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Abstract

Modern hearing instruments contain logging technology to record data, such as the acoustic environments in which the
device is being used and how the signal processing is consequently operating. Combined with patient data, such as the
audiogram, this information gives a more comprehensive picture of the user and their relationship with the aid. Here, a
relatively large, anonymized dataset ( >300,000 devices, > 150,000 wearers) from a hearing-aid manufacturer was data
mined for connections between subsets of the logged varieties of data. Apart from replicating links that have previously
been reported in labor-intensive studies, a link between device style (in-the-ear/behind-the-ear) and the sound levels of
encountered environments was demonstrated, suggesting that some device types are more successful from a lifestyle
perspective. Furthermore, the data also suggested links between the audiogram and the sound environments in which the
aid was operated. Modeling the expected link between the environment and the microphone directionality settings revealed
patterns of either abnormal fitting or where the aid was not operating correctly—factors that may indicate a failed fitting.
Given the necessarily redacted nature of the dataset, the reported findings represent a proof-of-concept of the use of
relatively large-scale data mining to guide and assess hearing-aid fitting procedures for possible benefits to the clinician,
manufacturer, and patient.
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Introduction

There are many factors that contribute to a successful
hearing-aid fitting, only some of which are related to the
hearing loss or hearing aid. It has long been recognized
that the audiogram is insufficient to describe the residual
hearing capabilities (Hirsh, Rosenblith, & Ward, 1950)
and hence outcomes with aiding. In a review of nearly
30 years of literature exploring the journey from first
seeking an aid to a successful outcome, Vestergaard-
Knudsen, Oberg, Nielsen, Naylor, and Kramer (2010)
could only identify a single factor, the user’s self-
perceived degree of hearing loss, that positively
influenced the whole patient journey from first seeking
to long-term use. They reported a variety of other factors
that were responsible for positively influencing different
parts of the journey (e.g., personality, amount of social

interaction, and dexterity). The multiplicity of patient
factors to be considered in a hearing-aid fitting, com-
bined with the complexity of interactions possible
within algorithms used in modern hearing aids, means
that it is unlikely that relationships between patient
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factors and predicted usage of the aid will be correctly
identified by the human observer, challenging the ability
to set up the aid optimally from the time of first fitting.

In a landmark study attempting to establish relation-
ships between factors additional to hearing loss affecting
the benefits of aiding, Gatehouse, Naylor, and Elberling
(2006a, 2006b) demonstrated links between lifestyle
demands, cognitive abilities, and the acoustic environ-
ment in which the aid wearer expects to operate, that
were predictive of candidature and outcome for a
patient. For example, greater benefit from slow-acting
dynamic range compression was associated with lower
performance on a cognitive test. The study of
Gatehouse et al. (2006a, 2006b) was rather laborious,
involving many testing sessions, and was confined to a
relatively small population of established hearing-aid
users. The ability of a modern hearing aid to record,
or log, its dynamic operation permits the automatic
generation of large datasets from a wider sample of the
population, and at a lower cost, than was possible with
this sort of study.

Examples of the sort of data that are routinely logged
are the general properties of the acoustic environment in
which the aid is being used, the decisions as to how the
aid classifies the acoustic features of the environment,
and how the aid is processing that sound for the user.

An alternative approach to the focused study of
Gatehouse et al. (2006a, 2006b) would be to use data
mining techniques on a relatively large dataset, which
could also include not just experienced but also many
first-time, hearing-aid users. The purpose would be to
identify important factors contributing to a successful
fitting and their relationships for an individual patient
and to capture changes in fittings as experience with the
device increased. This alternative approach offers a more
representative sample of the patient population.

In recent years, there has been an increase in the appli-
cation of data mining to audiological data (Anwar &
Oakes, 2011; Laplante-Lévesque, Nielsen, Jensen, &
Naylor, 2014; Lee, Hwang, Hou, & Liu, 2010;
Panchev, Anwar, & Oakes, 2013; Singh & Launer,
2016; Timmer, Hickson, & Launer, 2017). Most studies
use small datasets (N =1000), although two studies
accommodated tens of thousands of users (Panchev
et al., 2013; Singh & Launer, 2016). The earlier of
these two studies is noteworthy in that it combined sev-
eral different types of patient information with dispen-
sing practice, increasing the dimensionality of the
dataset. However, only a few studies have explored the
data-logging facility of modern hearing-aid devices.
These tend to focus on a single dimension in the
logged data such as hours of use (Bentler & Nelson,
1997; Laplante-Lévesque et al., 2014; Marnane &
Ching, 2015; Muifoz, Preston, & Hicken, 2014;
Timmer et al., 2017) or volume control setting

(Mueller, Hornsby, & Weber, 2008): There is a rich
number of dimensions stored via data-logging that
have been left relatively underexplored. One particular
dimension in which we are ultimately interested is the
change in usage patterns over time, which could be an
indicator of successful uptake, or otherwise.

“Modality” is a standard term used to describe
subsets of the data, by which is meant one or more inter-
related dimensions of a particular kind. Often these
interrelated dimensions are acquired via the same
sensor (Lahat, Adali, & Jutten, 2015). For example, an
audiogram is a collection of values of absolute threshold
for a set of frequencies. The threshold at each frequency
constitutes a single dimension, but any subset of the
thresholds in the audiogram would be considered part
of the audiogram ‘“‘modality.” Similarly, the predicted
output sound pressure level (SPL) for a single given fre-
quency would constitute a dimension, but any subset of
output levels would be considered part of the output SPL
modality. As in Gatehouse et al. (2006a, 2006b), we are
interested in the interplay between modalities, especially
those outside of measures of hearing loss. In addition, we
aim to identify how the interplay affects not just the
hearing-aid wearer, as in the previously cited work, but
also how it can provide guidance to the clinician and
manufacturer.

This article reports the use of the Knowledge Discovery
in Databases (KDD) process, briefly reviewed in relation
to audiology in Mellor, Stone, and Keane (2018) or in
more depth in general purpose works, such as Fayyad,
Piatetsky-Shapiro, and Smyth (1996) and Han, Kamber,
and Pei (2011), to analyze an anonymized, relatively large
dataset provided by a hearing-aid manufacturer. To pro-
tect commercial confidentiality, and the anonymity of
patient, clinician, and dispensing practice, the data fields
supplied, as well as the level of detail within each field,
were a subset of the actual data collected. In addition,
some data collection that was omitted from transmission
to us may have been for purely administrative purposes by
the manufacturer and have no rational link to patient
outcomes. Hence, the results reported here represent a
demonstration of the capabilities of data mining methods
to identify relationships between data collected across a
multiple of dimensions, which may be of benefit to all
stakeholders involved in the supply, fitting, and use of
hearing aids. Given the redacted nature of the dataset,
the results should be seen as a “proof-of-concept™ of the
capabilities of data mining, while at the same time high-
lighting certain pitfalls due to anomalies identified by ana-
lyses used on the dataset.

The article starts by describing the provenance of, and
caveats associated with, the dataset. It then shows that
the application of data mining techniques on a relatively
large dataset provides analysis and insight that are com-
patible with previous findings reported from smaller but
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heavily curated datasets. After this, further analyses
establish linkages between different data dimensions,
such as the choice of device type or the audiogram and
associated patterns of usage. Such linkages are reported
in the context of how they have the potential to provide
benefit to clinician, manufacturer, and patient.

Details of the Dataset

The dataset comprised records for 316,758 individual
devices attending a total of 979,289 fitting sessions,
with 1,764,739 device ‘‘snapshots” (which reflect
device configurations multiply recorded both within
and across fitting session). The data were deidentified
before being shared with the researchers and were
therefore not subject to approval of an Ethics Panel
(Institutional review board). Due to the anonymization
process, we cannot identify exactly how many individ-
ual wearers these figures represent, since the data, as
received, do not directly identify links between left
and right devices on the same wearer. In addition, as
shown later, some devices appear to have been lent to
different users. A conservative estimate, after allowing
for such “loan” devices, as well as assuming 100% bin-
aural fittings, is in excess of 150,000 unique wearers.
To the best of our knowledge, this is the largest hear-
ing-aid related dataset that has been reported in the
literature to date. The dataset represents the logging
from the same generation of signal processing chip at
the core of a hearing-aid function. The same function
has been implemented in a variety of physical housings
(e.g., behind-the-ear (BTE)/in-the-ear (ITE)). It should
be recognized that the combination of this particular
generation of hardware, and its associated fitting soft-
ware, represents a snapshot of one company’s approach
to hearing aids over a comparatively short time period.
Therefore, the generalizability of the detail of any find-
ings should be cautious in its application.
The data fields provided included:

i.  the audiogram,

ii. the proportion of time the device was in a given
range of input level (12 categories, mapping from
“<40dB SPL.,” then in 5-dB ranges, until the
final category of “>90dB SPL”), as measured by
the device microphone,

iii. the proportion of time the device was in a different
acoustic classification (e.g., quiet, noise, or speech),

iv. the degree of gain reduction in each acoustic
classification,

v. the output SPL delivered into a 2-cc coupler, inde-
pendent of device style,

vi. the style of device (spanning several behind-the-ear
and in-ear device constructions),

vii. the number of days since the last visit for a fitting,

viii. a unique serial number by which each device was
identified, such that

ix. the chronology of fitting sessions could be estab-
lished by a second unique serial number which incre-
mented with time across the entire dataset.

These data fields can be subgrouped since some relate
to (a) the wearer, (b) the acoustic environment in which
they operate, and (c) the device behavior in response to
the patient settings and acoustic environments.

Examples of these data are given in Figure 1.

Although labels for the data fields have been given
earlier, some caution should be applied to their interpret-
ation. For example:

i.  Concerning the “‘audiogram” stored in the device:
The values recorded are those entered by the clin-
ician into the fitting software in order to get the aid
into a desired state, and hence might not reflect the
exact audiogram of the aid wearer. An exploration
of the extent of and handling of missing values is
described later in connection with Table 1.

it.  Concerning the objectivity implicitly attached to the
data fields: A value in a data field should not be inter-
preted as being “‘optimal” for that patient: No
assumptions should be made that the data were indi-
cative of an optimal fitting. One hypothesis is that, if
data mining is to produce insight into the data, it
should be able to identify not just beneficial behav-
iors but also those settings or behaviors that lead to
negative or no benefit, such as nonoptimal settings.
Part of the purpose of the analyses is to investigate
the degree of appropriateness, as exhibited through
other dimensions of the data.

iii. Concerning the accuracy of classification of a sound
scape: To be implemented on such a low-power
device, a compromise has to be made between com-
plexity and accuracy of the acoustic classifier. The
proportion of time spent in each class cannot there-
fore be 100% accurate, but we start with the pre-
sumption that the aid designer had made them
“sufficiently accurate” to be useful.

iv. Concerning the calibration of the devices such as the
measures of Input SPL and Output SPL: Given the
precision inherent in digital processing, these values
could be expected to remain in relative calibration
and therefore form an ordinal, rather than a car-
dinal, scale. However, their absolute calibration
relies on the hearing device remaining within manu-
facturer’s tolerances during the period of data col-
lection. Any calibration drift will reduce their
accuracy and add “‘noise” to the logged data, redu-
cing the discovery of, and likely strength of, any rela-
tionships related to these dimensions. Manufacturers
recommend regular servicing of their devices, such as
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Figure |. Example record from dataset.

Table 1. The Distribution of Records by Pattern of Audiogram Missing Values in a Dataset, Ranked by

Frequency of Occurrence Within the Dataset.

Frequency (kHz) 0.25 0.5 |

Occurrence rate (%)
60.13

11.40
9.55
7.24
4.86
2.20

1.44
1.06
0.46
0.43
0.43
0.24
0.17
0.15
0.09
0.08
0.07

X XX X X X X X X

XX X X

x X X

X
X

X X XX

x X X X X

> X X > X X

*

X

Note.A cross marks the missing values. The majority of fittings (60% of total data) record values for each frequency in the
audiogram, while the next most common type of fitting (| 1%) does not record the value at 8 kHz. In a small number of records

(0.43%), no values are recorded at all.
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by use of replaceable microphone covers, or dispos-
able wax traps at the ports of receivers placed in the
auditory canal, so as to limit the effect of these
sources of drift. If these service intervals are not
observed, then erroneous data could result.

v. Concerning the comparison of measures of
“InputSPL” across devices: Input SPL is referenced
to being measured at the device microphone, with
no correction for device style. Acoustic diffraction
effects around the pinna mean that the frequency
response differs between device types due to the dif-
ference in microphone position (Bentler &
Pavolovic, 1989). When comparing the total power
received at the microphone from a free-field source
with a “white-noise” (i.e., flat) spectrum with a 250
to 6300 Hz bandwidth, the maximum difference
between a behind-the-ear device and an in-ear or
in-canal device was 2 dB. For more realistic environ-
mental sounds, such as speech, the magnitude of the
difference was 1.5dB or less. Given the 5dB size of
the categories in the “InputSPL” modality, these
differences are unlikely to effect major changes
in histogram shape when comparing across
device styles.

Use of such a large dataset overcomes some of the
limitations of laboratory experiments which typically
use small numbers of usually highly motivated users.
However, the dataset was collected from a population
that attended audiology clinics, which was still a subset
of the total population. Any representative capture of
the “real-world” population requires expensive epi-
demiological studies.

Other limitations of this particular dataset concerned
the need for anonymization and commercial confidential-
ity. The dataset contained no demographic information as
to the age or gender of the aid wearer or on which ear the
device was worn. In addition, the measures of timing of
device use were only given as proportions and not abso-
lute units such as hours. To perform some of the reported
analyses, we have therefore had to make assumptions in
order to select (“preprocess”) the data to use those which
are likely representative only if the device has been used
for a sufficiently long period of time. Finally, for the sake
of impartiality, our relationship with the manufacturer
meant that, apart from discussions over definition of the
data fields and some small details of clinical practice and
fitting procedures, our analysis was largely “blind” and
not directed by the manufacturer. We chose which ana-
lyses to perform and report.

Data Preprocessing

As mentioned in Mellor et al. (2018), individual records
of datasets can be noisy or anomalous in a multitude of

ways. As an example, Table 1 shows the distribution of
missing values in the audiograms recorded across our
dataset; 35.6% of records have only one or two missing
values. Interpolation could be used to impute some miss-
ing values, and the erroneous records reincluded in the
dataset. Other potential sources of data unreliability
were also identified, as detailed later, which were less
amenable to interpolation. Hence, for the purpose of
this proof-of-concept study, we chose an aggressive
form of preselection in order to isolate what we esti-
mated to be reliable parts of the dataset. As a first
level of data cleaning, we therefore rejected dataset
records:

i.  if the number of days since the last visit was 7 or
fewer: For such a short usage duration, it was unli-
kely that the device had been used in a sample of
acoustic scenarios representative of typical use.

ii.  if the sum of proportions of time in the modalities of
“InputSPL” or acoustic classification did not
approach unity: The time proportions were specified
to two significant figures. Therefore, in scenarios of
low usage, the sum of the proportions would suffer
large quantizing errors and not add up to unity. Any
record where this sum was less than 0.9 was dropped
from analysis.

iil. if there were missing entries for any of the audiogram
values: The routine omission of measurements, such
as at 3 and 6 kHz, may be a regular practice of either
certain clinicians or certain clinics. Omission of
these data may introduce a bias into analyses, but
in the absence of any further identifiers in our data-
set, we could not check for the existence of, or mag-
nitude of, such a bias.

iv. if other characteristics of a dataset member indicated
questionable provenance: Examples of these charac-
teristics will be given later, according to the analysis
performed.

It should be noted that while Rules (i) and (ii) were
rigidly applied to provide a primary level of cleaning,
some of these rules were not applicable in some analyses.
For example, if an analysis did not require information
about the audiogram, then Rule (iii) was not applied to
the dataset records used in the analysis. Application of
these secondary cleaning rules (e.g., iii and iv) meant that
the size of the datasets varied between analyses.
Subsidiary cleaning rules may have been necessary
once anomalous behavior was detected, even after the
secondary level of cleaning. We describe one such exam-
ple later, the detection of loan devices. This iterative
selection and preprocessing is an example of the recur-
sive nature of the KDD process described in Mellor et al.
(2018). We therefore detail below the dataset size used in
each analysis.
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Example Applications of Data Mining
Identifying Anomalous Data Series

In general, measures in most dimensions for a device are
expected to be correlated over successive visits since a
device is normally only used by one person, and, except
for some audiological conditions, dramatic changes in
data, such as the audiogram, are uncommon. For a
number of devices, we identified that, over successive
visits, the recorded audiogram changed by amounts
greater than would be expected from variability arising
from test or retest. One possible explanation was that
the data came from a loan device, such as when a repair
was being made to a wearer’s regular device. The identi-
fication of such loan devices would be an important step
when trying to identify change in device or wearer behav-
ior from a time series of device snapshots: Unless the
device data were synonymous with that generated by the
same wearer, such a data series would be meaningless.

We present here a conservative estimate of the extent
of this practice of loaning of devices in this dataset. Some
loan devices were obvious to spot due to associated large
improvements in the audiogram over time. Since users
are rarely likely to experience improved hearing over
time, we conclude that the device was being worn by
multiple people. We first removed all records for which
there were missing values in the audiogram. Devices
where thresholds improved by 15dB or more at three
or more frequencies, and where the time since the last
visit was in excess of 7 days and less than 60 days, were
excluded. Such a widespread general improvement in the
audiogram is not generally expected. The 7-day thresh-
old was chosen so that the device could have had a
modest, representative, amount of use, and the 60-day
upper limit was small enough so that short-term loan
devices were more likely to be represented.

Such “hard” thresholds may remove legitimate
instances but allows the change between audiograms to
be ascertained in a standardized way.

Using this selection procedure, we list in Table 2 the
percentage of devices meeting these criteria for each device
style. Since the completely-in-the-canal (CIC), HalfShell,
ITE, and ITC devices require a mold of the ear, they are
highly unlikely to be loan devices. Using Fisher’s Exact
Test, we find that the percentage of identified CIC,
HalfShell, and ITE devices are not significantly different
to one another at the 5% level (if p < .05).

That is, for each device in this group of three, there is
no other device which is significantly different in the rate
at which the anomalous audiogram behavior occurs,
whereas there is a significant difference between rates
for these devices and for any of ITC, BTEa, and BTEDb.

The identification of these devices, unloanable due to
their custom fitting, at an average level of 1% to 2%,
hints at some other practice in the setting of the

Table 2. Percentage of Devices Identified by Large Changes in
the Audiogram Between Successive Visits, as a Function of Device
Style.

Number of
% identified occurrences
CIC 1.4 87
HalfShell 0.5 4
ITE 1.2 21
ITC 3.5 99
BTEa 10.7 2375
BTEb 9.3 405

Note. CIC = completely-in-the-canal; ITC = in-the-canal; BTE = behind-the-
ear; ITE =in-the-ear. Other abbreviations as before. There were two vari-
ants of BTE devices, BTEa and BTEb.

audiogram, such as an alternative way of fitting the
device. We verified with the manufacturer that such prac-
tice was not intended in the fitting software, indicative of
off-protocol use affecting around 1% to 2% of in-ear
devices. If this (abnormal) fitting practice occurs at a
similar level in the BTE style devices, we would expect
and estimate of true “loan” devices to be around (10%
to 2%)=28%. The exact number, and its interpretation,
depends on the strictness of the thresholds used in the
selection criteria described earlier.

Replication of Lee et al. (2010): Clustering to Find
Generic Audiogram Shapes

The dataset analyzed here is typical of many such sets in
that its generation was not the result of a focused
hypothesis or research question; hence, its analysis is
known as a secondary data analysis (Glass, 1976). If
data mining is to supplement or replace (at least some)
existing experimental methods, there is a need to show
the ability to replicate previously accepted results.
Unresolvable differences may teach caution in the use
and interpretation of data mining results from such a
broad-spectrum approach.

The study of Lee et al. (2010) used a hand-curated
data set to identify a small number of generic shapes of
the audiogram. Another part of the curation was that
patients aged under 30 were excluded from their study.
Further details of the curation are shown in the left-hand
column of Table 3. For comparison, the same details
from our dataset are shown in the right-hand column
of this table. As can be seen, even for the conditions in
which values are given, the two populations are very
different. This is not unexpected, since Lee et al. (2010)
focused on a very specific subset of the population,
chosen for their sensorineural hearing impairment,
while our dataset focuses on hearing-aid wearers from
a wider population with hearing impairment, and hence
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Table 3. Comparison of the Datasets of Lee et al. (2010) to That
Used in This Study.

Lee et al. This study
Data size, N 1,633 162,540
Male/female 719/914 NK
Type of losses sensorineural, mixed
presbyacusic (unscreened)
(screened)
Mean male age (years) 59.8+ 124 NK
Mean female age (years) 580+ 11.2 NK
Mean male hearing levels 37+£23 NK
(0.25 — 8 kHz) (dB HL)
Mean female hearing levels 26 + 19 NK
(0.25 — 8 kHz) (dB HL)
Grand mean hearing levels 31£22 54+ 14

(0.25 — 8 kHz) (dB HL)

Note. NK = not known.

likely mixed losses. Analysis of the two datasets might
then be expected to produce very different results. In this
section, we show how this can be the case, but despite the
extent of the unknowns detailed in Table 3, and with the
application of a priori knowledge, we can produce evi-
dence for similarities between their dataset and a selec-
tion of our dataset. Despite the difference in collection
methods, the same statistical “‘signal” is therefore present
in both sets, but initially is lost in the variability of our
large dataset.

The analysis reported by Lee et al. (2010) used the
method of K-means (Han et al., 2011, pp. 451-454),
and in their Figure 3, they settled on 11 as an optimum
number to specify generic shapes. They transformed
their audiogram shapes by offsetting all audiograms to
a value of 0dB HL at 250 Hz. Effectively, they were
looking at clustering the changes in, rather than the
absolute values of, the audiogram shape. These shapes
ranged from near-flat (their ““1”” and *“2”), gently sloping
(““6” and “8”’), and one (“11°’) with a very steep loss
between 250 and 1000 Hz, but near-flat and profound
in level above 1kHz. In addition, included were two
(“4” and °97), that were near-flat up to 2kHz, but
with a characteristic hump around 4 to 8 kHz, which,
given their preselection of sensorineural losses, would
generally be indicative of, at least, a component of
noise-induced hearing loss (NIHL). In a large cohort
of USA adults, the overall prevalence (bilateral and uni-
lateral) of high-frequency hearing loss was higher in
noise-exposed than nonnoise exposed individuals
(means 43% compared with 27%), but barely different
due to leisure-time mnoise (35% compared with
30%, respectively; Agrawal, Platz, & Niparko, 2008).
Therefore, the characteristic NIHL dip in the high-fre-
quency portion of the audiogram can reasonably be

250 500 1k 2k 4k 8k

dB (calibrated)

Frequency (Hz)

Figure 2. The || cluster centers found using K-means clustering.

expected to be seen in some clusters, provided that we
are searching for a sufficient number of clusters. For the
purpose of an example, we use the two presumed NIHL
shapes (“'4” and ““9” in Figure 3 of Lee et al., 2010) as an
indicator of the statistical signal for which we are search-
ing to replicate in our dataset.

Using our 100-fold larger dataset of 162,540 audio-
grams, a typical set of 11 cluster centers found by the
K-means method is shown in Figure 2. The descriptor
“typical” is used because the clusters are generated via a
stochastic process to minimize a K-means objective.
Changes in starting conditions do result in changes to
the clusters found, but, once averaged across multiple
starts, the cluster pattern is representative of these
starts. The transformation used by Lee et al. (2010), to
offset all audiograms to a value of 0dB HL at 250 Hz, is
reflected in our, and their, use of the ordinate label in
Figure 2 of “dB (calibrated),” rather than dB (HL).
Therefore, Cluster 1 in Figure 2, showing five audiogram
values less than 0dB, does not correspond to “Normal
Hearing” since any such audiograms had been removed
in the prior data cleaning (Mellor et al., 2018). The char-
acteristic 4 kHz NIHL notch does not appear in our ini-
tial analysis (Figure 2). However, this may be explained
by the previously identified differences between the two
datasets, for example, the bias toward otologically
abnormal patients of indeterminate age in our dataset.

To redress this bias, we screened for audiograms that
were more likely to have arisen from an otologically
normal and younger population (thereby reducing the
possible confound of presbyacusis as well as possible
[large] conductive losses), to select preferentially for a
subpopulation of our dataset where NIHL may have
had a greater influence. Although clinically ‘“Normal
Hearing” is commonly defined for thresholds not exceed-
ing 25dB HL, we used a more conservative figure of
not exceeding 20dB HL in order to only include
patients who were otologically normal for an age range
approximating the lower half of those patients seen by
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Lee et al. (2010). The ISO 7029 standard (International
Organization for Standardization, 2000) tabulates equa-
tions for the mean and standard deviation of hearing
thresholds to be expected as a function of frequency
and age in an otherwise otologically normal population.
Using these equations, a low-frequency pure tone aver-
age (PTA) (averaged over 250 and 500 Hz) not exceeding
20dB HL can be expected in at least 80% of the otolo-
gically normal population aged 55 or under. Although
this introduces a bias in mean age compared with Lee
et al. (2010), Robinson (1988) reported that the differ-
ence in mean thresholds between screened and
unscreened populations can be described by an acceler-
ated ageing of around 10 to 15 years in the unscreened
population. Any residual bias introduced by this new
stage of cleaning is also offset by a noncomplete elimin-
ation of conductive or mixed losses.

The K-means method was applied to this smaller, fil-
tered, dataset now comprising 25,938 audiograms. The
grand mean hearing levels (0.25 — 8 kHz; dB HL) for this
filtered dataset is 38 +£9 which is more in line with what
was reported by Lee et al. (2010). The revised set of
clusters is shown in Figure 3. Dips around 4 kHz, with
better thresholds at lower and higher frequencies, can
now be seen in Clusters “1” and “2” and to a much
lesser extent in Cluster ““6,” indicating that these
shapes did exist in subgroups of our dataset but were
rendered into invisibility by other biases or confounds
which were easy to account for by reference to alterna-
tive data sources. However, there still remain differences
between this revised clustering and that of Lee et al.
(2010): Their steeply sloping cluster “11” is not repli-
cated in Figure 3. Possible explanations for this may be
either that the hearing-aid designs in our dataset are not
intended to fit such extreme losses or such losses may be
more representative of candidates for cochlear implants.
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Figure 3. The || cluster centers found using K-means clustering
on audiograms with a PTA (250,500) less than 20dB HL.

For either possibility, we would not expect to see a hear-
ing-aid fitted, and hence no record in our dataset.

Given the large amount of unknowns about the demo-
graphics of our dataset, it is of interest that a priori
knowledge, in this case (International Organization for
Standardization, 2000), can be used to reduce the vari-
ance introduced by the unknowns.

Benefit to Clinician and Manufacturer: Detecting
Abnormal Device Behavior

We next demonstrate a finding from the dataset which
could be interpreted as a marker of either a failed fitting
or abnormal behavior of the device. We modeled the
data dimension “mean Input dB SPL” as a function of
the fraction of time the device was in its directional
mode. We expected that, as the mean Input dB SPL
increased, representing a noisier environment, the
device would spend more time using a directional
rather than an omnidirectional mode. We were not
privy to the exact internal workings of the device, but
would expect that the decision to use the directional
mode may also be influenced by the acoustic environ-
ment classifier, not just the Input SPL, as reported in
some hearing-aid designs (Banerjee, 2011). Hence, our
simplified assumption in this analysis, that there was a
solid link between the directionality and the Input SPL,
may not hold in all circumstances. The in-ear styles of
hearing aid did not have directional microphones, so the
focus was on a style that did, specifically a single model,
the BTEa. With the device constraint, and after cleaning,
the filtered dataset contained 62,277 entries.

The relationship between Input dB SPL and the time in
directional mode was modeled as a regression using a
Gaussian process. The Gaussian process framework is a
flexible probabilistic approach. The principled probabilis-
tic underpinnings of the framework provide a key strength
of Gaussian processes; their ability to quantify uncer-
tainty. By knowing the mean and variance of the process
describing the data, we can set boundaries outside of
which the existence of a data point can be regarded as
rare, possibly indicating abnormal behavior. Due to the
size of the filtered data, we use a sparse Gaussian process
model with 100 inducing points (Mellor et al., 2018) and a
kernel based on a combination of linear, squared-expo-
nential, and bias (offset) components. The size of
Gaussian process models normally grow linearly with
the size of the training data. However, the full model
can be approximated using inducing points which makes
the model size proportional to the number of inducing
points instead (Mellor et al., 2018). We use the GPy
Gaussian process library (The GPy, 2012-2015).

Figure 4 shows the scatter of data points for this ana-
lysis, with the mean shown by a solid line, and the (0.1%
to 99.9%) confidence range shown as a shaded area
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Figure 4. Gaussian process regression of the mean Input dB SPL encountered by BTEa devices as a function of the fraction of time spent
in directional mode. The mean regression function and confidence interval between quantiles 0.1% and 99.9% are shown. The light amber
stars outside of the confidence intervals are outliers which are considered to show abnormal behavior. The upward pointing arrows (red

online) indicate the inducing points (Mellor et al., 2018) used in the analysis.

about the mean. The position of the inducing points is
shown on the abscissa as upward pointing arrows. The
outliers in the dataset are shown by light stars (amber
online). Some of these stars are distinctly separate from
the main dataset and might warrant further investiga-
tion: Why would a hearing device spend 50% of its
time in directional mode when the mean input level is
very low (ca 40dB SPL) or why would an aid being
operated in a high sound level not spend much time in
its directional mode? Some of the anomalous fittings may
have occurred because pediatric fittings tend to have dir-
ectionality disabled. Exclusion of all fittings with
“Fracton of time in directional mode” equal to zero
and rerunning the analysis did not make any major
change to the final regression.

Figure 5 shows the distribution of z-score of the mean
Input SPL for each example in the dataset. The z-score
of an example with value v is given by - where 1 is the
mean value and o is the standard deviation of the value.
The mean and standard deviation of the Gaussian pro-
cess regression model evaluated at the fraction of time in
directional mode was used as the mean and standard
deviation in computing the z-score. The calculated
z-score of the mean Input SPL for an example is with
respect to the fraction of time the example was in direc-
tional mode. The end bins of the histogram contain all
examples for which the z-score exceeded +10. We can see
that the distribution appears to be skewed, possibly
partly due to the lowest category of Input SPL being

< 40. Although Gaussian models implicitly assume a
lack of skewness, skewness at higher z-scores is presumed
not to greatly influence the reliability of the modeling.
Since z-scores exceeding +5 should occur less than once
in a million examples, the high rate of occurrence in a
sample size of 62,277 implies that there is a population of
fittings that merit further investigation in order to
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Figure 5. A histogram of the z-score ((value — mean)/standard
deviation) of the data points shown in Figure 4, the mean Input SPL
encountered by BTEa devices as a function of the fraction of time
spent in directional mode. The mean and standard deviation for
each example was determined by the Gaussian process regression
model. The end bins include all examples exceeding £ 10 standard
deviations from the mean.

z-score

understand the cause. Although there may be valid rea-
sons for these outliers, detecting such possibly abnormal
behavior, and the reasons behind them, might be rele-
vant to allow manufacturers to detect defective operation
either due to device failure or unexpected programming
by the clinician. In this particular example, only around
0.2% of all fittings fall into this category of ““abnormal,”
s0 may not represent a major concern to a clinical work-
load but is included as a didactic example of data mining.

Benefit to the Patient: Three Extensions of Gatehouse
et al. (2006a, 2006b)

The studies of Gatehouse et al. (2006a, 2006b) estab-
lished links between factors other than degree of hearing
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loss that characterized the patient, but had not tradition-
ally been considered part of the fitting process of a hear-
ing aid. The purpose of the following analyses was to
look for similar links between the patient and their use
of their device. As outlined in Mellor et al. (2018), there
could be many or few significant clusters of relevance to
each analysis. Since we were trying to establish proof-of-
concept for the techniques of data mining, for modalities
with an ordinal scale, we chose to search for a fixed
number (five) of clusters to give a sample picture of the
data. For modalities with a cardinal scale, such as device
style, each category became a cluster center (six for
device style).

Linking device style to use. In the study of Gatehouse et al.
(2006b), the social lifestyle of the patient was explored by
the wearing of a comparatively bulky sound level dosim-
eter (Quest Technologies Q-400). This dosimeter could
record sound levels at short intervals over long time-
scales, but its battery life and memory was limited,
requiring frequent servicing for battery replacement or
data transfer. The dimension “InputSPL” logged in the
hearing aid, and present in the dataset, performs a simi-
lar function to the dosimeter, if not at the fine-grained
timescale of those used by Gatehouse et al. (2006b), and
also in a coarser categorization of input level into bins
with 5-dB spacings. We interpret that the dimension
“InputSPL” offers a glimpse into the acoustic demands
on the user. Gatehouse et al. (2006b) used the phrase
“auditory lifestyle or ecology” to describe their summary
measures because they were linking both sound level
and, via a diary and questionnaires, the perceptual
demand in those environments. A perceptual demand
measure was not available to us. We therefore interpret
that, if the device is commonly used toward the middle
and upper end of the range of Input SPL, the user has an
acoustically demanding lifestyle spanning either work or
leisure, or both. By this, we understand that a longer
duration logged with higher sound levels indicates that
the user has to either be environmentally aware or need
to communicate, rather than deactivate the aid. To avoid
confusion of terminology with that of Gatehouse, we
therefore use the phrase “acoustic demand.”

The first analysis considers the possible relationship
between the device style and range of Input SPL to
answer the question “Is a particular device style asso-
ciated with a particular pattern of acoustic demand?”
After cleaning (removing entries with missing values
for device style or any of the Input SPL dimensions),
only the most recent entry for each device was kept for
analysis so that the dataset contained 250,258 entries.
There were 12 dimensions for Input SPL leading to
212 _ 1 (=4095) possible combinations of dimensions in
this modality. All combinations were searched. This
leads to (2> — 1) x 5 x 6 = 122,850 tests to adjust for

using the Bonferroni correction. This correction is
noted in explanation of the algorithm in the subgroup
discovery section of a companion paper (Mellor et al.,
2018). The resulting threshold (desired p-value/number
of tests) is therefore small. Such a search size does greatly
increase the risk of false positives: Hence, we qualify the
significance by setting a criterion on reporting results
where the effect size was considered sufficiently “‘large”
(1.1). Since some data dimensions, such as device
style, were categorical (ITE, CIC, etc.), the clusters
were centered on the styles themselves. There were
eight dimensions for the audiogram.

The subgroup discovery method of Umek and Zupan
(2011) was wused and an example of the subgroup
found which contained the largest effect size is shown
in Figure 6.

This subgroup occurred when the Input SPL modality
contained only a single dimension, the proportion of
time spent below 40dB SPL (a very quiet environment
or “the bottom drawer”).

Here, the value of the Input SPL < 40dB cluster
refers to the cluster center, so the subgroup (BTEa,
0.188) refers to the subgroup containing the device
style BTEa and Input SPL < 40dB cluster with center
0.188.

There are two interesting subgroups that have an
effect size exceeding 1.1 and are greater than 0.1 of the
entries in the dataset. These correspond to the subgroup
(0.014, CIC) and (0.082, BTEa). Other interesting sub-
groups where the effect size exceeded 1.1, but constituted
a smaller share of the population, were (0.188, BTEa)
and (0.360, BTEa).

Despite there being many examples of BTEa devices
in the dataset, their use is commonly associated with two
clusters: more common for a low amount of Input below
40dB SPL (0.082), and less common for moderate occu-
pancy of low-sound-level environments (0.188 and
0.360). However, the use of the CIC is more common
where it is rare (0.014) to operate with an Input SPL of
less than 40dB. We associate this latter group with a
higher acoustic demand (or the aid spends less time in
a drawer than for other device styles). The phenotype of
acoustic demand therefore appears to have a strong link
with device type.

To test the validity of such a finding, we next
expanded the dimensionality of the Input SPL data
from the use of a single value to the use of the full 12
values, in an attempt to predict the choice of device style
from a more complex classification of the patient’s
acoustic demand. To this end we ran a 10-fold cross-
validation of a Random Forest containing 50 trees to
predict device style from the Input SPL range modality.
The trees were split according to the Gini impurity
(Mellor et al., 2018) where branch depth was set as the
default of the Pedregosa et al. (2011) package used.
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Figure 7. The confusion matrix generated from 10-fold cross-
validation of a Random Forest classifier predicting device style
from the Input SPL modality.

The confusion matrix is shown in Figure 7. This com-
pares the device that would be predicted to be used
(abscissa category), on the basis of the Input SPL modal-
ity, against the device actually used (the ordinate cat-
egory). The cumulative prediction from the “leaves” of
the individual trees in the Random Forest are therefore
summarized in each cell of the matrix. A summary of this
matrix is that, nearly independent of the device actually
used, the Random Forest model would predict use of a
BTEa device (dark column). This would imply that,
regardless of acoustic demand phenotype, it is likely
that a BTEa was used. At first sight, this indicates that

the predictive power of the Input SPL modality was poor,
contradicting our earlier finding. The reason for this poor
predictive power is due to the ubiquity of the BTEa device
dominating the dataset. The prediction of the learned
Random Forest showed much better performance on
training data, which suggested overfitting. We therefore
trained another Random Forest model with the same set-
tings except for setting the maximum branch depth before
reaching a leaf to 4. This would prevent the Random
Forest from learning rules too specific to individual exam-
ples. In this case, the decisions learned always predicted
BTEa regardless of input. This was true for both the test-
ing and training data in the cross-validation. Despite the
tendency to predict BTEa regardless of input, we can
glean useful information from the Random Forest.

We can see from the confusion matrix that prediction
of use of the CIC device was most easily discriminated
from that of the BTEa device by the Random Forest
method (top left-hand corner of the matrix, cell value
of 0.14). If all of the leaves correspond to a similar sub-
space of the Input SPL dimension, this hints toward a
dependence between this subspace and the CIC device.
Figure 8 shows a heatmap of the subspaces correspond-
ing to a prediction of use of a CIC over all decision trees
learned in the cross-validation of the Random Forest.
White areas of the map show areas of low predictive
power and darker areas show areas of high predictive
power. We can see that CIC devices were predominantly
predicted either when the device was used infrequently
with Input SPL below 40 dB or also when the device was
used more frequently in the range 80dB to 85dB. This
would imply that CIC devices were used by people with
higher acoustic demands. This corresponds to the earlier
findings of the subgroup discovery. We therefore have
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Figure 8. A heatmap showing the areas of the Input SPL modality
that predicted a CIC device. Darker hues (of blue online) denote
areas of high predictive power and white denotes areas of low
predictive power.

shown two different approaches leading to the same find-
ing. This correspondence in result gives us confidence
that the finding is a reflection of the dataset and not an
artifact of the method used.

From this, we suggest that CIC devices may be recog-
nized as achieving greater market penetration than the
use of BTEa devices for those people with a higher
acoustic demand. Although anecdotes from experienced
clinicians may cover such a suggested link, the informa-
tion is carried with some robustness within a large
dataset collected only over a few years, not a lifetime.
Of course, other explanations are possible such as:

i. acircular argument exists where the clinician recom-
mends a CIC based on “perceived wisdom,” and

ii.  given the increased price of a CIC over a BTE due to
the customization required, there may be a contri-
bution of other, psychological, factors of which
price and cosmetic appearance are just a few.

Exploration of such would require a richer dataset.

Linking audiogram to device use. We next considered pos-
sible interactions between the audiogram data and Input
SPL. After cleaning, the dataset contained 157,898
entries. There are 12 dimensions for the Input SPL lead-
ing to 2!> — 1 possible combinations of dimensions in
this modality. There are eight dimensions for the audio-
gram and therefore 2% —1 possible combinations of
dimensions for the audiogram modality. All combin-
ations were searched. This leads to (2% —1)x
(212 — 1) x 25 =26, 105, 625 tests to apply, allowing for
the effects of multiple comparisons using the Bonferroni
correction. Such a large search space does greatly
increase the risk of false positives: Hence, the ecarlier
qualification with a criterion on effect size. Additional

sanity checks for false positives are typically included
in the “Interpretation/Evaluation” section of the KDD
process. The largest effect size occurred when the Input
SPL modality contained all 11 dimensions and the audio-
gram modality contained just 2 of the 8 possible dimen-
sions, the thresholds at 250Hz (AC250) and 500 Hz
(AC500). The results are shown in Figure 9.

The audiogram clusters are denoted by the correspond-
ing cluster centers (in dB HL) and the traces of the higher
dimensional Input SPL clusters are labeled and shown on
the right-hand plot. These show a general pattern from
clusters CO to C4 of patients who spend progressively less
time in environments with moderate to high sound levels.
No interesting subgroup had a size exceeding 0.1 of the
total population (after cleaning). An interesting subgroup,
where the effect size exceeded 1.1, was (12,13, C0) as given
by Figure 9. This corresponds to users with good hearing
in lower frequency ranges (250 to 500 Hz) who habitually
occupy louder environments. This pattern hints at a pro-
gressively lower acoustic demand as the degree of hearing
loss increases. As previously, we qualify this statement by
acknowledging that there may be other contributing fac-
tors to the finding such as age (which contributes to the
degree of hearing loss (International Organization for
Standardization, 2000)) for which, in this dataset, we
could not control.

Linking environmental gain reductions to use. Finally, we
considered the interaction of Input SPL with a pair of
modalities labeled as “‘environmental gain reductions,”
reductions available either when the aid is classifying
that it is operating in noisy or in quiet acoustic environ-
ments. After cleaning, the dataset contained 142,023
entries. This leads to (22 —1) x (2> —1) x 25 = 307,
125 tests with the significance level being adjusted
using the Bonferroni correction. Results are shown in
Figure 10, in a similar style to those presented in
Figure 9. Again, the right-hand panel shows a similar
pattern of Clusters CO to C4 indicating groups of
patients who, as the cluster number increases, spend
progressively less time in environments with moderate
to high sound levels.

In the left-hand panel, in general, we can see that
subgroups containing Input SPL clusters for the mostly
quiet environments (C3 and C4) correspond to environ-
mental gain reduction clusters with the largest quiet gain
reduction. Interesting subgroups containing Input SPL
clusters in moderately louder environments correspond
to environmental gain reduction clusters with smaller
quiet gain reduction.

Discussion

Using a dataset that had been heavily redacted in order
to maintain anonymity of the clients and the clinicians,
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we have shown the existence of significant relationships
across modalities in data logged in hearing instruments.
Traits of the device (the style) and the user (the audio-
gram) were linked to their acoustic demand (measured as
the Input SPL of the device). These data modalities
stretch across different domains.

The redaction, as well as our arms-length relationship
with the anonymous manufacturer, has meant that the

findings may be explicable by factors to which we were
not privy and may be much more prosaic. Because of the
extensive searching, some of the findings may exist
purely by chance. Such uncertainties may only be resolv-
able by access to commercially sensitive information,
and therefore have to be performed “in-house.”
The work reported here should be considered as a
“proof-of-concept” of the potential for data mining of
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such large datasets. Although we initially wished to look
at the evolution of data between successive visits, the
current level of access and obfuscation did not reliably
permit such use. We are given to understand that the full
dataset contained much more detail, so we speculate that
this may help clarify such a use.

The automated analysis has identified patterns in the
data that may warrant further investigation of:

1. dispensing behavior, for example, where the audio-
gram recorded in a custom-fit style exhibits marked
changes between visits: Although there may be a
valid clinical explanation for a fluctuating hearing
loss, such as Méniére’s disease, it may be indicative
of other problems such as off-protocol programming
or device failure, contributing to a potentially dissa-
tisfied customer.

il. device performance: The quality control of a device
depends on spotting out-of-specification product
(by 1its distinctly “non-average” use or operation).
This can be due to many reasons, including dispen-
sing behavior.

iii. user performance and preference: Is the device enhan-
cing, maintaining, or degrading the previous (or pre-
ferred) lifestyle of the user?

The collection of data modalities much wider than
just the hearing loss of the patient was the philosophy
behind Gatehouse et al. (2006a, 2006b), but the results
presented here have extended beyond the patient (iii
above) to include the dispensing clinician (i, above) as
well as the manufacturer (ii, above), that is, including
more of the stakeholders in the hearing-aid fitting process.
One issue is the establishment of a baseline behavior of the
patient before the intervention has started. This is where
the predictive power of the data mining is required. Can
demographic factors act as a proxy for the anticipated
behavior, right from the time of first fitting?

On richer datasets, the techniques appear to offer
great promise to personalize fittings from an earlier
stage in the patient journey, as well as the possibility to
automatically fine-tune the device based on usage pat-
terns, which can be done without return to the clinic.

Such fine-tuning would benefit from a more reliable
sense of individual success. The dimensions we analyzed
here would need to be augmented with richer informa-
tion such as the user’s report of benefit or satisfaction.
To avoid clinician overload, such data should be col-
lected from other sources routinely generated in the
client care pathway (e.g., the clinical record of stan-
dard-procedure questionnaires, number of revisits,
reason for visit, and attendance patterns).

Finally, after such conclusions, it serves to be
reminded that the datasets are a collection of num-
bers, exhibiting statistical relationships (and flaws).

These relationships only acquire importance with inter-
pretation by, and the attachment of meaning from, pro-
fessionals such as audiologists and device designers. Only
then will the spurious be separated from the causal rela-
tionships. Perhaps there exists other categories between
“causal” and “‘spurious,” which we tentatively label as
“novel” or “unforeseen,”” which prompt research ques-
tions to define more conventional, such as laboratory-
based, experiments.
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