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Abstract

Patient respiratory signal associated with the cone beam CT (CBCT) projections is important for 

lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such signal 

can be extracted directly from the CBCT projections. In this paper, we propose a novel local 

principal component analysis (LPCA) method to extract the respiratory signal by distinguishing 

the respiration motion-induced content change from the gantry rotation-induced content change in 

the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art 

projection-based methods, namely, the Amsterdam Shroud (AS) method, the intensity analysis 

(IA) method, and the Fourier-transform based phase analysis (FT-p) method. The clinical CBCT 

projection data of eight patients, acquired under various clinical scenarios, were used to investigate 

the performance of each method. We found that the proposed LPCA method has demonstrated the 

best overall performance for cases tested and thus is a promising technique for extracting 

respiratory signal. We also identified the applicability of each existing method.

1. Introduction

Respiration-induced motion is of great concern in image-guided radiotherapy (IGRT) when 

treating tumors in lung or upper abdomen area. To provide reliable imaging guidance for 

treatment, 4D-CBCT has been developed, where all the projections are first sorted into 

breathing phase bins and then CBCT images at different phases are reconstructed (Sonke et 
al., 2005; Kriminski et al., 2005; Li et al., 2006b; Dietrich et al., 2006; Purdie et al., 2006; 

Lu et al., 2007; Guckenberger et al., 2008; Leng et al., 2008; Sonke et al., 2009; Bergner et 
al., 2010; Jia et al., 2012). Another approach is to obtain the CBCT image with greatly 

reduced motion artifacts at a particular breathing phase through either hardware methods 

(e.g., respiratory gating) (Moseley et al., 2005; Sillanpaa et al., 2005; Chang et al., 2006; 

Jiang, 2006; Thompson and Hugo, 2008; Cooper et al., 2012) or software approaches 
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(correcting motion artifacts during the reconstruction or post-processing) (Schäfer et al., 
2004; Li et al., 2006a; Isola et al., 2008; Rit et al., 2009; Zhang et al., 2010; Lewis et al., 
2011). During the treatment delivery, one can perform CBCT-based marker-less tumor 

tracking to predict tumor positions based on a breathing signal (Cho et al., 2010; Lewis et 
al., 2010). In all of these applications, accurate extraction of the patient-specific respiratory 

signal plays a vital role.

Respiration signal can be obtained via external surrogate, e.g., by tracking the displacement 

of markers on the thoracic/abdominal surface (Ford et al., 2002; Vedam et al., 2003; Pan et 
al., 2004), measuring the air flow change of patients (spirometry) (Low et al., 2003; Zhang 

et al., 2003), or sensing the pressure variation of an elastic thoracic/abdominal belt (Dietrich 

et al., 2006; Kleshneva et al., 2006). However, one may have concerns regarding the 

correlation between these external surrogates and the motions of the internal anatomy (Ahn 

et al., 2004; Hoisak et al., 2004; Tsunashima et al., 2004; Gierga et al., 2005; Yan et al., 
2006). While implanted radiopaque fiducial markers (Gierga et al., 2003; Shirato et al., 
2003) can provide more reliable respiratory signal, the invasive implanting process is 

undesirable and the marker migration is also a problem (Kitamura et al., 2002; Nelson et al., 
2007).

Another group of methods is to directly extract breathing signals from the CBCT 

projections. One example is the Amsterdam Shroud (AS) method (Zijp et al., 2004; Van 

Herk et al., 2007), where the superior-inferior (SI) motion of the internal anatomy is 

enhanced by converting the projections into a so-called AS image and then the breathing 

signal is extracted. Another method is based on the radiological path-length change with 

lung volume expanding/retracting (Berbeco et al., 2005). Respiratory signal can be extracted 

by analyzing the fluctuation of the image intensity in lung projection images. This idea was 

firstly applied in fluoroscopic imaging (Berbeco et al., 2005) and then extended to thoracic 

CBCT imaging (Kavanagh et al., 2009), which will be referred to as intensity analysis (IA) 

method in this paper. Recently, Vergalasova et al. reported another method that analyzes the 

CBCT projections in Fourier domain (Vergalasova et al., 2012). It is claimed that this 

Fourier-transform (FT) based method works better for the cases with slow gantry rotation 

(i.e., 4-minute 4D-CBCT) than those with fast gantry rotation (i.e., 1-minute CBCT) 

(Vergalasova et al., 2012).

In this paper, a novel projection-based method is proposed based on local principal 

component analysis (LPCA). In this method, the CBCT projection data is regarded as a 2-

torus in a high-dimensional space. This 2-torus reflects the coupled motion signals from 

both patient respiration and gantry rotation during the CBCT scan. PCA is applied to the 2-

torus piece by piece, to decouple the respiratory signal from the gantry motion signal and 

then paste them to yield a long sequence of extracted respiratory signal for the whole 

scanning period. The proposed LPCA method will be compared with the state of the art 

methods, i.e., AS, IA and FT methods using several clinical CBCT datasets considering 

various clinical scenarios.
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2. Methods and Materials

2.1 Existing methods

To better understand our proposed method, we will first summarize the existing methods as 

illustrated in figure 1. In all methods, the first step is to take logarithm of the measured 

projection to obtain a projection image g(t, u, v), where t is the gantry angle and (u, v) 

represent the coordinates in the transverse and the axial, i.e., superior-inferior (SI), 

directions, respectively. This projection image represents the radiological line integral at 

each pixel, and therefore has a better contrast than the original measurement data. Also, all 

methods involve the use of a region-of-interest (ROI) on the detector, which covers the 

whole detector along the transverse direction ([ul, uU]) and only the bottom part of the 

detector along the SI direction ([vlow, vhigh]), usually being the lower thorax where the 

anatomical motion is relatively large. In the following sub-sections, we will briefly describe 

these methods.

2.1.1 AS method—The procedure of the AS method is shown in figure 1(a). Specifically, 

1) the derivative of g(t, u, v) is taken along the SI direction to enhance the anatomical 

features; 2) the resulting enhanced image is collapsed horizontally into a column by 

summing over all pixel intensities inside each horizontal row; 3) the columns from all 

projections are combined view by view to yield an AS image; 4) another derivative is 

performed on the AS image along the view direction to highlight the moving components; 5) 

a signal I(t) is obtained by aligning each column of the results from step 4) with respect to a 

reference column, e.g., the first column; 6) the breathing signal is extracted from I(t) after 

some post-processing, such as removing the gantry-rotation induced slow-variant 

component, as well as the cardiac-motion induced noise.

2.1.2 IA method—The intensity variations in thoracic CBCT projections are caused by 

two factors, specifically the patient respiration and the gantry rotation. Usually the time scale 

of the gantry rotation is much larger than that of the patient breathing, allowing the 

separation of the intensity variations caused by these two factors through applying a low-

pass filter, and this is the basic idea of the IA method (Kavanagh et al., 2009). Specifically, 

the intensity in each projection is first calculated by simply summing all pixel values in the 

ROI (figure 1(b)):

I(t) = ∫
v = vlow

vhigh

∫
u = u1

uU

g(t, u, v) dudv, t = t1, t2, …tN . (1)

After that, the respiratory signal can be extracted from I(t) by applying a low pass filter to 

remove the slowly varying background caused by gantry rotation.

2.1.3 FT based method—Recently, Vergalasova et al. proposed two projection-based 

methods in Fourier domain (figure 1(c)). In their methods, zeros are padded outside the ROI 
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to keep each projection at the original size. Then a 2-dimensional FT is performed for each 

projection:

G(t, x, y) = ∫
v = vlow

vhigh

∫
u = u1

uU

g(t, u, v) e−i2π(x · u + y · v)dudv, t = t1, t2, …tN . (2)

The first scheme uses the magnitude of G(t, 0, 0) in (2) as the indication of the breathing 

signal at different view angle t. We find that G (t, 0, 0) = ∫ v = vlow

vhigh ∫ u = u1

uU g(t, u, v) dudv is 

essentially equivalent to (1), i.e., the IA method.

The second scheme is the so-called FT-phase method. Its key idea is to utilize the FT shift 

theorem, i.e., the space shift of a signal is reflected in a phase shift in its Fourier domain. 

Mathematically, denoting p, q as the space shift, FT shift theorem is as follows:

∫
v = vlow

vhigh

∫
u = u1

uU

g(t, u + p, v + q) e−i2π(x · u + y · v)dudv

= G(t . x, y) · ei2π(x · p + y · q), t = t1, t2, …tN .

(3)

Vergalasova et al. (2012) found that the phase at (t, 0, 1) is more suitable for representing the 

breathing motion than other low frequency points. This is reasonable considering that (t, 0, 

1) captures the basic space shift in SI direction, i.e., ei2π·y, which is the dominant breathing-

introduced movement in a thoracic projection image.

We will only investigate the FT-phase method in this paper, denoted as FT-p method, since 

the first scheme is equivalent to IA method.

2.2 Our proposed method

2.2.1 The basic idea—As mentioned in section 2.1.2, the contents in the thoracic CBCT 

projections change due to two periodic motions: patient respiration and gantry rotation. 

Based on this observation, if we represent a projection with a point in a high-dimensional 

ambient space, these projection data points should all lie on a 2-torus. This phenomenon has 

been preliminarily validated by using the manifold learning technique (Wang et al., 2012).

As indicated in figure 2(a), one direction of the torus corresponds to the breathing motion 

while the other to the gantry rotation. As the gantry rotates during the data acquisition, the 

projection data point winds around the torus along a helical trajectory, as shown in figure 

2(a). If we were able to find a plane that is locally perpendicular to the direction of the torus 

that corresponds to gantry rotation, namely, the XoY plane as indicated in figure 2, the 

projection of the helical trajectory onto this plane would approximately decouple the 

breathing signal from the gantry rotation. Furthermore, if we pick a direction inside this 
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plane, e.g. Y, then the projection onto this direction would give the magnitude of the 

breathing signal. Of course this signal is only valid for the trajectory close to this plane. 

However, local signals extracted at different segments of the torus can be stitched together, 

yielding a long sequence of global breathing signal. This is the fundamental idea of our 

proposed method.

2.2.2 The algorithm design—To realize the idea described above, we have employed 

PCA, a simple and efficient technique to recognize the internal data pattern by reducing the 

data dimensions. Instead of the CBCT projections, the AS images are used as the input in 

our algorithm because it contains more distinguished breathing features, and its reduced 

sizes lead to the improved computational efficiency. As indicated in section 2.2.1, the 2-

torus needs to be studied in a piecewise manner and each piece of 2-torus can be 

approximated with a linear model by performing PCA locally (LPCA). As shown in figure 

3, the LPCA algorithm mainly includes two steps: extracting the foreground AS image (f-

AS) and performing PCA on the f-AS image using a sliding window method.

f-AS extraction: If we look at the original AS image, the breathing-induced wave pattern 

appears as a thin and periodic signal on top of a smoother background with some horizontal 

streaks, as shown in figure 3. Apparently, only the wavy pattern contributes to the breathing 

signal extraction and it is desired to separate this part as the foreground of AS image (f-AS). 

This operation essentially can be regarded as a further linearization to a segment of the 2-

torus data. To obtain the f-AS, we employ a TV/L1 model (Yin et al., 2006, 2007). This 

model extracts large-scale components h from an image f by solving

minh TV(h) + w f − h
L1, (4)

where TV(h) is the total variation of h. Hence, the f-AS, which is in a small scale, can be 

given by f–h. In (Yin et al., 2006), it is shown that the amount of the image components 

contained in f–h is determined by a threshold parameter w. Larger w value means stronger 

background removal, that is, if w is too large, some useful anatomical features may be 

excluded in f–h; on the other hand, if the w value is too small, f–h will contain unwanted 

residual background. For the current application, w value is studied and empirically selected 

as 0.15. We also find that a w between 0.1 and 0.2 always ensures consistent LPCA 

performance for all the tested cases. The problem in Eq. (4) can be formulated as a 

maximum flow problem on a constructed flow network, which can be solved in polynomial 

time to the theoretically exact global solution (Goldfarb and Yin, 2009).

Sliding window based PCA on f-AS: PCA is performed sequentially on the f-AS image 

using a sliding window method with a window width of W (an odd number). Assuming that 

the f-AS contains N columns (i.e., N projections), N-W+1 PCAs are performed in LPCA. 

The detailed process is as follows:

1. At the step 1, PCA is performed on the first W columns of the f-AS. The first 

principal component eigenvector (PCE) reflecting the most significant variance 
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of data is kept as the principal direction, and the principal component coefficients 

(PCC) corresponding to this PCE are selected as the breathing signals for 

columns 1 to INT[W/2]+1.

2. At the following steps, the window slides by one column at each step and PCA is 

performed on the f-AS columns within the window. The correlation of each of 

the first five PCEs with the principal direction at the previous step is calculated. 

The PCE with the maximum correlation (closest to the principal direction of the 

previous step) is selected as the principal direction at the current step, and the 

corresponding PCC at the center column is selected as the breathing signal for 

this column (projection). As PCA cannot distinguish the positive/negative 

principal direction, a sign reverse may be needed to keep the current principal 

direction consistent with the one at the previous step.

3. At the last step, the PCCs for columns INT[W/2]+1 to W are selected as the 

breathing signals.

We would like to discuss how this process decouples the breathing signal from the gantry 

rotation signal. Firstly, f-AS extracts the foreground image containing the breathing motion 

signal. On top of that, PCA is able to extract the most significant variance of the f-AS, 

corresponding to projecting the breathing signal on a plane locally perpendicular to the 

direction of the torus that corresponds to gantry rotation, e.g., XoY plane (figure 2). In 

principle, PCA finds a linear space that best approximates the data. Hence a global 

approximation of the entire trajectory does not work due to the essentially curved geometry. 

Instead, the LPCA decouples the breathing motion and gantry rotation signals by a local 
operation using a sliding window technique. In this process, W represents the segment 

length on the 2-torus investigated. It should be small enough, such that within this range the 

trajectory can be approximated by a linear space to a good extent. Otherwise, many 

breathing cycles are involved (purple line, figure 2) and PCA find many directions, leading 

to a decreased extracting accuracy. On the other hand, W should be larger than the number 

of column numbers in the f-AS corresponding one breathing cycle. Otherwise, only a 

portion of one breathing cycle is involved (black dash line, figure 2) and PCA cannot find 

the correct direction of the torus, leading to incorrect results. In the following study, we 

empirically select W as the number of projections collected within about 1.5 breathing 

cycles of a typical patient. We will also present the results corresponding to different W 
values.

2.3. Evaluation

2.3.1 Patient data—CBCT data of eight patients were used in this study, covering various 

clinical scenarios, such as different scanning protocols (i.e., slow/normal scan speed, full/

half fan setup, and low/normal dose level), and different image content (i.e., lower/upper 

lung with/without the diaphragms). The first four sets of data are 4-minute 4D CBCT data. 

2729, 2005, 1982 and 1679 projections were collected for patients 1–4, respectively, with 

rates of 5–7 frames per second, using a slow gantry speed over a 200-degree arc in a full fan 

mode (Lu et al., 2007). Breathing signals from the commercial Real-time Position 

Management (RPM) system (Varian Medical System, Palo Alto, CA) are available as 
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reference for patients 1–4, although they cannot be regarded as the ground truth. The other 

four sets of data (patients 5–8) are 1-minute CBCT data. 656 projections were collected over 

360 degrees (10.8 frames per second) in a half-fan mode. Among these four sets of data, two 

were scanned with the ‘thorax’ mode (patients 5–6) and the other two were acquired with 

the ‘low-dose thorax’ mode (patients 7–8). The CBCT data for all eight cases were acquired 

using an on-board imaging (OBI) system (Varian Medical System, Palo Alto, CA). The 

detector contains 1024×768 pixels and the detecting region is about 40×30 cm. For normal 

dose data (patients 1–6), a 2×2 pixel binning was performed so that the dimension of each 

projection is 512×384 and the resolution is 0.784×0.784 mm. For the low dose data (patient 

7–8), in order to suppress the noise, a 4×4 pixel binning was performed.

Figure 4 shows the lateral and anterior-posterior views of each dataset, as well as the lower 

parts of the AS images containing distinct anatomical movement curves. The datasets are 

divided into three groups: 1) normal dose data with diaphragm in the projection image 

(patients 1, 3 and 6); 2) normal dose data without diaphragm in the projection image 

(patients 2, 4 and 5); and 3) low dose data (patients 7 and 8). It can be seen that the 

anatomical motion patterns are less distinct under half-fan mode (patients 5–8), low 

exposure level (patients 7 and 8), or without diaphragm in the projection image (patients 2, 

4, 5).

2.3.2 Assessment methods—It is a difficult task to quantitatively assess the accuracy of 

the detected breathing signals, because strictly speaking there is no ground truth for 

breathing signals in clinical cases. Lung volume variation, anatomical feature (such as 

diaphragm) motion, as well as chest wall and abdominal surface motion are all caused by 

patient breathing and can be considered as breathing signals. However, these signals are not 

necessarily consistent with each other; phase shift may exist among them. Clinically, it is 

more desirable to use the motion signal from internal anatomical features as the breathing 

signal. In this work, we manually extract the most distinct motion patterns of the internal 

anatomical features from the AS image and use them as benchmark signals. But for patients 

7 and 8 (low-dose cases), due to low image quality, manually extracting the benchmark 

signals is not feasible for some gantry angles and therefore the algorithm extracted signals 

are displayed with the AS images for qualitative visual inspection.

For patients 1–6, the algorithm-extracted signals are quantitatively evaluated by calculating 

the local correlations (Ionascu et al., 2007) Corrlocal, with the benchmark signals. For two 

signal series X and Y, it is defined as:

Corrlocal(X, Y, m) =
∑i = m − M

m+M (Xi − Xm−M
m+M)(Yi = Ym−M

m+M)
(2M + 1)σXm−M

m+MσYm−M
m+M , M < m ≤ N − M, , (5)

where Xm−M
m+M and σXm−M

m+M represent the mean value and standard deviation of X from m−M 

to m+M, respectively. N is the length of X and Y. In this study, we use M=30.
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One main purpose of extracting the respiratory signal is for the reconstruction of 4D-CBCT 

images. Hence, a study is necessary to investigate how the respiratory signals extracted by 

different methods may affect the quality of the reconstructed 4D-CBCT images. For this 

purpose, a typical patient case is selected where different methods yield different 

reconstruction results. The projections at the end of exhale (EE) are sorted out by respiratory 

signals extracted using different methods and then used to reconstruct a CBCT image with 

the FDK algorithm (Feldkamp et al., 1984). A reference average image is also reconstructed 

using all the projections.

3. Results

3.1 Extracted breathing signals for scans with normal dose

Two sets of same ROIs were used for all methods: ROI1 is the lower 1/3 of each projection 

image and ROI2 is the whole projection image. Figure 5 shows the typical breathing signals 

extracted by various methods versus the RPM signals and the benchmark signals for patients 

3 and 2. It can be seen that all methods work well for patient 3 where the diaphragm is 

included in the CBCT projection images. For patient 2, however, the diaphragm is not 

included in the projection images and thus some methods such as AS (ROI1 and ROI2) and 

FT-p (ROI1) do not work well.

Figure 6 shows a quantitative evaluation in terms of Corrlocal for patients 1, 3 and 6 whose 

diaphragms were included in the CBCT projection images. We can see that 1) the AS 

method works well for patients 1 and 3 but not for the second half data of patient 6; 2) the 

IA method works well for patients 1 and 3 but not that well for patient 6; 3) the FT-p method 

works well for patient 1 with ROI2 and patients 3 and 6 with ROI1, but not for patient 1 with 

ROI1 and patients 3 and 6 with ROI2, indicating that this method is sensitive to the selection 

of ROI; 4) the proposed LPCA method works well for all three patients and both ROIs, 

showing the robustness of this method; and 5) the RPM signal correlates with the benchmark 

signal very well for patient 3 but less well for patient 1, indicating the existence of possible 

phase shift between internal and external signals.

Figure 7 presents the same evaluation for patient 2, 4 and 5 whose diaphragms are not 

included in the CBCT projection images. Here we can observe that 1) the AS method does 

not work well for any patients; 2) the IA method more or less works for patients 2 and 5 but 

not for patient 4; 3) the FT-p method works to certain degree for patient 2 with ROI2 but not 

for other cases; 4) the LPCA method approximately works for almost all cases except for the 

second half of gantry rotation for patient 5 with ROI2, where the anatomical breathing 

patterns in the AS image diminish due to the half-fan scanning mode; and 5) the RPM signal 

approximately correlates with the benchmark signal for patient 2 but does not correlate for 

patient 1, indicating that for some patients significant phase shift may exist between internal 

and external signals.

3.2 Extracted breathing signals for scans with low dose

For the low-dose data (patients 7 and 8), qualitative visual inspection is performed by 

displaying all extracted signals side by side with the corresponding AS images (figure 8). 
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Based on the visual inspection, we found that, for the gantry angles with extremely weak 

signals as indicated by the yellow boxes in figure 8, 1) the AS method does not work for 

either case; 2) the FT-p method works well for patient 8 with ROI2, less well for patient 8 

with ROI1, and does not work for patient 7; and 3) the IA and LPCA methods work for all 

cases except for patient 7 with ROI1.

It can also be seen that for patient 7, a better result is obtained with ROI2 than with ROI1 by 

using either IA or LPCA. A similar observation can be made for patient 8 too using FT-p. 

This finding indicates that a larger ROI may be preferred for gantry angles with extremely 

weak signals.

3.3 Effect of different ROI sizes

We evaluated the effect of different ROI sizes on the performance of the AS, IA, FT-p and 

LPCA methods. The results are shown in figure 9. In each sub-figure, the y-axis represents 

the averaged local correlation coefficients ( Corrlocal) between the extracted signals using 

various methods and the benchmark signals. The x-axis represents the ROI size normalized 

to the whole detector along the SI direction. The ROI covers the whole detector along the 

transverse direction and the bottom part of the detector along the SI direction. Yellow 

vertical lines indicate ROI1 and ROI2 used in previous sections.

We can see that: 1) the AS and IA methods are less dependent on the ROI size but for some 

cases (patients 2, 5 for AS and patient 4 for IA) these two methods do not perform well; 2) 

the FT-p method is sensitive to the selection of ROI especially for patients 2, 4, and 5; 3) the 

proposed LPCA method performs extremely well for all ROI sizes and for all patients except 

for patient 4 with small ROI sizes and patient 5 with very small and very large ROI sizes.

3.4 Effect on the quality of 4D-CBCT images

Patient 4 is used in this study. The average image and the images at the EE phase 

reconstructed using projections binned by different respiratory signals are shown in figure 

10. For each row, a base line is plotted to help comparing the locations of objects. In the 

selected ROIs, three highlighted objects A, B and C are indicated by arrows.

It can be seen that the different methods give different results, and we notice that: 1) The 

LPCA method generates the most accurate locations of the internal structures along the SI 

direction as indicated by the highest SI location of the internal structures (e.g. the object C) 

in the reconstructed images. Among all EE images reconstructed using different respiratory 

signals, the one with internal structures at their most superior positions should be the most 

accurate. We also measure the SI shift of the structure C between the results of the LPCA 

and IA method, which is 4.4 mm, an in-negligible error. In fact, we observe that the 

breathing signals derived from other methods have phase shifts at some breathing cycles 

from the ground truth, which contributes to the location error seen here. 2) The LPCA 

method is most effective in terms removing motion caused blurring artifacts and offers the 

clearest images (see the structure A). 3) Overall, the performances of these method in terms 

of the resulting 4D-CBCT image quality are consistent with the Corrlocal results (figure 7). 

Specifically, AS method is better than the other three existing methods in this case.
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3.5 LPCA: effect of the parameters and computational time

Figure 11 shows the influence of different sliding window width W on the results of the 

proposed LPCA method. The y-axis represents Corrlocal between the LPCA-extracted signals 

and the benchmark signals while the x-axis represents the sliding window width in the unit 

of the number of breathing cycles. We can see that once W goes beyond 1 breathing cycle, 

the accuracy reaches an expected high level, consistent with the analysis for W value 

selection in Section 2.2.2. The high accuracy is maintained within a large range of W for 

patients 1–4 (4-minute scan). For patient 5 and 6 (1-minute scan), the range is relatively 

small. There are two reasons for this fact. First, W should be in principle small enough, such 

that within this range the torus structure can be well approximated by a linear space. For 

these two patient cases where gantry rotates relatively fast, the window width of a few 

breathing cycle correspond to a large scan angles, where the curved geometry of the torus 

start to appear within this angular range. Second, these two patients are scanned in the half-

fan mode. Hence the projection of the patient body changes relatively more dramatically as 

the gantry rotates, making the PCA less effectively. Based on all of these cases, we found a 

range of W between 1 and 3 breathing cycles is feasible for all cases.

The computational time of LPCA code is tested under MatLab 2010b on a desktop PC with 

3.17GHz CPU and 8 GB RAM. The average time for extracting the breathing signal from 

one projection is 72.8 ms. This value is expected to be smaller through efficiency 

optimization.

4. Discussion

From the comparisons (figures 6–9), we can see that the IA method has stable yet slightly 

less accurate performances comparing to LPCA. While the AS method yields a signal with 

clear physical meaning, namely, the motion of certain anatomical features in lung along the 

SI direction, its effectiveness relies on the distinctness of the moving features such as 

diaphragm. This observation is consistent with that of (Kavanagh et al., 2009). The 

performance of FT-p method depends on the ROI selection, which reminds us that the 

segmentation of the lung region in each projection image may be crucial for the success of 

this method (Vergalasova et al., 2012).

The proposed LPCA method is validated as a promising projection-based method with the 

best overall performance among all the tested cases (figures 6–10). Compared with the RPM 

signal available for patients 1–4, LPCA shows better or at least similar correlation with the 

internal anatomical features (figure 6, 7). Particularly for patient 4, LPCA shows impressive 

improvement on the 4DCBCT images reconstructed using the derived breathing signals 

(figure 10). Besides the normal dose data, we have also tested two low dose cases. The 

excessive noise in such cases does not introduce apparent compromise to the results (figure 

8). The underlying reasons might be: 1) A 4×4 pixel binning was used in each projection to 

suppress the noise; 2) To get the AS image, a horizontal average in projection images is 

needed, and this process is able to suppress noise too.

While LPCA could achieve impressive overall performance in terms of breathing signal 

extraction, it did not work well in certain circumstances, e.g. patient 5 with ROI2 (figure 7) 
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and patient 7 with ROI1 (figure 8). A potential solution is to combine the LPCA method with 

other methods to improve the robustness. This will be investigated in our future work.

It is difficult to extract breathing signals from CBCT projection images in half-fan scan 

mode (patients 5, 7, and 8, figure 4). This issue is more serious under low-dose scan 

protocol, where the low exposure could not provide enough contrast for lateral views, 

causing unclear wave patterns in that part of the AS images (patients 7 and 8, figures 4 and 

8). This poses a great challenge to all the methods. In such cases, a larger ROI seems 

preferred for all the effective methods (figure 8).

In additional to 4D-CBCT, extracting respiratory signal is also useful for real-time tumor 

tracking. In such a non-retrospective scenario, LPCA method needs a pre-acquisition longer 

than one breathing cycle (Section 2.2.2 and figure 11) to obtain part of the AS image and 

hence to facilitate the required image processing. Comparing with the 200-ms systematic 

delay tolerance for real time tumor tracking (Murphy et al., 2002; Sharp et al., 2004; Vedam 

et al., 2004; Keall et al., 2006), the un-optimized LPCA computational time (72.8 ms) is of a 

reasonable level. A further optimization of the code will be conducted in our future work to 

make it feasible for tracking tumor in real time based on this method.

5. Conclusions

The proposed LPCA method is validated as a promising technique in extracting respiratory 

signals, with a best overall performance for all eight tested patient cases. Each of the existing 

methods has its own applicability. AS method relies on distinguished moving anatomical 

features and hence favors the presence of diaphragm in the projection images. The 

performance of FT-p method is sensitive to the ROI selection and the segmentation of lung 

region in each projection image may be crucial for its success. IA method has a stable 

performance, slightly less accurate than LPCA. For the cases where the anatomy movement 

information is extremely weak or inconsistent, a larger ROI is preferable. As for the clinical 

applications, it may need to incorporate multiple methods together to improve the robustness 

and accuracy. We would like to mention that the computer code for the LPCA method is 

available upon request for the research community.
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Figure 1. 
Existing projection-based breathing signal extraction methods: (a) AS method; (b) IA 

method; (c) FT based method. g (t, u, v) represents the projection image.
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Figure 2. 
Illustration of the basic idea of the proposed LPCA method. a) The 2-torus formed by 

representing the CBCT projection data as points in high dimensional space; b) A cross-

section plane locally perpendicular to the length direction of the 2-torus; c) Interpreting the 

physical meaning of sliding window width (W): large W (purple solid line) and small W 
(black dash line).
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Figure 3. 
Flowchart of the proposed LPCA method. First, the background of the AS image is extracted 

by using a TV/L1 method to get the foreground AS image (f-AS). Then PCA is performed 

on the f-AS image using a sliding window approach.

Yan et al. Page 17

Phys Med Biol. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Patient datasets: typical projection images and the lower part of AS images. For patients 1–

4, only ~3/4 of the columns are shown
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Figure 5. 
The breathing signals extracted by various methods (AS, IA, FT-p, and LPCA) are compared 

with the RPM signals and the benchmark signals for two typical example cases: a) patient 3 

with diaphragm in the projection images and b) patient 2 without diaphragm in the 

projection images.
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Figure 6. 
Local correlation coefficients (Corrlocal) between the breathing signals extracted by various 

methods (AS, IA, FT-p, LPCA, and RPM) and the benchmark signals for patients 1, 3 and 6 

(with diaphragm in the projection images) for two different ROI’s (ROI1 - left column and 

ROI2 – right column). For every sub-plot the y axis ranges from 0 to 1.
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Figure 7. 
Local correlation coefficients (Corrlocal) between the breathing signals extracted by various 

methods (AS, IA, FT-p, LPCA, and RPM) and the benchmark signals for patients 2, 4 and 5 

(without diaphragm in the projection images) for two different ROI’s (ROI1 - left column 

and ROI2 – right column). For every sub-plot the y axis ranges from 0 to 1.

Yan et al. Page 21

Phys Med Biol. Author manuscript; available in PMC 2018 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
The breathing signals extracted by various methods (AS, IA, FT-p, and LPCA) are displayed 

together with the corresponding AS images for visual inspection for low-dose CBCT scans 

(patients 7 and 8). Yellow boxes highlight the gantry angles with extremely weak signals in 

the AS images.
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Figure 9. 

The averaged local correlation coefficients ( Corrlocal) between the signals extracted using 

various methods from different ROIs and the benchmark signals. The yellow vertical lines 

denote the ROI1 and ROI2 used in previous sections. a) Patients 1, 3 and 6 with diaphragms 

in the projection images; b) Patients 2, 4 and 5 without diaphragms in the projection images. 

For every sub-plot the y axis ranges from 0 to 1.
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Figure 10. 
Reconstructed 4D-CBCT image at the end expiration phase for patient 4. Rows from top to 

bottom: the coronal view of the CBCT images, zoom-in images corresponding to the ROI in 

right lung in the first image of the top row, and zoom-in images corresponding to the ROI in 

the left lung. Columns from left to right: the averaging image reconstructed with all 

projections, the images reconstructed using projections sorted by IA, RPM, FT-p, AS and 

LPCA methods, respectively. For each row, a base line is plotted to help comparing the 

locations of objects. In the selected ROIs, three investigated objects are highlighted by 

arrows A, B and C.
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Figure 11. 

The averaged local correlation coefficients ( Corrlocal) between the LPCA-extracted signals 

and the benchmark signals for different the sliding window width W. The vertical range of 

each sub-plot is [0, 1]. W is in the unit of the number of breathing cycles. (a). 4-minute scan 

data (patients 1–4). (b). 1-minute scan data (patient 5 and 6).
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