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Abstract

Motivation: Enrichment-based technologies can provide measurements of DNA methylation at

tens of millions of CpGs for thousands of samples. Existing tools for methylome-wide association

studies cannot analyze datasets of this size and lack important features like principal component

analysis, combined analysis with SNP data and outcome predictions that are based on all inform-

ative methylation sites.

Results: We present a Bioconductor R package called RaMWAS with a full set of tools for large-

scale methylome-wide association studies. It is free, cross-platform, open source, memory efficient

and fast.

Availability and implementation: Release version and vignettes with small case study at biocon-

ductor.org/packages/ramwas Development version at github.com/andreyshabalin/ramwas.

Contact: andrey.shabalin@utah.edu or ejvandenoord@vcu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Methylome-wide association studies (MWAS) can make unique con-

tributions to our understanding of disease etiology and identify clin-

ical biomarkers. MWAS is commonly performed using arrays that

measure only a small fraction (e.g. 2–3%) of all 28 million common

CpGs in the human genome. The obvious risk of such sparse meth-

ods is the potential to miss numerous association signals.

Enrichment methods can provide much better coverage. For in-

stance, we have shown that after protocol optimization, methyl-CG

binding domain sequencing (MBD-seq) assays 94% of all CpGs at a

cost comparable to that of arrays (Aberg et al., 2017; Chan et al.,

2017). However, existing software packages are not able to process

large-scale enrichment data, and often also lack important features,

such as fragment size estimation, principal component analysis of

the full dataset, combined analysis of methylation and SNP data, or

outcome predictions based on multiple methylation sites. To address

these limitations, we developed RaMWAS, an R package available

through Bioconductor that is free, cross-platform, open source and

allows users to take advantage of the R environment to customize

analyses. Although RaMWAS is primarily designed for the analysis

of methylation enrichment data, it can be used with other platforms

(e.g. arrays) or data types (e.g. genotypes).

2 Materials and methods

2.1 Data storage, memory economy and parallelization
It is common for R programs to store data in computer memory.

This, however, is not feasible for MWAS with enrichment data (e.g.

20 million CpGs across 1000 samples would already occupy 160

GB, which far exceeds the capacity of most computers). RaMWAS

solves this by using a specially developed system of file-backed data

processing that avoids loading all data into memory, and allows

for fast non-sequential access to large matrices (see R package ‘file-

matrix’). We have made RaMWAS fast by employing efficient
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algorithms and by parallelizing most tasks across multiple CPU

cores. Parallelization is facilitated by the use of file-backed data pro-

cessing as each job gets the data directly from the file matrices.

Next, we present RaMWAS components in the order of the pipeline.

2.2 Reading data and quality control (QC)
RaMWAS input data are BAM files with aligned reads. Once pro-

cessed, the large BAMs are no longer needed as all necessary informa-

tion is saved in compact RaMWAS format using only a fraction of the

disk space (typically 1–2%). After exclusion of duplicate reads and

reads with low alignment scores, RaMWAS calculates QC summary

statistics. For example, it calculates the fraction of reads aligned to

the X and Y chromosomes, which can be used to check the sex against

recorded in the phenotype data (Fig. 1a). Another QC metric is the

CpG density at which CpG scores peak (Fig. 1b). As several aspects of

the laboratory protocol affect this peak location, it can be used as a la-

boratory technical covariate in downstream analyses. Low quality

samples are usually detected and excluded based on such QC metrics

as the number of aligned reads, average alignment score, the number

of duplicate reads and the number of reads aligned away from any

CpGs. The full list of indices is available in the BAM QC vignette at

the Bioconductor website.

2.3 CpG score matrix
A natural way to quantify methylation with enrichment methods is

to estimate the number of fragments covering a CpG. For enrich-

ment approaches, single-end reads are most cost-effective (Chan

et al., 2017). As fragment sizes are not observed with single-end

libraries, RaMWAS estimates the fragment size distribution from

reads around isolated CpGs (Fig. 1c) prior to calculating CpG scores

using the approach proposed and validated by van den Oord et al.

(2013). RaMWAS filters out CpGs with low average score across

samples as they are non-methylated and unlikely to produce signifi-

cant associations. The CpG scores are scaled to the same sample

average to correct for varying number of total reads across samples.

2.4 Principal component analysis
RaMWAS can perform principal components analysis (PCA) on the

whole matrix of CpG scores. The PCA can account for measured

covariates to capture only the major sources of remaining variation.

A scree plot (Fig. 1d) is used to select the number of PCs to include

in the MWAS. The PCA can also be used for QC, as large individual

PC scores can indicate (multidimensional) outlying samples.

2.5 MWAS
Association tests are performed using linear regression while ac-

counting for selected covariates and top PCs. RaMWAS generates

QQ-plots with confidence intervals and inflation factor lambda

(Fig. 1e). It also reports the test statistics, p-values and q-values for

all CpGs. Top findings can be annotated with genomic tracks from

the online database BioMart.

2.6 Methylation risk scores (MRS)
For the purpose of making predictions from the methylation data, it

is more convenient and powerful to combine information from mul-

tiple CpGs into a single risk score. RaMWAS builds such predictor

by applying elastic net to the top CpGs from MWAS, as Horvath

(2013) did for predicting biological age. To avoid overfitting and

correctly estimate the predictive power, we use k-fold cross-

validation. Specifically, for each training set, RaMWAS performs

MWAS, selects top sites, trains the elastic net and makes predictions

for the test samples. The set of predictions is recorded as the MRS

(Fig. 1f).

2.7 CpG-SNP analysis
Point mutated CpGs, called CpG-SNPs, are particularly interesting

sites because in addition to the sequence variation they may show

differences in methylation. RaMWAS can perform CpG-SNP ana-

lyses if SNP data from the same subjects/samples is also available.

These tests are performed using a regression model that assesses

whether the case-control differences are proportional to the number

of CpGs (van den Oord et al., 2015).

2.8 Performance, memory use and comparison

with existing software
We tested RaMWAS on a dataset with 1132 samples and over 21

million CpGs that passed QC. Both the PCA and MWAS ran in

under 30 min on a regular desktop computer with 16 GB of RAM.

We also compared RaMWAS with the main alternative software

QSEA (Lienhard et al., 2016) which, although not exclusively de-

signed for large-scale MWAS, is the main alternative. The full details

of the comparison are provided in the Supplementary Material.

QSEA required vast amounts of RAM; to run it we had to limit the

data from 1132 to 200 samples and further needed to restrict the

analysis to a few select chromosomes. Clearly, this is a serious limi-

tation as MWAS sample sizes are typically larger, and for the best

analysis it is critical to analyze all chromosomes simultaneously.

Both RaMWAS and QSEA detected the well-known smoking

(a) (b)

(c) (d)

(e) (f)

Fig. 1. RaMWAS features. (a)––sex check via read count on chr. X and Y, (b)––

enrichment diagnostic via average score by CpG density plot, (c)—fragment

size distribution estimation, (d)—principal component analysis, (e)––QQ-plot

for major depression disorder phenotype and (f)––methlylation risk score for

age. The correlation between age and its MRS is 0.95. Details of the study are

provided in the Supplementary Material
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AHRR association [Andersen et al. (2015), Supplementary Fig. S1].

However, the QSEA P-values had a highly deflated distribution

(Supplementary Fig. S3–4, inflation factor k¼0.237). RaMWAS

showed excellent control of type I error (Supplementary Fig. S5,

k¼1.004). QSEA supports estimation of absolute methylation levels

at single-base resolution from enrichment data. However, results ob-

tained with these transformed scores did not show any advantage in

terms of detecting associations and still suffered severe deflation

(Supplementary Fig. S2).

In summary, in terms of performance, functionality and accur-

acy, RaMWAS outperformed QSEA and is currently the most viable

option for performing large-scale MWAS.
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