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Abstract

Respiration-correlated CBCT, commonly called 4DCBCT, provides respiratory phase-resolved 

CBCT images. A typical 4DCBCT represents averaged patient images over one breathing cycle 

and the fourth dimension is actually breathing phase instead of time. In many clinical applications, 

it is desirable to obtain true 4DCBCT with the fourth dimension being time, i.e., each constituent 

CBCT image corresponds to an instantaneous projection. Theoretically it is impossible to 

reconstruct a CBCT image from a single projection. However, if all the constituent CBCT images 

of a 4DCBCT scan share a lot of redundant information, it might be possible to make a good 

reconstruction of these images by exploring their sparsity and coherence/redundancy. Though 

these CBCT images are not completely time resolved, they can exploit both local and global 

temporal coherence of the patient anatomy automatically and contain much more temporal 

variation information of the patient geometry than the conventional 4DCBCT. We propose in this 

work a computational model and algorithms for the reconstruction of this type of semi-time-

resolved CBCT, called cine-CBCT, based on low rank approximation that can utilize the 

underlying temporal coherence both locally and globally, such as slow variation, periodicity or 

repetition, in those cine-CBCT images.
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I. Introduction

When cone beam computed tomography (CBCT) is applied to thorax or upper abdomen 

regions, motion-induced artifacts, such as blurring or distortion, become a serious problem, 

because different X-ray projections correspond to different volumetric CBCT images due to 

patient respiratory motion. To overcome this problem, four-dimensional CBCT (4DCBCT) 

[1]–[3] has been developed. In such a modality, all X-ray projections are first retrospectively 

grouped into different respiratory phase bins according to a breathing signal tagged on every 

projection image. A set of CBCT images are then reconstructed, each at a breathing phase, 

under the assumption that the projections placed into each bin correspond to the same or 

similar CBCT image. The number of phase bins is usually empirically chosen by a user 

based on the consideration of balancing temporal resolution and image quality. On one hand, 

a high temporal resolution requires a large number of phase bins, which leads to insufficient 

number of projections available to each phase and hence degraded quality of reconstructed 

CBCT images. On the other, a small number of phase bins results in low temporal 

resolution, as well as a relatively large bin width and the associated residual motion artifacts 

in the reconstructed images. To maintain clinically acceptable temporal resolution and image 

quality, 4DCBCT acquisition protocols such as slow gantry rotations and multiple gantry 

rotations have been proposed [3]–[5], and novel reconstruction or image processing 

techniques have been employed [6]–[9].

Conventional 4DCBCT reconstruction approach reconstructs CBCT images at different 

phases independent of each other [1]. This straightforward method neglects the temporal 

correlations of CBCT images at different phases. In contrast, a collaborative reconstruction 

scheme has been recently proposed [10]–[15]. Among them, [11] and [13] proposed a 

temporal nonlocal means method to constraint that the reconstructed CBCT images at 

neighboring phases must contain repetitive anatomical features. The locations of these 

features are allowed to vary among phases. The work of [10] and [14] first reconstructs an 

average CBCT image using all projections at all phases and impose a similarity constraint 

between this average image and the CBCT at each phase. These methods explicitly enforces 

the similarity among reconstructed CBCT images. Gao et al. [12] utilizes robust PCA 

techniques for the 4DCBCT reconstruction problem. This method restores a matrix whose 

columns are the 4DCBCT images at all phases under the assumption that, after a proper 

transformation, this matrix can be decomposed as the sum of a low-rank matrix 

corresponding to an almost static background and a sparsematrix corresponding to a moving 

foreground. The low-rank constraint achieved by minimizing the nuclear norm [16] of the 

associated matrix implicitly imposes the inter-phase similarity of the background. However, 

in the context of anatomical motion in thorax or upper abdomen, there is no clear distinction 

between foreground and background. Besides, as pointed out in [17], the nuclear norm 

minimization always finds a matrix factorization with mutually orthogonal factors. In this 

sense, it may have some unfavourable bias on the resulting low-rank matrices.

Although commonly called 4DCBCT, respiration-correlated CBCT [18] is a more accurate 

name for this imaging technique, since its fourth dimension is actually the respiratory phase 

rather than time. Clinically, it is more preferable to reconstruct true 4DCBCT with the fourth 

dimension being time, i.e., one CBCT image is reconstructed based on the corresponding 
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instantaneous projection, if possible. This time-resolved CBCT, called cine-CBCT in this 

work to avoid confusion, encounters an apparent technical barrier of reconstructing a CBCT 

image based on only one projection where the information needed for a good reconstruction 

is severely insufficient. One way to overcome this barrier is to borrow some useful 

information of a particular patient’s anatomy from prior images. Previously we have tried to 

utilize prior 4DCT images of the same patient [19], [20]. Particularly, we have built a lung 

motion model for the patient by performing a principle component analysis (PCA) on the 

motion vector fields obtained from deformable registration on prior 4DCT images. We 

discovered that only a few principle components are sufficient to represent the lung motion 

to a satisfactory degree of accuracy. The reconstruction of a volumetric image based on one 

acquired X-ray projection is then achieved by finding those PCA coefficients, so that the 

projection of the corresponding CBCT matches the acquired one. However, this method 

heavily depends on how similar the current CBCT images are to the prior 4DCT images and 

how accurately the PCA parameters can be determined using one projection.

In this paper, we will propose another way to overcome this technical barrier without using 

any prior images. We will show the principle of proof of a computational model and 

numerical algorithms for cine-CBCT reconstruction based on a low rank assumption of the 

matrix which includes all cine-CBCT images as its columns. The low rank approximation, 

which uses a form of matrix factorization, maximally and automatically exploits the 

temporal coherence of the patient anatomy locally and globally without using any prior 

knowledges. Moreover, sparsity condition is also enforced under appropriate transforms, i.e., 

wavelet transform in space, to satisfy desired properties for the sequence of CBCT images. 

Simulation studies have demonstrated promising results for our method for this challenging 

problem.

II. Methods and Materials

Assumption

Let us denote a patient CBCT image at time t by x(t), which can be viewed as a point 

embedded in a high dimensional space RN with its pixel values being the coordinate, where 

N is the total number of pixels in each CBCT image. x(t) travels along a smooth trajectory as 

patient breathes. A cine-CBCT reconstruction problem tries to recover points on this 

trajectory, each corresponding to a moment at an X-ray projection measurement. The key 

assumption in our approach is that the trajectory stays piecewisely close to a low 

dimensional subspace in the very high dimensional embedding space. Equivalently, when we 

form a matrix U with each column being an CBCT image, the resulting matrix is 

approximately of low-rank. We believe this assumption is valid due to the fact that body 

motion is far from a free form motion, which is verified by the fact that only a few principle 

components are sufficient to represent the lung motion to a satisfactory degree of accuracy 

as studied in [19], [20]. Based on this assumption, we use a matrix factorization formulation 

U ≈ LR. The number of columns for the matrix L constraints the rank of approximation. We 

further impose desired image properties by enforcing sparsity of the tight wavelet frame 

transform of L. In this matrix factorization formulation both the low rank approximation and 

the sparse representation in wavelet transform domain reduces the true degree of freedom of 
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U significantly. In all previous approaches mentioned in the Section of Introduction, 

reduction of degrees of freedom are exploited explicitly or implicitly from redundancy and 

coherence in space and time as well as sparse representation. In particular, 4DCBCT based 

on phase binning explicitly used the low rank assumption, i.e., the rank is equal to the 

number of phases. However, as mentioned before, the number of phases, i.e., the rank, is 

usually empirically chosen and more importantly coherence in time or among different 

phases are not explored at all.

Another important practical issue is how well the small number of image basis for the low 

dimensional subspace and the factorization U ≈ LR can be recovered from the projection 

data. Intuitively, this requires each basis image or equivalently all cine-CBCT images 

collectively have a sufficient number of projections covering a sufficiently large scanning 

angle, which is also required for the construction of a single CBCT image. As shown in 

experiments in Section IV-C, reconstruction from data using different projections can 

produce different results for the same ground truth.

A. Model

In this proof-of-principle study, we consider the reconstruction of a 2-D slice of the CBCT 

to illustrate the principles of the new algorithm. The basic ideas, however, can be easily 

generalized into 3-D contexts. Let the unknown 2-D image be a function u defined in ℝ2. 

When the X-ray source is placed with angle θ, the projection measured by the imager at 

location z is

f θ(z) = 𝒫θu(z): = ∫
0

ℓz
u(xθ + srz)ds (1)

where xθ ∈ ℝ2 is the coordinate of the X-ray source, and rz ∈ 2 and ℓz are respectively the 

direction and the length of the line connecting the X-ray source and the location z on the 

imager. The operator ℘ in (1) is also known as Radon transform. If fθ(z) is sampled with 

respect to z, the resulting projection data can be written as a vector fθ ∈ ℝM that obeys

Pθu = f θ . (2)

Here Pθ ∈ ℝM×N and u ∈ ℝN are the discretization of ℘θ and u in (1) respectively. Suppose 

that we have T projections where the X-ray source is placed with angels θ1, θ2, …, θT, 

respectively. Let Pi and fi stand for Pθi and fθi respectively. Then, by putting (2) with 

different angles together, the CT projection can be written into a system of linear equations

Pu = f (3)
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where P = [P1; P2; …; PT] ∈ ℝMT×N and f = [f1; f2; …; fT] ∈ ℝMT. In other words, the CT 

image reconstruction problem is to recover image u from its partial Radon transform.

In the context of cine-CBCT reconstruction, instead of only one unknown image u as in the 

CBCT problem, there is a set of unknown images, each associated with a projection, denoted 

by {u1, u2, …, uT} and the projection condition in (3) may be modified to

Piui = f i, i = 1, 2, …, T . (4)

If we write all the unknown images in a matrix form U = [u1, u2, …, uT], (4) can be 

rewritten into a compact matrix equation

𝒫U = F (5)

where ℘U = [P1u1, …, PTuT] and F = [f1, …, fT].

With low rank approximation assumption for U as discussed in Section II-A, the number of 

intrinsic unknowns of (5) are possibly less than the number of measurements, and therefore 

it is possible to reconstruct T CBCT images in U from T projections. To incorporate the 

underlying low-rank assumption into the cine-CBCT reconstruction process, we would like 

to explore matrix factorization based low-rank models in this study. More specifically, we 

enforce a decomposition form of the unknown matrix U of images as U = LR where L ∈ 
ℝN×K and R ∈ ℝK×T for a small integer K. From basic linear algebra knowledge, any matrix 

U of rank K can be represented in U = LR and conversely, the rank of U is at most K given 

the factorization form. In our algorithm, the value of K is specified by the user and our 

method regarding the selection of K will be presented later. We would like to point out that 

there is another popular approach for imposing the low rank condition that penalizes the 

nuclear norm of the matrix U, namely the sum of the singular values. Compare these two 

methods, the latter always finds orthogonal basis because of the involved singular value 

decomposition process. In contrast, our factorization method does not require this implicit 

orthogonality and hence attains the advantage of avoiding unfavourable bias on the resulting 

low-rank matrices [17]. In some sense, the approach of penalizing the nuclear norm of U is 

like principle component analysis and our approach is like independent component analysis. 

As a consequence, each of our basis, i.e., each column of L, represents more meaningful 

images and hence we can enforce some desired image properties on L, such as sparsity 

under wavelet transform.

This matrix factorization approach also allows for the additional regularizations on L and R, 

so that U = LR carries desirable physical properties. First, the columns of the matrix L, 

corresponding to images, can be interpreted as a basis that efficiently represents all the 

columns of U. Notice that images usually have sparse coefficients under suitable transforms 

such as wavelet tight frames [21], [22]. Let  be such a transform. Since the columns of L 
are images, we want L to be sparse. It is well-known that ℓ1-norm minimization leads to 
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sparse solutions. Therefore, the ℓ1-norm || L||1 is penalized. Second, the rows of R are the 

coefficients of U under the basis L, which reflect the respiratory motion. As the respiratory 

motion varies and could be irregular sometimes, there is no universal regularization that is 

suitable for all kinds of respiratory motion. We simply penalize its Frobenius norm 

‖R‖F
2 : = ∑i, j Ri j

2  to balance the energy of L and R. By enforcing sparse representation of L 

in wavelet domain, the intrinsic degrees of freedom are further reduced. Both low rank and 

sparse conditions can be regarded as some kind of regularization that makes the whole 

problem less under-determined or ill-posed.

Altogether, we propose to reconstruct the cine-CBCT by solving an optimization problem

min
L, R

λ‖𝒟L‖1 + ‖R‖F
2 , s.t. 𝒫(LR) = F . (6)

In practice, (5) is barely satisfied, because there is always unavoidable noise in the 

measurements F. Moreover, in reality the matrix U is only approximately low-rank and 

explicitly enforcing a low-rank representation leads to error. For these considerations, we 

solve

min
L, R

λ‖𝒟L‖1 + ‖R‖F
2 , s.t. ‖𝒫(LR) − F‖F

2 ≤ σ2 (7)

where ||·||F is the Frobenius norm, namely ‖A‖F = ∑i, j Ai, j
2  for a matrix A. In (7), σ is a 

parameter to control to what extent the violation of (5) is allowed.

Algorithm

Let us first consider the algorithm for solving (6). We use a split Bregman method [23], [24] 

(also known as augmented Lagrangian method) to solve this problem. The augmented 

Lagrangian of (6) is

E(L, R, Z) = λ‖𝒟L‖1 + ‖R‖F
2 + 〈Z, 𝒫(LR) − F〉 + μ

2 ‖𝒫(LR) − F‖F
2 (8)

where 〈·, ·〉 is the inner product, and Z is Lagrange multipliers. With appropriate fixed Z, an 

optimal L, R can be found by simply minimizing E(L, R, Z) with respect to (L, R). 

Therefore, the trick is to determine Z. In the augmented Lagrangian algorithm, we use
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L arg minL E(L, R, Z)
R arg minR E(L, RZ)

Z Z + (𝒫(LR) − F) .
(9)

Algorithm 1

1: Repeat for sout times.

a. Solve the first subproblem in (9) by performing the following steps for sin times.

i.
Update L arg minL

μ
2 ‖𝒫(LR) − F + Z/μ‖F

2 +
μ1
2 ‖𝒟L − C − Z1/μ1‖

F
2 .

ii. Update C ← λ/μ1 ( L − Z1/μ1).

iii. Update Z1 = Z1 + (C − L)

b. Solve the second subproblem in (9) by performing the following steps for sin times.

i.
Update R arg minR

μ
2 ‖𝒫(LR) − F + Z/μ‖F

2 +
μ2
2 ‖R − B − Z2/μ2‖

F
2 .

ii. Update B ← (R − Z2/μ2)/(1 + 1/μ2).

iii. Update Z2 = Z2 + (B − R).

2:
If ‖𝒫(LR) − F‖F

2  is small enough, then return.

3: Update Z ← Z + (℘(LR − F).

4: Goto Step 1.

The two subproblems in (9) are solved by split Bregman algorithm again in a similar fashion 

to (8) and (9). Let us take the first one as an example. By introducing an auxiliary variable 

C, the first subproblem in (9) is equivalent to

min
L

‖C‖1 + 〈Z, 𝒫(LR) − F〉 + μ
2 ‖𝒫(LR) − F‖F

2 subject to C = 𝒟L (10)

and the associated augmented Lagrangian is

E1(L, C, Z1) = λ‖C‖1 + 〈Z, 𝒫(LR) − F〉 + μ
2 ‖𝒫(LR) − F‖F

2 + 〈Z1, C − 𝒟L〉 +
μ1
2 ‖C − 𝒟L‖F

2 .

Then, a split Bregman method for solving the first subproblem in (9) is as follows:

L arg minL E1(L, C, Z1)
C arg minC E1(L, C, Z1)
Z1 Z1 + (C − 𝒟L) .

(11)
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All steps involved in (11) can be solved easily by either entrywise soft-thresholding (for C) 

and linear equation solvers (for L), e.g., conjugate gradient method. We use the same method 

for solving the second subproblem in (9). The full algorithm is summarized in Algorithm 1, 

where  is the soft-thresholding operator defined by [ α(A)]ij = sign([A]ij) · max{|[A]ij| − 

α, 0}.

For any true or semi time resolved CBCT reconstruction, both storage and computational 

cost is a challenge. An important feature of our formulation and computational algorithm is 

to explore the low rank property. In our numerical computation, the huge matrix is stored 

and manipulated in a low-rank decomposition form, which can significantly reduce the 

memory size and computational cost. In particular, the computational cost of Algorithm 1 is 

mainly on solving linear equations in Step 1(a)(i) and 1(b)(i), where the conjugate gradient 

(CG) algorithm is employed. For moderately large μ1/μ and μ2/μ, the condition number of 

these linear equations is small, and therefore only a few iterations are necessary for the 

convergence of the CG algorithm. Consequently, each step in Algorithm 1 can be done in 

several matrix-vector products. The computational time for the reconstruction of images 

with 128×128 pixels and 360 projections is typically a few hours, on a computer with Core 

i7–2600 CPU at 3.40 GHz, 8 GB memory, and MATLAB R2013a.

One complexity of this problem comes from the nonconvexity of the objective function in 

(6). Since there may exist local minima, we have to make sure our algorithm get a desired 

solution. Yet, in our numerical experiments, this nonconvexity issue is not found to be a 

problem for the following two reasons. First of all, our algorithm may find the global 

minimum of (6). As pointed out in [25], the augmented Lagrangian algorithm attains the 

global minimum for nonconvex objectives in low-rank factorization form under suitable 

assumptions. Similar algorithms to ours has been used in, e.g., SDPLR (semi-definite 

programming via low rank factorization) [26]. Secondly, we have also chosen the initial 

guess to the iterative algorithm in the Algorithm 1 carefully as following. We first solve a 

convex minimization problem

min
U

1
2‖𝒫U − F‖F

2 + λ‖U‖∗ (12)

where ||U||* is the nuclear norm, i.e., the summation of the singular values of U. The nuclear 

norm minimization is able to find a lowest-rank solution U* of (5) within a precision [16]. 

Then, the initial guess in the Algorithm 1 is chosen to be the best rank-K approximation to 

U*. Let U* = WΣVT be a singular value decomposition. If the rank of U* is less than K, we 

choose L(0) = WΣ1/2 and R(0) = Σ1/2VT as the initial guesses. If the rank of U* exceeds K, we 

choose L(0) = WK∑K
1/2 and R(0) = ∑K

1/2VK
T  as the initial guesses, where WK, VK are the first 

K columns of W and V respectively, and ΣK is the K×K principle submatrix of Σ. By this 

way, L(0) R(0) is the best rank-K approximation of U*.

As for the problem in (7), we still use the Algorithm 1, but we stop the iteration as soon as 

‖𝒫(LR) − F‖F
2 ≤ σ2. By this way, we can get a quite good approximate solution to (9); see 
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[27] for a detailed discussion. This approach has been previously used and discussed in 

similar mathematical problems but in other contexts, e.g., [24], [27], [28].

B. Choice of K

One practical issue in our algorithm is the selection of the parameter K to control the matrix 

rank. In practice, we achieve this goal by the following procedure.

We first set K to be a large enough number, e.g., K = 20, and run our algorithm. Recall that 

the columns of L forms a basis to represent the images in U. Because of the sufficiently 

large K value in this trial run, the algorithm is forced to generate a set of K basis vectors 

containing those good ones for U, as well as the unnecessary bad ones. This is reflected by 

the fact that some columns of L in the solution make significant contributions to U, while the 

other columns contribute little. For those unnecessary columns in L, their presence 

introduces a small but observable amount of signals into the finally reconstructed images in 

U and compromises its quality. It is therefore desirable to eliminate them from the first place 

by setting the value of K to be the number of the significant columns. A second 

reconstruction is then performed with this properly chosen K value.

It remains to determine which columns are significant and which ones are negligible. Since 

the contribution of the ith column of L to U is L(:, i)R(i, :) any norm of this project reflects 

the importance of this basis vector L(:, i). The larger norm is, the more significant L(:,i) is. 

In the experiments, we use the ∞-norm to identify the significance, which is the maximum 

of row absolute sums of a matrix, or equivalently, the pixel that has the largest absolute sum 

over time. The column L(:, i) is considered to be negligible, if ||L(:, i)R(i, :)||∞ is close to 

zero, and significant otherwise.

C. Experiments

We tested our cine-CBCT reconstruction algorithm on a digital NURBS-based cardiac-torso 

(NCAT) phantom [29], which generates a patient body in thorax region with detailed 

anatomical features and a realistic motion pattern. The patient respiratory period is 4 s. The 

CBCT gantry rotates about the patient at a constant speed for a full rotation in 59 s, in which 

360 X-ray projections are acquired. At each X-ray projection acquisition, we compute the 

NCAT phantom image at the specific time point with a resolution of 128 × 128, and the 

projection is then computed using a ray-tracing algorithm at the associated projection angle 

with a detector resolution of 256 bins. The patient breathing period and the gantry rotation 

period are chosen to be incommensurate deliberately, so that all the 360 patient images are 

distinct, although some of them visually look close. Some of the underlying true images are 

shown in Fig. 1. Under this setup, the size of U is 16384 × 360, and the size F of is 256 × 

360.

Two experiments are performed in this feasibility study, namely the measured projections F 
generated from a full-fan and half-fan scan. In each case, we will first present the results for 

the selection of the parameter K and then the reconstruction results. Apart from visual 

inspection of the reconstructed cine-CBCT images, we have also quantitatively assessed the 

restored image quality using relative error as a metric defined by ||LR − Utrue||F/||Utrue||F, 
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where L, R are the outputs of the proposed method, and Utrue is the matrix consisting of 

ground truth NCAT images. Unless specified, the parameters used throughout our 

experiments are λ = 4000, μ = 1, μ1 = μ2 = 105, and sin = sout = 10. We stop the algorithm 

when ||℘(LR) − F||F/||F||F ≤ ε and ε is chosen case by case.

III. Experimental Results

A. Full-Fan Scan

For this case, the plot of ||L(:, i)R(i, :)||∞ in a descending order as a function of the column 

index i is first depicted in Fig. 2, with a trial run of K = 20. Clearly, the eighth column and 

beyond contribute little to the reconstructed images and hence should be removed. As such, 

K = 7 is selected and the corresponding results are shown in Figs. 3 and 4. Comparing the 

restored images in Fig. 3 with the corresponding ground truth images in Fig. 1, it is found 

that our algorithm is able to capture the motions of the anatomy and restore the structures, 

even those small ones inside the lung. Meanwhile, observable artifacts inside the heart and at 

its boundary also exist. Quantitatively, the relative error of the restored cine-CBCT images is 

3.89%.

To further look into the reconstruction results, we plot the columns of L in Fig. 4(a), where 

each column is reshaped into a 128 × 128 image. These images form the basis to represent 

all the reconstructed cine-CBCT images. It is observed that the first one is similar to an 

image averaged over all the cine-CBCT images. Its presence provides an overall structure 

that is common to all the images in the cine-CBCT. Meanwhile, other basis images represent 

differences between images of U. We also plot the corresponding coefficients in R in Fig. 

4(b), which attain a periodically variation pattern, indicating the patient respiratory motion.

B. Noisy Data From a Full-Fan Scan

To demonstrate the robustness of our algorithm to noise, we test our algorithm with noisy 

data. We add noise at 0.5 mAs/projection to the projection data from the full-fan scan in 

Section III-A. In this case, the parameter K is selected as K = 4 according to Fig. 5. Fig. 6(a) 

depicts the reconstructed images. The relative error of the restored cine-CBCT images is 

6.81%. The columns of L and the rows of R are plotted in Fig. 6(b) and (c), respectively. 

Again, we see that the columns of L are meaningful basis corresponding to the average 

image as well as the variations between them, and the rows of R oscillate periodically.

C. Half-Fan Scan

For the case with noiseless data from a half-fan scan, the parameter K is selected as K = 7 

according to Fig. 7. In Fig. 8, we plot the reconstructed images, the columns of L, and the 

rows of R. The relative error of the restored cine-CBCT images is 6.62%, and we see again 

that the columns of L are meaningful basis corresponding to the average image as well as the 

variations between them, and the rows of R oscillate periodically.
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IV. Validations on Our Model

A. Validation on the Low-Rank Assumption

To demonstrate validity of the low rank assumption, we have conducted a study on a digital 

NCAT phantom, where typical images of such a phantom are in Fig. 1. A sequence of T 
images are generated at a transverse slice during a breathing cycle. Each of these images is 

represented by a vector of length N, where N is the number of pixels in one image. We then 

form a N × T matrix using these vectors as columns. Singular value decomposition of this 

matrix is conducted. For a case with T = 100 per breathing cycle, there are in total 100 

nonzero singular values (SVs), indicating that the matrix is strictly speaking of full rank. 

Yet, only the first few SVs dominate, as illustrated in the left panel of Fig. 9. This implies 

that the matrix is approximately of low rank. In particular, the eight largest SVs accounts for 

over 97% of the sum of all the SVs. Moreover, this ratio, namely the required number of 

leading SVs to account over 97% of the sum of all SVs to the total number of SVs (or 

images), decreases dramatically as the number of images T sampled in a breathing cycle 

increases, as shown in the right panel of Fig. 9. This simple numerical experiment 

demonstrates the validity of our assumption to a certain extent and the rest of our 

reconstruction work is based on this assumption. However, we remark that whether this 

assumption holds in real clinical cases is subject to further validations.

B. Exactly Low-Rank Ground Truth

We have also conducted one experiment where the ground truth 4DCT images are indeed 

forms a low-rank matrix. This experiments show that our model works better for exactly 

low-rank ground truths than with approximately low-rank ones.

We generate the true images Û1 by Û1 = L̂
1R̂

1, where L̂
1 and R̂

1 are from Fig. 4(a) and (b), 

respectively. By this way, the true cine-CBCT image Û1 is an approximation to the cine-

CBCT image in Section II-E whose respiratory motion is rather regular. Clearly, the rank of 

Û1 is 7 and the dimension is 16384 × 360, as L̂
1 consists of 7 basis images of size 128 × 128 

and R̂
1 of 7 coefficients of length 360. Then, we restore L and R from F = ℘Û1 by 

Algorithm 1. The restored basis images and the ground truth images are compared in Fig. 

10. The relative error of the restored cine-CBCT image is 1.35%, which is smaller than that 

in Section III-A, where the ground truth is not exactly but approximately low-rank. This 

shows the low-rankness of the ground truth 4DCT images can help reduce the reconstruction 

error.

C. One Cycle Scan

Our model does not depend on the periodicity of the respiratory motion. To validate this fact, 

we tested our model on cine-CBCT images generated in one breathe cycle, where no breathe 

phase is repeated. We use the true cine-CBCT image from the one described in Section II-E 

with a scanning period 4.1 s and still T = 360, and frames of this true cine-CBCT image are 

shown in Fig. 11. Therefore, there is only one full cycle of respiratory motion in the true 

cine-CBCT images. The results are plotted in Figs. 12 and 13. Our method can still give a 

satisfactory result, and the relative error of the restored cine-CBCT images is 9.78%.
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For the one cycle scan, we performed two more experiments to see how the projection 

operator ℘ affects the quality of the reconstructed images. Firstly, we find that a random 

permutation on the projection angels could improve the quality of the reconstructed image. 

This can be seen from the results presented in Fig. 14, and the relative error of the restored 

cine-CBCT images is 5.39%. The reason is that, when we randomly permute the projection 

angels, the projection angels for similar images are random, making the reconstruction more 

accurate and robust especially when using one cycle scan. Secondly, increasing the temporal 

resolution could improve the quality of reconstructed images. To see this, we use the true 

cine-CBCT image from the one described in the previous paragraph with a scanning period 

4.1 s and T = 720. The results are depicted in Fig. 15. The relative error of the restored cine-

CBCT images is 7.42%. This is related to the validation test presented in Section IV-A, i.e., 

the ration of required number of leading SVs to account over a certain percentage of the sum 

of all SVs to the total number of SVs (or images), decreases dramatically as the number of 

images T sampled in a breathing cycle increases, as shown in the right panel of Fig. 9.

D. High Resolution Images

Since the image video is stored and manipulated in a low-rank decomposition form, our 

method can reconstruct images with high resolution images. To demonstrate this, we test our 

algorithm on a high resolution correspondence of the datasets in Section III-A. In particular, 

we test images with 512 × 512 pixels and 360 projections, and we still use a detector 

resolution of 256 bins. The results are depicted in Fig. 16. The relative error of the restored 

cine-CBCT images is 10.11%. The error is larger than that for low-resolution since the linear 

(5) is more under-determined than the low resolution case.

V. Conclusion and Discussion

In this work, we have proposed an computational algorithm to reconstruct cine-CBCT to 

provide a set of time-dependent images in the thorax region under the assumption that the 

matrix formed by all of these images to be reconstructed has a low rank approximation. In 

contrast to the currently used 4DCBCT, where only respiratory phase-resolved imaging is 

achieved, the cine-CBCT modality retrieves the instantaneous patient anatomy 

corresponding to each CBCT projection. Cine-CBCT reconstruction is apparently a 

challenging problem due to the very limited projection information. Yet, by effectively 

incorporating the underlying local and global temporal coherence of cine-CBCT images into 

the reconstruction process, we demonstrate the feasibility of this modality. In particular, the 

low rank approximation is based on matrix factorization form U = LR for the matrix U 
whose columns are the images to be reconstructed. The dimension of the matrix L 
constraints the rank of U and hence maximally and automatically exploits a coherence 

condition among all the images in cine-CBCT. Simulation studies on an NCAT phantom 

serve as a very preliminary test to demonstrate the feasibility of our approach, where 

successive reconstructions have been observed in various experiments.

In addition to the apparent advantage of improved temporal resolution in the cine-CBCT 

over 4DCBCT, the reconstruction of cine-CBCT is not as demanding regarding the amount 

of projection data as 4DCBCT, at least based on our simulation studies. Because of the 
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phase binning in 4DCBCT, a certain number of projections are required in each bin to yield 

a CBCT image for the bin with a satisfactory quality. Hence, it is usually challenging to get 

a 4DCBCT with only one-minute scan and in practice, protocols of multiple rotations or a 

slow rotation is utilized. In contrast, the cine-CBCT effectively incorporates the inter-image 

correlations into the reconstruction and a set of images with visible major anatomical 

features are obtained even with a super-fast scan protocol corresponding to only a single 

breathing period, i.e., a 4-s scan if the patient’s breathing period is 4 s, as demonstrated in 

our studies. Another advantage is that our method can deal with respiratory motion quite 

well in the sense that irregularity does not affect the construction of the regular images too 

much as shown in the experiments.

Although the fourth dimension in cine-CBCT is more than breathing phase as in 

conventional 4DCBCT, we would like to point out that cine-CBCT is not completely time 

resolved in general. A good cine-CBCT reconstruction is based on two key assumptions. 

First, all cine-CBCT images can be represented (approximately) by linear combinations of a 

small number of basis images, meaning certain irregular patient anatomy variation may not 

be captured by cine-CBCT if they cannot be approximated well by the basis images. Second, 

all cine-CBCT images collectively correspond to a sufficient number of projections covering 

a sufficiently large scanning angle, meaning our algorithm will not work if the scanning 

angle is smaller than that required by the regular CBCT reconstruction. Nor will other 

methods do since no reconstruction method can recover information beyond the data. That 

being said, cine-CBCT images reconstructed using our algorithm still contain clinically 

valuable temporal information and represent a quantum leap from the conventional 

4DCBCT images with the same setup and measurements.

Despite the success in this feasibility study, there are a few practical issues as for the clinical 

applications of cine-CBCT. First of all, the low rank assumption has to be verified using 

clinical data. Second, only one slice of the patient anatomy is reconstructed in this proof-of-

principle study. When cone-beam geometry is considered to reconstruct volumetric CBCT 

images, although the fundamental principles in our algorithm can be easily applied, one has 

to address challenges for both storage and computational time for any true or semi-time 

resolved CBCT reconstruction in clinical practice. Currently, it takes a few hours to 

reconstruct those images shown in our study with 128 × 128 pixels and 360 projections on a 

typical computer using MATLAB. For real clinical cases with a cone beam geometry and a 

high resolution, e.g., voxels, the computation time would be estimated too long under the 

current computation platform. However, more powerful computational platforms, such as 

graphics processing unit (GPU) [30], or multi-GPU [31], are expected to greatly accelerate 

the reconstructions. GPU is essentially a parallel processing platform with a large number of 

processing cores. For example, in Algorithm 1, the most computation intensive part is 

computing forward projection ℘ and its transpose ℘T when solving the least-square 

problems. For problems of large sizes, these matrices are too large to be stored. But these 

operations can be greatly accelerated on the GPU platform by splitting the operations 

according to projection ray-lines, or image voxels [32]. Other computation intensive tasks, 

such as matrix-matrix or matrix-vector operations, can be easily parallelized to achieve 

significant speed up. Another challenge is large memory requirement which can not fit into 

single GPU. In this case, splitting calculations across multiple GPUs will be the solution, at 
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the cost of inter-GPU communications [31]. It will be our future research project to 

implement the reconstruction algorithm on GPU. Over the years, GPU-based computing has 

demonstrated the feasibility of greatly accelerating CBCT reconstructions, such that the 

computation time of a high-resolution 3-D case on GPU is comparable to that for a 2-D case 

using MATLAB on CPU [33]. It is expected that these advanced approaches can eventually 

render the computation efficiency to a practically acceptable level.

Moreover, even in the current form, namely reconstructing only a 2-D slice in a time-resolve 

fashion, our algorithm will still have some important applications and attain advantages over 

those methods employed in current clinical practice. One context is lung tumor motion 

management in advanced radiation therapy. At present, this is typically achieved by 

monitoring external surrogate motion, e.g., chest wall or diaphragm, and inferring tumor 

motions via a certain motion model. This indirect method suffers from problems such as 

motion model accuracy and reliability caused by poor internal-external correlations and 

temporal variations of motion patterns. Measuring motions of makers that are implanted to 

the lung tumor is another practical way. Yet, the invasive nature makes it less clinically 

preferred. Compared to these approaches, our method is capable of directly imaging 

motions, although in a 2-D slice in this initial study due to computational costs. It will hence 

provide valuable information to facilitate a number tasks in radiotherapy motion 

managements, e.g., tumor tracking or gated treatment delivery. In addition, because our 

algorithm does not rely on motion periodicity, its application can be generalized to tumor 

sites other than lung, such as prostate, which are affected by motions of nearby organs. For 

these sites, 4DCBCT cannot be applied due to the lack of motion periodicity. With limited 

correlations between the organ of interest and other surrogates, it is not possible to infer 

organ motions via surrogate motions. Tracking implanted markers is employed currently if 

needed. Our method could be another method to retrieve motion information for these sites 

and therefore help motion managements in this context.

Finally, we would also like to remark that, we propose a new modality of cine-CBCT in this 

study and a reconstruction algorithm that can be potentially used to achieve it. It is not our 

claim that the algorithm is practical enough for cine-CBCT reconstruction, as only a 2-D 

slice is reconstructed in the studies here and 3-D cases are apparently computationally 

challenging for the moment. However, the problem of interest here is a temporally resolved 

imaging modality on the cone beam CT hardware system. Hence, the experimental designs 

in this study have been focused on the CBCT context, such that parameters in the simulation 

cases, e.g., gantry rotation speed and projection geometry, are set according to those in a 

CBCT scanner. It is also our study in near future to test the algorithm in real data acquired in 

a CBCT machine. The X-ray source will be collimated, so that only the central slice 

projection data will be used for reconstructing only one transverse plane. We also noticed 

that our algorithm can be applied to cases with a fan-beam projection geometry, i.e., 

conventional CT. Yet, cine-CT has been already achieved there [34]–[36]. Due to the ultra 

fast source rotation speed, cine-CT reconstruction is not a difficult problem with modern CT 

scanners, as enough many projections covering a large angular range can be acquired with in 

a short time window for a time point. Therefore, we focus our study on a much more 

challenging context with the current CBCT scanner, which hence leads to the name of cine-

CBCT.
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Fig. 1. 
Ground truth cine-CBCT images. From left to right: frame 20, 81, 160, 256, 334. Display 

window is (−1000,420) HU.
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Fig. 2. 
||L(:, i)R(i, :)||∞ in descending order. Result is produced with K = 20.
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Fig. 3. 
Restored cine-CBCT images from a full-fan scan and the absolute value of the differences to 

the ground truth. Relative error is 3.89%. From left to right: frame 20, 81, 160, 256, 334. (a) 

Restored cine-CBCT images. Display window is (−1000,420) HU. (b) Absolute value of the 

differences to the ground truth. Display window is (0,280) HU.

Cai et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
L and R in the cine-CBCT image reconstruction from a full-fan scan. (a) Columns of L. 

Each column is reshaped into an image. (b) Rows of R.
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Fig. 5. 
||L(:, i)R(i, :)||∞ in descending order. Result is produced with K = 20 and noise at 0.5 mAs/

projection.
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Fig. 6. 
Result of cine-CBCT image reconstruction with noise at 0.5 mAs/projection from a full-fan 

scan. (a) Restored cine-CBCT image with the relative error 6.81%. From left to right: frame 

20, 81, 160, 256, 334. Display window is (−1000,420) HU. (b) Columns of L. Each column 

is reshaped into an image. (c) Rows of R.
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Fig. 7. 
||L(:, i)R(i, :)||∞ in descending order. Result is produced with K = 20 from a half-fan scan.
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Fig. 8. 
Result of cine-CBCT image reconstruction from a half-fan scan. (a) Restored cine-CBCT 

image with the relative error 6.62%. From left to right: frame 20, 81, 160, 256, 334. Display 

window is (−1000,420) HU. (b) Absolute value of the differences to the ground truth. 

Display window is (0,710) HU. (c) Columns of L. Each column is reshaped into an image. 

(d) Rows of R.
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Fig. 9. 
Left: Singular values of a set of 100 NCAT images taken with in one breathing cycle. Right: 

the ratio of required number of singular values to restore 97% of the NCAT images to the 

total number of images nf in a breathing cycle.
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Fig. 10. 
Result of cine-CBCT image (with exactly rank 7) reconstruction from a full-fan scan. (a) 

Restored cine-CBCT image with the relative error 1.35%. From left to right: frame 20, 81, 

160, 256, 334. Display window is (−1000,420) HU. (b) Absolute value of the differences to 

the ground truth. Display window is (0,280) HU. (c) Columns of L. Each column is reshaped 

into an image. (d) Rows of R.
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Fig. 11. 
Ground truth cine-CBCT images generating from one breathe cycle. From left to right: 

frame 50, 120, 190, 260, 330. Display window is (−1000,420) HU.
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Fig. 12. 
||L(:, i)R(i, :)||∞ in descending order in Experiment 5. Result is produced with K = 20.
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Fig. 13. 
Result of cine-CBCT image (one breathe cycle) reconstruction from a full-fan scan. (a) 

Restored cine-CBCT image with the relative error 9.78%. From left to right: frame 50, 120, 

190, 260, 330. Display window is (−1000,420) HU. (b) Absolute value of the differences to 

the ground truth. The display window is (0,1420) HU. (c) Columns of L. Each column is 

reshaped into an image. (d) Rows of R.
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Fig. 14. 
Result of cine-CBCT image (one breathe cycle) reconstruction from a full-fan scan with 

randomly permuted projection angels. (a) Restored cine-CBCT image with the relative error 

5.39%. From left to right: frame 50, 120, 190, 260, 330. Display window is (−1000,420) 

HU. (b) Absolute value of the differences to the ground truth. The display window is (0,710) 

HU. (c) Columns of L. Each column is reshaped into an image. (d) Rows of R.
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Fig. 15. 
Result of cine-CBCT image (one breathe cycle) reconstruction from a full-fan scan with T = 

720. (a) Restored cine-CBCT image with the relative error 7.42%. From left to right: frame 

100, 240, 380, 520, 660. Display window is (−1000,420) HU. (b) Absolute value of the 

differences to the ground truth. Display window is (0,1420) HU. (c) Columns of L. Each 

column is reshaped into an image. (d) Rows of R.
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Fig. 16. 
Result of 512 × 512 cine-CBCT image reconstruction from a full-fan scan. (a) Restored 

cine-CBCT image with the relative error 10.11%. From left to right: frame 20, 81, 160, 256, 

334. Display window is (−1000,420) HU. (b) Columns of L. Each column is reshaped into 

an image. (c) Rows of R.
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