 

variants intersecting EBNA2 ChIP-seq peaks as input. Top TFs are indicated. NFκB subunits 

are shown in red. Basal transcriptional machinery proteins are shown in blue. c. Most 
EBNA2-occupied loci are associated with only a single EBNA2 disorder. EBNA2-bound 

loci were categorized by the number of EBNA2 disorders with which the given locus is 

associated (X-axis). d. Functional properties of EBNA2 disorder EBNA2-occupied loci. 
Functional importance of EBNA2-occupied loci, assessed with four criteria. In each panel, 
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variants are segregated into two categories – common variants (left bars) and common 

variants associated with at least one EBNA2 disorder (right bars). Each category is divided 

into three types of variants (see key). The Y-axis of each plot indicates the percent of 

variants in each group that are, for example, eQTLs in EBV-infected B cells (top left plot). 

Error bars indicate the standard deviation obtained from sampling (with replacement) of 

50% of the variants. Values below indicate number of variants. Horizontal bars at the top 

indicate sampling-derived P-values based on Welch’s one-sided t-test.
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Figure 3. Allele-dependent binding of EBNA2 to autoimmune-associated genetic variants
a. Theoretical models presenting possible allele-dependent action of EBNA2. See text 

for discussion. b. Allele-dependent co-binding of EBNA2 with multiple proteins. ChIP-

seq datasets from EBV-infected B cell lines were examined for evidence of allele-dependent 

binding at heterozygotes. Datasets are sorted by the proportion of EBNA2 GM12878 allele-

dependent events (MARIO ARS value > 0.40, see Online Methods) that favor the same 

allele (X-axis). Values (N) indicate total number of variants. c. Allele-dependent binding of 
EBNA2 and human proteins at the CD44 locus. Top to bottom: chromosomal band (multi-

colored bar), location of EBV-infected B cell line ChIP-seq peaks for various TFs, location 

of rs3794102 variant, allele-dependent binding events (green bars). X-axis indicates the 

preferred allele, along with a value indicating the strength of the allelic behavior, calculated 

as one minus the ratio of the weak to strong reads (e.g., 0.5 indicates the strong allele has 

approximately twice the reads of the weak allele). d. Allele and EBV-dependent 
expression of CD44. Allelic qPCR of CD44 expression in EBV-infected and EBV negative 

Ramos B cells (see key). Fold-change in expression is provided relative to the C allele. Error 

bars represent standard deviation (n=12: three independent experiments of technical 

quadruplicates). P-values were calculated using a two-way ANOVA with a Tukey post-hoc 

test. EBV status and variant genotype were used as the two factors.
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Figure 4. Cell types and TFs at disease-associated loci
a. SLE variants significantly intersect H3K27ac-marked regions in EBV-infected B 
cells. H3K27ac ChIP-seq peaks were collected from 175 different cell lines and types. The 

Y-axis indicates the negative log of the RELI P-value for the intersection of SLE-associated 

variants with H3K27ac peaks in each dataset. b. SLE variants intersect active chromatin 
regions in EBV-infected B cells. Same as (a), but instead using “active chromatin” regions, 

which are based on combinations of histone marks44. c. Global view of RELI results – all 
diseases against all TFs. Columns and rows show the 94 phenotypes/diseases and 212 TFs 

with at least one significant (Pc<10−6) RELI result. Color indicates negative log of the RELI 

P-value (see key). Disease abbreviations are provided in the main text. d. TFs intersecting 
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breast cancer loci. Intersection between disease loci with TF-bound DNA sequences, as in 

Figure 1. However, here the cluster of TFs and risk loci instead largely may operate in ductal 

epithelial cells, independently of EBNA2. The top 20 TFs are shown - full results are 

provided in Supplementary Data Set 3.

Harley et al. Page 26

Nat Genet. Author manuscript; available in PMC 2018 October 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harley et al. Page 27

Ta
b

le
 1

In
te

rs
ec

tio
n 

of
 T

F 
C

hI
P-

se
q 

da
ta

se
ts

 w
ith

 m
ul

tip
le

 g
en

et
ic

 lo
ci

 o
f 

di
se

as
es

 a
nd

 p
he

no
ty

pe
s.

P
he

no
ty

pe
C

el
l l

in
e

T
F

N
um

be
r

F
ra

ct
io

n
R

R
P

c &
 P

*

Pr
os

ta
te

 C
a

V
C

aP
+

D
ht

_1
8h

r
A

R
17

0.
33

3.
70

2.
60

E
-0

7

B
re

as
t C

a
M

C
F7

+
E

st
ra

di
ol

G
A

TA
3

22
0.

36
3.

87
7.

45
E

-1
1

M
S

M
ut

u
E

B
N

A
2

44
0.

40
4.

66
6.

34
E

-3
0

SS
c

M
ut

u
E

B
N

A
2

2
0.

10
-

N
S

SS
c

IB
4

E
B

N
A

2
1

0.
05

-
N

S

SS
c

G
M

12
87

8
E

B
N

A
2

0
0.

00
-

N
S

SL
E

M
ut

u
E

B
N

A
2

26
0.

49
5.

96
1.

09
E

-2
5

SL
E

IB
4

E
B

N
A

2
10

0.
19

7.
46

1.
09

E
-1

1

SL
E

G
M

12
87

8
E

B
N

A
2

10
0.

19
8.

57
1.

94
E

-1
3

SL
E

IB
4

E
B

N
A

-L
P

4
0.

08
-

N
S

SL
E

M
ut

u
E

B
N

A
3C

5
0.

09
-

N
S

SL
E

R
aj

i
E

B
N

A
1

0
0.

00
-

N
S

SL
E

A
ka

ta
Z

ta
0

0.
00

-
N

S

SL
E

*
M

ut
u*

E
B

N
A

2*
25

*
0.

63
*

2.
85

*
1.

81
E

-1
1*

SL
E

*
IB

4*
E

B
N

A
2*

10
*

0.
25

*
3.

61
*

2.
44

E
-0

6*

SL
E

*
G

M
12

87
8*

E
B

N
A

2*
10

*
0.

25
*

4.
97

*
1.

22
E

-0
9*

D
et

ai
le

d 
re

su
lts

 a
re

 p
re

se
nt

ed
 in

 S
up

pl
em

en
ta

ry
 D

at
a 

Se
t 3

.

* R
E

L
I 

nu
ll 

m
od

el
 li

m
ite

d 
to

 E
B

V
-i

nf
ec

te
d 

B
 c

el
l l

in
e 

op
en

 c
hr

om
at

in
 r

eg
io

ns
 (

se
e 

te
xt

).

R
R

 =
 ‘

re
la

tiv
e 

ri
sk

’.
 P

c 
=

 R
E

L
I 

B
on

fe
rr

on
i c

or
re

ct
ed

 P
-v

al
ue

. N
S 

=
 P

c>
10

E
-6

. A
ll 

di
se

as
e 

an
ce

st
ri

es
 a

re
 E

ur
op

ea
n.

 C
a 

=
 c

an
ce

r. 
M

S 
=

 m
ul

tip
le

 s
cl

er
os

is
. S

Sc
 =

 s
ys

te
m

ic
 s

cl
er

os
is

. S
L

E
 =

 s
ys

te
m

ic
 lu

pu
s 

er
yt

he
m

at
os

us
.

Nat Genet. Author manuscript; available in PMC 2018 October 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harley et al. Page 28

Ta
b

le
 2

A
lle

le
-d

ep
en

de
nt

 b
in

di
ng

 o
f 

E
B

N
A

2 
to

 a
ut

oi
m

m
un

e-
as

so
ci

at
ed

 g
en

et
ic

 v
ar

ia
nt

s.

G
en

e(
s)

rs
 I

D
A

R
S

R
ea

ds
 (

St
r.

)
R

ea
ds

 (
W

ea
k)

St
r.

 B
as

e
D

is
ea

se
(s

)

H
L

A
-D

Q
A

1
rs

92
71

69
3#

0.
66

27
3

C
IB

D
, U

C
, L

un
g 

ca
nc

er

H
L

A
-D

Q
A

1
rs

92
71

58
8#

0.
50

22
11

C
Sj

S47

IK
Z

F2
*

rs
99

60
32

#
0.

65
27

6
A

SL
E

 (
A

S)

R
E

R
E

^
rs

24
01

13
8

0.
63

48
20

C
V

T
M

B
IM

1*
rs

23
82

81
8#

0.
61

31
12

A
IB

D

C
L

E
C

16
A

^^
rs

71
98

00
4

0.
59

16
0

G
SL

E

C
L

E
C

16
A

rs
99

85
92

0.
50

10
0

C
SL

E

C
D

44
^^

rs
37

94
10

2#
0.

58
30

13
G

V

C
D

37
*

rs
14

65
69

7#
0.

57
57

29
C

M
S

B
L

K
^

rs
27

36
33

5
0.

53
19

8
A

K
D

, K
D

 (
A

S)
, S

L
E

, S
L

E
 (

A
S)

, S
L

E
 (

m
ul

ti)

H
L

A
-D

Q
B

1^^
rs

31
29

76
3

0.
52

11
0

A
C

L
L

, S
Sc

PR
K

C
Q

rs
94

74
74

0.
52

11
0

A
T

1D
, R

A
48

T
N

IP
1*

rs
22

33
28

7
0.

52
17

7
G

SS
c

R
H

O
H

^^
rs

13
13

68
20

0.
52

14
1

86
T

G
D

D
Q

65
84

14
 (M

IR
31

42
, M

IR
16

4A
)*

rs
73

31
83

82
0.

50
10

0
A

SL
E

, S
L

E
 (

A
S)

, S
L

E
 (

m
ul

ti)

R
M

I2
^

rs
34

43
72

00
0.

49
10

2
A

C
el

D
, I

B
D

, J
IA

, M
S

Z
FP

36
L

1
rs

19
47

49
#

0.
47

11
4

C
IB

D
, T

1D

H
L

A
-D

Q
B

1^^
rs

53
20

98
#

0.
41

24
15

G
SL

E

H
L

A
-D

R
B

1,
 H

L
A

-D
R

B
5

rs
67

43
13

0.
41

24
15

G
C

L
L

, S
Sc

PP
IF

^^
rs

12
50

56
7

0.
41

8
3

T
M

S

TA
G

A
P*

rs
17

38
07

4
0.

40
47

32
T

C
el

D

A
ll 

C
hI

P-
se

q 
re

su
lts

 a
re

 f
ro

m
 M

ut
u 

ce
lls

, e
xc

ep
t f

or
 th

e 
R

M
I2

 lo
cu

s,
 w

hi
ch

 is
 f

ro
m

 G
M

12
87

8 
ce

lls
. A

dd
iti

on
al

 d
at

a 
ar

e 
av

ai
la

bl
e 

in
 S

up
pl

em
en

ta
ry

 D
at

a 
Se

t 7
. E

ac
h 

va
ri

an
t w

as
 a

ss
ig

ne
d 

to
 a

 g
en

e 
(c

ol
um

n 

1)
 a

s 
fo

llo
w

s.
 I

f 
th

e 
va

ri
an

t i
s 

lo
ca

te
d 

w
ith

in
 th

e 
pr

om
ot

er
 (

+
/−

 5
kb

) 
of

 a
 g

en
e 

ex
pr

es
se

d 
in

 E
B

V
-i

nf
ec

te
d 

B
 c

el
ls

 (
m

ed
ia

n 
R

PK
M

 o
f 

2 
or

 m
or

e 
ba

se
d 

on
 G

T
E

x4
9  

da
ta

),
 a

ss
ig

n 
it 

to
 th

at
 g

en
e 

(i
nd

ic
at

ed
 w

ith
 

‘*
’)

. O
th

er
w

is
e,

 if
 th

e 
va

ri
an

t i
s 

lo
ca

te
d 

w
ith

in
 a

 H
i-

C
 c

hr
om

at
in

 lo
op

in
g 

re
gi

on
 in

 G
M

12
87

8 
E

B
V

-i
nf

ec
te

d 
B

 c
el

ls
50

, a
ss

ig
n 

it 
to

 th
e 

cl
os

es
t i

nt
er

ac
tin

g 
ge

ne
 th

at
 is

 e
xp

re
ss

ed
 in

 E
B

V
-i

nf
ec

te
d 

B
 c

el
ls

 

(i
nd

ic
at

ed
 w

ith
 ‘

^^
’)

. O
th

er
w

is
e,

 if
 th

e 
va

ri
an

t i
s 

lo
ca

te
d 

w
ith

in
 a

 H
i-

C
 c

hr
om

at
in

 lo
op

in
g 

re
gi

on
 in

 p
ri

m
ar

y 
B

 c
el

ls
51

, a
ss

ig
n 

it 
to

 th
e 

cl
os

es
t i

nt
er

ac
tin

g 
ge

ne
 th

at
 is

 e
xp

re
ss

ed
 in

 E
B

V
-i

nf
ec

te
d 

B
 c

el
ls

 

(i
nd

ic
at

ed
 w

ith
 ‘

^ ’
).

 O
th

er
w

is
e,

 a
ss

ig
n 

th
e 

va
ri

an
t t

o 
th

e 
ne

ar
es

t g
en

e 
th

at
 is

 e
xp

re
ss

ed
 in

 E
B

V
-i

nf
ec

te
d 

B
 c

el
ls

. V
ar

ia
nt

s 
m

ar
ke

d 
w

ith
 ‘

#’
 a

re
 e

Q
T

L
s 

fo
r 

th
e 

in
di

ca
te

d 
ge

ne
 in

 a
t l

ea
st

 o
ne

 E
B

V
-i

nf
ec

te
d 

B
 c

el
l 

da
ta

se
t4

9,
52

–5
9 .

 “
A

R
S”

: A
lle

lic
 R

ep
ro

du
ci

bi
lit

y 
Sc

or
e.

 “
R

ea
ds

 (
St

ro
ng

 (
St

r.)
)”

 a
nd

 “
R

ea
ds

 (
W

ea
k)

” 
in

di
ca

te
 th

e 
nu

m
be

r 
of

 C
hI

P-
se

q 
re

ad
s 

m
ap

pi
ng

 to
 th

e 
st

ro
ng

 a
nd

 w
ea

k 
al

le
le

, r
es

pe
ct

iv
el

y.
 A

ll 
di

se
as

e 
as

so
ci

at
io

ns
 a

re
 ta

ke
n 

fr
om

 th
e 

or
ig

in
al

 d
is

ea
se

 li
st

s 
(s

ee
 S

up
pl

em
en

ta
ry

 D
at

a 
Se

t 1
),

 w
ith

 th
e 

ex
ce

pt
io

n 
of

 tw
o 

ad
di

tio
na

l a
ss

oc
ia

tio
ns

 (
ci

ta
tio

ns
 p

ro
vi

de
d)

. G
W

A
S 

re
su

lts
 a

re
 o

f 
E

ur
op

ea
n 

an
ce

st
ry

, e
xc

ep
t a

s 

Nat Genet. Author manuscript; available in PMC 2018 October 16.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harley et al. Page 29
in

di
ca

te
d 

(E
as

t A
si

an
 (

A
S)

).
 D

is
ea

se
 a

bb
re

vi
at

io
ns

: M
S,

 m
ul

tip
le

 s
cl

er
os

is
; I

B
D

, i
nf

la
m

m
at

or
y 

bo
w

el
 d

is
ea

se
; U

C
, u

lc
er

at
iv

e 
co

lit
is

; S
L

E
, s

ys
te

m
ic

 lu
pu

s 
er

yt
he

m
at

os
us

; C
L

L
, c

hr
on

ic
 ly

m
ph

oc
yt

ic
 

le
uk

em
ia

; S
Sc

, s
ys

te
m

ic
 s

cl
er

os
is

; S
jS

, S
jö

gr
en

’s
 s

yn
dr

om
e;

 C
el

D
, c

el
ia

c 
di

se
as

e;
 V

, v
iti

lig
o;

 K
D

, K
aw

as
ak

i’
s 

di
se

as
e;

 T
1D

, t
yp

e 
1 

di
ab

et
es

; G
D

, G
ra

ve
s’

 d
is

ea
se

; J
IA

, j
uv

en
ile

 id
io

pa
th

ic
 a

rt
hr

iti
s.

Nat Genet. Author manuscript; available in PMC 2018 October 16.


	Abstract
	Introduction
	Results
	Intersection of disease risk loci with TF-DNA binding interactions
	EBNA2-occupied genomic sites intersect autoimmune-associated loci
	EBNA2 participates in allele-dependent formation of transcription complexes at disease risk loci
	Autoimmune-associated genetic mechanisms in EBV-infected B cells
	RELI identifies relationships between particular TFs and many diseases

	Discussion
	Online Methods
	Collection and processing of datasets
	Regulatory Element Locus Intersection (RELI)
	Identification of optimal clusters
	Cell line genotyping and imputation
	Detection of allele-dependent sequencing reads using MARIO
	Statistical significance of the number of EBNA2 allele-dependent binding events
	EBV Infection of Ramos cells
	RNA-seq
	Allelic qPCR
	Statistical analyses
	Data availability
	Code availability

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2

