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Abstract

Glucocorticoids (GC), produced and released by the adrenal glands, regulate numerous 

physiological processes in a wide range of tissues. Because of their profound immunosuppressive 

and anti-inflammatory actions, GC are extensively used for the treatment of immune and 

inflammatory conditions, the management of organ transplantation, and as a component of 

chemotherapy regimens for cancers. However, both pathologic endogenous elevation and long-

term use of exogenous GC are associated with severe adverse effects. In particular, excess GC has 

devastating effects on the musculoskeletal system. GC increase bone resorption and decrease 

formation leading to bone loss, microarchitectural deterioration and fracture. GC also induce loss 

of muscle mass and strength leading to an increased incidence of falls. The combined effects on 

bone and muscle account for the increased fracture risk with GC. This review summarizes the 

advance in knowledge in the last two decades about the mechanisms of action of GC in bone and 

muscle and the attempts to interfere with the damaging actions of GC in these tissues with the goal 

of developing more effective therapeutic strategies.
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1. CLINICAL EFFECTS OF GLUCOCORTICOIDS ON THE 

MUSCULOSKELETAL SYSTEM

Excess of glucocorticoids (GC) in humans produces detrimental effects in a wide range of 

tissues. Fat tissue increases and redistributes to abdomen, shoulders, and face, a diabetic 

metabolic syndrome evolves, blood pressure increases causing hypertensive disease, skin 

thins and ecchymosis and pink striae appear, acne and hirsutism and irregular menstruation 

develop, kidney stones form, and there is a failure of growth in children [1–3]. However, 

among the most common and serious effects occur in the musculoskeletal system [1–3]. In 

bone, excess GC causes osteoporosis and osteonecrosis, whereas in skeletal muscle, GC 

causes proximal myopathy and muscle atrophy [3,4] (Figure 1A). The combined detrimental 

effects of GC on bone mass and muscle strength causes falls and results in increased bone 

fracture risk, which is a major clinical feature of GC excess. In children GC also markedly 

retard skeletal growth and maturation [5]. Both endogenous elevation of GC, caused by 

cortisol over-secretion from the adrenal cortex due to adrenal disease or to ACTH 

stimulation by pituitary disease or by ectopic tissue, or exogenous GC administered for the 

treatment of a serious disorder, lead to the same phenotype, commonly known as Cushing 

syndrome. Exogenous GC produce similar adverse effects on bone and muscle to those in 

endogenous GC excess, regardless of the underlying chronic disease being treated with 

exogenous GC. The majority of patients with endogenous GC elevations exhibit 

osteoporosis (64%) and myopathy (65%) and approximately half of these individuals 

experience fractures (Figure 1A [3,6–10]). The fractures can occur at any skeletal site but 

commonly affect vertebrae and ribs (Figure 1B) One study reported that 26% of patients 

receiving chronic oral corticosteroid developed osteoporosis as defined by bone mineral 

density ( BMD) t-scores equal to or lower than −2.5 [11]. However, some studies indicate 

that BMD alone underestimates the fracture risk for patients on GC treatment [11,12]. The 

myopathy induced by GC increases the incidence of falls and leads to a further increase in 

fracture risk.

The biological effect of GC and the pathophysiology of excess GC result from activation of 

the nuclear GC receptor (GR) (Figure 1C), which regulates a large number and wide 

spectrum of genes controlling cell metabolism [13]. Mutations in the GR gene, prevent the 

Cushingoid phenotype from developing [14]. Absence of the phenotype also occurs if the 

11β-hydroxysteroid dehydrogenase type1 (11β-HSD1), which converts inactive to active GC 

metabolites, is defective [13,15,16], or if there is a defect in a coenzyme, H6PDH [17,18]. 

11β-HSD1 regulates the level of cortisol and its inactive precursor, cortisone, in target 

tissues (Figure 1C) [19]. Hydroxylation of the 11-carbon position in GC is essential for 

activity, and 11β-HSD1 regulates the conversion of inactive cortisol analogues such as 

prednisone to prednisolone, the active form. The clinical features of GC on bone and muscle 

varies in severity depending on the endogenous activity of 11β-HSD1.

In most patients with disease caused by endogenous hormonal activity, the high secretion 

rate of GC relates to the severity of the complications, whereas the side effects in disease 

caused by exogenous GC excess relate to the dose of hormonal analogue, its potency, and 

the length of treatment. A number of analogues are currently in clinical use in doses 
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equivalent to the anti-inflammatory activity of cortisol (Figure 1D). However, largely 

because of higher affinities for GR, their pharmacokinetics differ and biological half-lives 

are longer than cortisol, thus increasing their potency [20]. All GC are strong anti-

inflammatory drugs, and patients chronically treated for over one month with high dose of 

GC of over 5mg prednisone or its equivalent often have severe musculoskeletal side effects. 

However, even relatively small doses of GC in the order of 1.5mg/day, such as those used for 

treatment of asthma, cause adrenal suppression and may lead to adverse effects on the 

skeletal system [21]. GC cause adverse effects on bone and muscle mainly by direct action 

on the GR expressed in bone and muscle cells. However, GC also indirectly affect bone and 

muscle adversely by suppressing sex steroid secretion [22,23], lowering serum 1,25 

dihydroxy-Vitamin D levels and calcium absorption [24], decreasing collagen synthesis [25], 

and inducing diabetes mellitus [26].

Whether GC in the normal range affect the musculoskeletal system is an unsettled, but 

central question [27]. There is some evidence in children that cortisol in the normal range 

negatively effects bone geometry and density [28]. In bone, 11β-HSD1 increases with age 

and increased cortisol production locally may account in part for age-related bone loss [29]. 

The report of a negative relationship between circulating cortisone and bone formation 

markers and BMD supports such a finding [30]. Further, cortisol is higher in women with 

lower BMD at the hip, which in turn appears to relate to GC receptor polymorphisms [31]. A 

better understanding of the role of normal GC levels in determining bone mass and muscle 

function awaits much more extensive studies. However, there is little disagreement that 

states of increased cortisol secretion due to chronic stress such as burns [32–34] and 

alcoholism [35] increase the incidence of osteoporosis and muscle atrophy. The clinical 

effects of GC excess are dose and time dependent and many of the features are reversible 

with removal of the excess. Both BMD and myopathy improve by discontinuing the 

treatment. On the other hand, fracture and osteonecrosis are adverse events that require 

prevention. Thus, a comprehensive understanding of the mechanism of action of GC on bone 

and muscle cells is essential both for understanding the pathophysiology of the clinical 

presentation of disease and for the development of drug treatments. Currently, replacement 

of GC with drugs that do not have serious effects on the musculoskeletal system is not 

always possible.

1. Bone: Osteoporosis and Osteonecrosis

Skeletal fractures are a common and well-recognized clinical manifestation of both 

endogenous and exogenous chronic GC. Fractures of the ribs and vertebrae occur frequently 

(Figure 1B). Surprisingly, femoral fracture is not a feature documented in published cases of 

endogenous Cushing syndrome [1–3], whereas it is a prominent feature of exogenous GC 

use [36–41]. This difference is probably because exogenous GC increase hip fracture risk by 

exacerbating a reduction in age-related bone mass and an increase in frequency of age-

related falls.

Studies suggest that fracture occurs with GC excess at a higher BMD than in age-related 

osteoporosis indicating that decrease in bone quality with chronic GC play an important role 

in fracture risk [11,42]. However, not all studies agree [43]. What is a consistent finding is 
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that the low BMD occurs in the presence of obesity induced by GC, whereas simple obesity 

is associated with normal to high BMD [44,45]. Acute GC administration decreases bone 

formation and increases bone resorption [46,47]. However, the increased bone resorption 

phase does not persist and the osteoporosis of chronic GC use has low to normal bone 

turnover. Histologically, there is a decrease in bone volume, trabecular width, osteoid 

surface, and mineralization rate [48]. In GC induced osteoporosis, both bisphosphonates, 

perhaps paradoxically in view of the low bone turnover, and intermittent PTH increase BMD 

and reduce fracture [49].

Osteonecrosis (also called avascular necrosis or aseptic necrosis) is a rare disease [50,51], 

but it occurs commonly with chronic GC use [4,52]. Pathogenesis, although not proven, may 

to be due to interruption of the blood supply to bone with death of osteocytes and 

destruction of normal bone structure [53,54]. Multiple etiologies are involved [55]. In 

osteonecrosis induced by GC, the precise pathogenesis is unclear but may relate to GC 

effects on fat in the bone marrow. In general, its occurrence relates to the length of exposure 

and dose of GC although even relatively small doses of GC given over short time periods 

may precipitate the disease. In patients with inflammatory disease prescribed 4mg 

methylprednisone 21 tablet taper-pack over 6 days, the relative risk of osteonecrosis 

increases with one pack and rises further with multiple packs [56]. Common skeletal sites 

are in bones contiguous with large joints, including head of the femur and humerus, femur 

and tibia at the knee joint, and bones of the wrist and foot [55]. Radiological imaging 

establishes the diagnosis, with magnetic resonance imaging being most sensitive and 

standard radiography most commonly used. In the vertebrae, it may be difficult to 

distinguish a crush fracture due to osteonecrosis from that due to osteoporosis. Treatment is 

unsatisfactory particularly in end-stage disease, and bisphosphonates, although often 

advocated, showed no benefit in clinical trial [57].

2. Muscle: Myopathy and Muscle Atrophy

Proximal myopathy can be a striking clinical feature of Cushing syndrome [10,58,59]. The 

pathogenesis is obscure. It is similar clinically to the proximal myopathy of vitamin D 

deficiency and other endocrine myopathies and may have a common mechanism. It is most 

noticeable at the hip girdle muscles and rising from a sitting position and climbing stairs are 

difficult. It regresses with the removal of the GC excess. In asthmatics, the myopathy may 

affect the diaphragm and worsen respiratory distress [60]. The terms myopathy and muscle 

atrophy are not interchangeable. The former indicates the muscle fibers are normal in size 

and number but are dysfunctional, whereas the latter indicates the muscle fibers are smaller, 

fewer, and wasted. Muscle atrophy with GC excess is associated with abnormalities in 

transcription factors, nuclear cofactors, hyperacetylation, cell-calcium metabolism and 

insulin signaling [61,62]. GC excess also has major effects on muscle protein synthesis and 

degradation, and myoblast proliferation [63]. Atrophy affects all voluntary muscles and may 

be difficult to recognize because of the concomitant increase in fat. Clinically it manifests as 

both generalized peripheral and central weakness.
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2. GLUCOCORTICOID EFFECTS ON BONE CELLS

1. Effects of GC excess on the bone remodeling rate and osteonecrosis

GC induce osteoporosis by increasing bone resorption, decreasing bone formation, and 

increasing apoptosis of osteocytes and osteoblasts, resulting in decreased bone strength 

causing elevated fracture risk in humans and animal models of GC excess [12,41,64–71] 

(Figure 2). The initial phase of GC-induced bone loss occurs rapidly with reports of BMD 

loss as early as 3–5 months after initiation of immunosuppressant therapy in patients [72–

74] and with losses of 6–12% after the first year of GC treatment [75]. This early bone-loss 

phase is characterized by robust resorption activity; however, inhibition of osteoid 

production and osteoblast and osteocyte apoptosis also contribute to the rapid bone loss 

exhibited in this phase. The increased resorption is attributed to GC effects on both 

prolonging the lifespan of pre-existing osteoclasts as well as a transient, initial increase of 

osteoclastogenesis [64,76,77]. Bone formation is also readily suppressed by GC in short-

term intervention models [78,79], which is attributed to the downregulation of osteocalcin 

(OCN) [80,81] and collagen 1 (Col1A1) [82,83] resulting in decreased production of 

osteoid. GC also increase the prevalence of apoptotic osteoblasts and osteocytes, which 

occurs as early as 10 days after GC initiation in mouse models and accumulates with 

continued administration [65,70,78,84].

Long-term treatment of GC induces bones losses after the first year of up to 3–5% per 

continued year of GC therapy [75]. However, it should be noted that the bone changes in 

humans is confounded by the activity and etiology of the underlying disease for which 

exogenous GC are being used to treat. In contrast to the initial phase of GC-induced bone 

loss, the chronic phase is characterized by reductions in resorption activity and osteoclast 

number, which is attributed to the loss of receptor activator of NFKB ligand (RANKL)- 

expressing osteoblastic cells required for osteoclast development [70]. The reduced bone 

formation and apoptosis of osteoblasts and osteocytes exhibited in the early phase continues 

throughout long-term GC exposure, corresponding to the strong correlations between the 

cumulative GC dose and the percentage of BMD loss exhibited in patients [72]. Thus, 

imbalance between formation and resorption causing negative bone balance might be 

responsible for the continuous bone loss in chronic GC excess states.

A recent study in a murine model of GC excess examined the temporal sequence of 

pathogenic events leading to GC-induced osteonecrosis and provided evidence that the 

femoral head is more sensitive to the adverse effects of GC excess compared to other 

anatomic bone sites [85]. The femoral head of mice given GC exhibited decreased 

expression of the hypoxia-inducible factor (Hif-1α) and vascular endothelial growth factor 

(VEGF), a reduction in the number of osteoblasts, bone formation rate, and strength and an 

increase in number of osteoclasts, before changes were detected in either the femoral 

midshaft cortex or the cancellous bone of the distal femur. These molecular and cellular 

effects in the femoral head were accompanied by conversion of the normal vasculature to 

areas of edema as assessed by magnetic resonance imaging providing diagnostic evidence of 

osteonecrosis. These effects of GC preceded any detectable changes in bone density, cortical 

or cancellous bone architecture, bone volume in the cortical midshaft or distal cancellous 
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bone, or accumulation of empty osteocyte lacunae (a late sign of osteocyte apoptosis). These 

findings strongly suggest that alterations in bone vascularity leading to osteonecrosis 

precede bone loss and deterioration of bone microarchitecture, and explain the vulnerability 

of the femoral head to collapse in GC excess.

A separate study showed that GC-induced osteonecrosis in a murine model as well as in 

human bone is associated with decreased remodeling of the osteocyte lacunar space and with 

decreased expression of metalloproteinase 13 (MMP13) by these cells [86]. Suppression of 

MMP13 expression occurs in parallel, but independently of GC-induced osteocyte apoptosis; 

and the changes in matrix hypermineralization characteristic of osteonecrosis occur before 

any detectable reduction in bone mass induced by GC. These findings suggest that 

suppression of osteocytic perilacunar remodeling is an early event associated with 

osteonecrosis induced by GC [86].

2. Direct effects of GC on cells of the osteoblastic lineage

Endogenous GC activity is regulated by two enzymes: 11β-HSD type 1 and type 2 (Figure 

1C). 11β-HSD1 is a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent 

reductase that converts inert 11-ketometabolites into biologically active GC; whereas 11β-

HSD2 is a nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase that 

converts active GC into inactive metabolites. Several transgenic overexpression mouse 

models have taken advantage of this enzymatic system to investigate the direct effects of GC 

on osteoblastic cells. By overexpressing 11β-HSD2 under the control of promoters active at 

different stages of differentiation of the lineage, GC action can be blocked in a cell specific 

manner. Blocking GC action by overexpressing 11β-HSD2 in osteoblast precursors, 

immature as well as mature osteoblasts, using the 3.6-kb or 2.3-kb fragments of the rat 

Col1a1 promoter, decreases bone mass accrual in growing mice, highlighting the importance 

of GC signaling for physiological bone development and growth [87–89]. Similarly, mice 

lacking the GR in cells expressing the osteoblast specific transcription factor Runt Related 

Transcription Factor 2 (Runx2) also exhibit reductions in cancellous bone accompanied by 

reduced expression of osteoblast-related genes (Runx2, Col1a1, and Bglap2) [83]. The 

impact of endogenous GC signaling on early osteoblastic linage cells decreases with age, as 

no differences in bone volume or cancellous bone parameters were found in skeletally 

mature 24-week old Col1a1-2.3kb-11β-HSD2 compared to control mice [90]. In addition, 

transgenic expression of 11β-HSD2 in mature osteoblasts and osteocytes under the control 

of the osteocalcin promoter does not negatively affect skeletal development or peak bone 

mass accrual [66]. Overall, the evidence indicates that GC signaling in early osteoblastic 

differentiation stages, but not in late osteoblastic or osteocytic stages, is required for optimal 

bone mass acquisition during bone growth.

In contrast, mice overexpressing 11β-HSD2 under the control of the murine osteocalcin 

gene 2 (OG2) promoter, which is active only in mature osteoblasts and osteocytes [91,92] 

were protected from GC-induced apoptosis of these cells [66]. Prevention of osteoblast/

osteocyte apoptosis preserved cancellous osteoblast function and osteoid production, thus 

preventing the decrease in bone formation. Importantly, bone strength was preserved in the 

transgenic mice despite loss of bone mass, suggesting a potential effect of osteocyte viability 
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in preserving bone strength. In addition, the initial rapid bone loss induced by GC was not 

prevented by blocking GC action in osteoblasts and osteocytes, strongly suggesting that the 

early phase of bone loss is due to GC action on osteoclasts [64] (see below Effects of GC 
excess on osteoclasts).

A major effect of GC on cells of the osteoblastic lineage is the inhibition of osteoblast 

differentiation and reduction of the synthetic activity of osteoblasts. This action is dependent 

upon the duration of the exposure and the dose of GC, and the stage of differentiation of the 

osteoblasts. Low GC doses or short durations of in vitro administration of embryonic or 

adult mesenchymal stem cells (MSC), as well as immature osteoblast progenitor cells, 

promote early osteoblastic differentiation with increases in the mRNA expression of 

osteoblastic genes [1,93]. In contrast, higher GC doses and longer exposure of cells 

committed to the osteoblastic lineage suppress differentiation and inhibit the expression of 

osteoblast markers [94,95]. At least part of the inhibitory effect of high dose GC on 

osteoblast maturation and matrix production is due to direct downregulation of osteoblastic 

genes, including collagen 1 and osteocalcin [80–83].

3. GC and osteoblast and osteocyte apoptosis: inside-out kinase signaling, reactive 
oxygen species (ROS), and endoplasmic reticulum (ER) stress

A hallmark of GC excess on cells of the osteoblastic lineage is the promotion of apoptosis 

[12,70] (Figure 2). The increase in the prevalence of osteoblast apoptosis partially explains 

the reduced osteoblast number and decreased bone formation induced by GC. Further, 

accumulation of apoptotic osteocytes contributes to osteoporosis of GC excess. As discussed 

earlier, GC induce apoptosis by direct actions on osteoblasts and osteocytes as in vivo 
blockade of GC signaling in these cells preserved viability [66]. Accordingly, the apoptotic 

effect of GC observed in vivo are readily reproduced in vitro in cultured osteoblasts and 

osteocytes and depend on the expression of the glucocorticoid receptor (GR) [96,97].

Binding of GC to the GR is followed by cis- or trans-interactions between the ligand-bound 

receptor with DNA and induction or repression of gene transcription [98,99]. However, GC 

also exert actions mediated by the GR independently of direct changes in gene transcription, 

including modulation of the activity of intracellular kinases such as the extracellular signal-

regulated kinases (ERKs), the c-Jun N-terminal kinase (JNK) and the proline-rich tyrosine 

kinase 2 (Pyk2) [100–105]. Pyk2 also known as related adhesion focal tyrosine kinase 

(RAFTK), cellular adhesion kinase β (CAKβ), and calcium-dependent tyrosine kinase 

(CADTK) [106,107] is a member of the focal adhesion kinase (FAK) family of non-receptor 

tyrosine kinases. Although Pyk2 and FAK are highly homologous, they exhibit opposite 

effects on cell fate. Whereas FAK activation leads to cell spreading and survival, Pyk2 

induces cell detachment and apoptosis [106,108]. In particular, the survival of osteoblasts 

and osteocytes and their interaction with the extracellular matrix are controlled by focal 

adhesions, sites at the plasma membrane in which integrins connect extracellular matrix 

proteins with intracellular structural and catalytic molecules [109–111]. Signaling mediated 

by integrins is bidirectional. Extracellular matrix proteins induce integrin engagement and 

activate intracellular signaling (referred to as outside-in signaling). Conversely, activation of 

intracellular signaling or changes in the composition of the focal adhesions regulate the 
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interaction of integrins with extracellular matrix proteins (referred to as inside-out signaling) 

[112,113]. Whereas association of integrins with the extracellular matrix leads to survival, 

loss of this interaction causes detachment-induced apoptosis or anoikis [111]. For 

osteocytes, integrin engagement mediated by FAK, and potentiated by mechanical signals, 

maintains osteocyte survival [114]. Conversely, the pro-apoptotic effect of GC in osteocytes 

is preceded by cell detachment due to interference with FAK-mediated survival signaling 

generated by integrins [97]. GC oppose this integrin/FAK-dependent anti-apoptotic signaling 

by activating Pyk2, which in turn activates pro-apoptotic JNK signaling. This rapid kinase 

activation is followed by inside-out signaling that causes osteocyte detachment and leads to 

anoikis. Remarkably, although this action of GC is exerted via a receptor-mediated 

mechanism, it is independent of new gene transcription [97]. This evidence highlights the 

importance of alterations in rapid kinase signaling independent of nuclear actions of the GR 

and open new avenues for the design of GC analogs with the ability to activate transcription-

mediated versus kinase-mediated actions of the GR.

Changes in FAK and Pyk2 kinase signaling induced by GC, combined with down-regulation 

of genes that prolong survival, such as interleukin-6, insulin growth factors, transforming 

growth factor β, collagenase type I, and integrin β1 [98,115–118], could result in the 

increase in osteocyte and osteoblast apoptosis observed in vivo.

GC also increase reactive oxygen species (ROS) production in bone in vivo and in 

osteoblasts in vitro [119], which could contribute to their in vivo effects. Endoplasmic 

reticulum (ER) stress is associated with increased ROS, resulting from accumulation of 

misfolded/unfolded proteins, and can trigger apoptosis. ER stress is alleviated by 

phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), which slows the 

global rate of protein translation to provide time for the ER to recover from the excessive 

protein load, thus allowing the cell to escape from apoptosis [120,121]. Consistent with a 

role for ROS/ER stress, GC effects are prevented by the compounds, salubrinal and 

guanabenz [122], eIF2α dephosphorylation inhibitors that block ROS-induced ER stress 

[123,124]. Salubrinal and guanabenz prevented the pro-apoptotic effect of GC on osteoblasts 

and osteocytes in vitro as well as the decrease in differentiation induced by GC in 

osteoblastic cell cultures. Further, salubrinal prevented apoptosis of osteoblasts and 

osteocytes in vivo and blunted the decrease in bone mass and bone formation induced by 

GC. Salubrinal increased the number of alkaline phosphatase positive colonies in bone 

marrow cell cultures [125] and osteocalcin expression in osteoblastic MC3T3-E1 cells [126]. 

Conversely in vitro exposure to thapsigargin or tunicamycin induces elevated ER stress and 

increased apoptosis of osteoblasts and changes in osteoblast differentiation [127,128]. 

Increased ER stress appears to have a time-dependent biphasic effect inducing rapid increase 

in osteoblast markers Runx2 and osterix, followed by a reduction in the expression of these 

transcription factors as well as osteocalcin [127].

4. Effects of GC excess on osteoclasts

One of the features of GC-induced bone loss is a rapid, early increase in bone resorption, 

which is associated with increased osteoclasts on bone surfaces (Figure 2). The effect of GC 

on osteoclasts results from two different mechanisms: GC stimulate osteoclast generation 
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and also prolong the life span of preexisting osteoclasts. GC increase the RANKL/

osteoprotegerin (OPG) ratio in bone, mainly by downregulating the expression of OPG, a 

Wnt/β catenin target gene, resulting in increased osteoclast generation [129,130]. Consistent 

with this notion, activation of Wnt/β catenin signaling prevents osteoclast increase and halts 

bone resorption induced by GC [129]. In addition, GC promote survival of osteoclasts [76], 

and oppose the pro-apoptotic effects of bisphosphonates [64]. The effect of GC delaying 

osteoclast apoptosis explains why mice receiving GC exhibit increased number of 

osteoclasts on bone surfaces even when osteoclast progenitors in the bone marrow are 

reduced. GC exert an anti-apoptotic effect on osteoclasts by direct actions on osteoclasts 

demonstrated by the evidence that GC do not increase osteoclasts in mice expressing 11β-

HSD2 specifically in these cells [76]. Consistent with a causative role of delayed osteoclast 

apoptosis in the early bone loss induced by GC, the loss of bone observed in WT mice was 

prevented in transgenic mice expressing 11β-HSD2 specifically in osteoclasts. Remarkably, 

these mice exhibit the expected decrease in osteoblast number and bone formation rate and 

increased osteoblast apoptosis [76]. Thus, GC act on cells of the osteoclastic and 

osteoblastic lineage independently and by different mechanisms.

In contrast to the early, acute increased osteoclast and decreased osteoblast activity, late 

effects of GC decrease both osteoclasts and osteoblasts [131]. Whereas osteoblast number is 

reduced and osteoblast and osteocyte apoptosis is increased at all stages of GC-induced bone 

disease, at the late stage inhibition of osteoclastogenesis prevails over delayed osteoclast 

apoptosis. The latter effect is attributed to a reduction in osteoblastic lineage cells that 

support osteoclastogenesis and leads to the low bone remodeling rate that characterizes 

chronic GC-induced bone disease.

5. GC and Wnt/β-catenin signaling

Wnt/β-catenin signaling and GC action lead to opposing effects on bone. The Wnt/β-catenin 

pathway has a critical role in the control of bone acquisition and maintenance. This pathway 

is activated by ligands of the Wnt family that bind to frizzled receptors and co-receptors, and 

also by downregulation of antagonists, including Dkk1 and Sost/sclerostin [132]. Human 

mutations responsible for high bone mass diseases, including gain-of-function of the LRP5 

Wnt co-receptor, loss of expression of the Sost/sclerostin inhibitor in Van Buchem disease 

and sclerosteosis type 1, and loss-of-function of the sclerostin chaperone LRP4 in 

sclerosteosis type 2, demonstrate that activation of the Wnt/β-catenin pathway is linked to 

increased bone formation and bone gain [133–135]. In addition however, genetic 

manipulation of β-catenin, the mediator of the canonical Wnt pathway, affects bone 

resorption. This is due to up-regulation of OPG, the decoy receptor for RANKL [136,137]. 

Therefore, the Wnt/β-catenin signaling cascade regulates bone mass by both bone anabolic 

and anti-catabolic mechanisms. Further, activation of Wnt/β-catenin signaling promotes 

osteoblast and osteocyte survival [138]. This collective evidence demonstrates that activation 

of the Wnt/β-catenin signaling pathway and GC action lead to opposing cellular and tissue 

level effects on bone. Based on this findings, we recently investigated the effects of GC 

excess in mice exhibiting activated Wnt/β-catenin signaling by virtue of genetic deletion of 

the Wnt antagonist Sost/sclerostin (Sost−/− mice) [129]. Sost−/− mice were protected from 

the decrease in bone mass, deterioration in microarchitecture, and reduced structural and 
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material strength induced by GC. Although the high bone mass exhibited by Sost−/− mice is 

due to increased bone formation with unchanged resorption, protection from bone loss in 

Sost−/− mice was due to prevention of GC-induced bone resorption and not to restoration of 

bone formation. In WT mice, GC increased the expression of Sost and the number of 

sclerostin positive osteocytes. GC also altered the molecular signature of the Wnt/β-catenin 

pathway by decreasing expression of genes associated with both anti-catabolism, including 

OPG, as well as anabolism/survival. In contrast, GC did not decrease OPG or other anti-

catabolic markers in Sost−/− mice, but did reduce genes associated with anabolism and 

survival. Thus, in the context of GC excess, activation of Wnt/β-catenin signaling induced 

by Sost/sclerostin deficiency sustained bone integrity by opposing bone catabolism despite 

markedly reduced bone formation and increased apoptosis. These results indicate that the 

Wnt/β-catenin pathway, which is predominantly anabolic for bone, is switched to anti-

catabolic in the frame of GC excess.

These findings suggest that therapeutic interventions activating Wnt/β-catenin signaling 

could halt the high bone resorption responsible for the early rapid bone loss induced by GC, 

which in humans ranges 6–12% during the first year of treatment [12]. Consistent with this 

notion, inhibition of sclerostin with a neutralizing antibody in growing mice opposed the 

lack of bone gain and the loss of strength induced by GC [139,140]. It was proposed that 

these effects were due to preservation of osteoblast activity [140]. However, compared to 

control mice treated with GC alone, mice treated with GC and the anti-sclerostin antibody 

exhibited lower circulating tartrate-resistant acid phosphatase (TRAP5b), a marker of 

osteoclast number, [139] and CTX-1 [140], but still markedly reduced bone formation 

markers osteocalcin and amino-terminal propeptide (PINP) [139]. Similarly, GC are unable 

to decrease OPG and increase the RANKL/OPG ratio ex vivo in bones from Sost−/− mice or 

from WT mice treated with an anti-sclerostin antibody [129]. These findings demonstrate 

that Sost/sclerostin deficiency, either genetically or pharmacologically achieved, maintains 

bone mass and strength in conditions of GC excess by inhibiting bone resorption through 

sustained anti-catabolic signaling driven by OPG.

This crosstalk between GC and Wnt/β-catenin signaling could be exploited therapeutically 

not only to halt bone resorption and bone loss induced by GC, but also to inhibit the 

exaggerated bone formation and bone mass in diseases due to hyperactivation of Wnt/β-

catenin signaling. Indeed, it has been shown that GC stopped the bone gain and reduced high 

P1NP in a patient with Van Buchem disease, a genetic disease that results from lack of 

sclerostin expression and in which continuous bone anabolism causes life-threatening 

increased intracranial pressure [141]. Prior to GC intervention, the patient exhibited annual 

BMD gains of 4 to 9% in the lumbar spine and of 4 to 24% in the hip. Treatment with 

prednisone blunted the anabolic effect of Sost deficiency as evidenced by no gain in BMD 

over two years (−0.7% in lumbar spine and 0.4% in the hip). The demonstration that bone 

formation and Wnt/β-catenin anabolic signaling is decreased in Sost/sclerostin deficient 

mice treated with GC [129] provides a mechanistic explanation for these clinical findings. 

Thus, GC oppose the effects of Sost/sclerostin deficiency on bone formation in both humans 

and mice [129,141].
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Inhibition of resorption with bisphosphonates is current standard of care for GC-induced 

osteoporosis [12,142], as these drugs protect from the loss of bone mass in animal models 

and patients. However, bone formation is decreased even further by bisphosphonates 

compared to GC alone [49,78,122,143]. In patients receiving GC, treatment with anti-

RANKL antibody induced more pronounced reductions in bone formation compared to 

bisphosphonate [144]. Profound reduction in bone turnover is undesirable since it increases 

the potential for developing osteonecrosis of the jaw and atypical femoral fracture [145–

148]. In contrast to bisphosphonates, Sost deficiency confers high bone formation, and Sost 

deficient mice treated with GC exhibit bone formation levels comparable to WT mice treated 

with placebo [129]. Even when the reduction in P1NP induced by GC in Sost−/− mice is 

more severe than in WT mice, the reduced P1NP is similar to that of placebo-treated WT 

mice. Similarly, the reduced bone formation exhibited by Sost−/− mice treated with GC is 

equivalent to bone formation in placebo-treated WT mice. Therefore, Sost/sclerostin 

deficiency maintains tissue-level toughness by preserving modest amounts of bone 

formation while preventing GC-induced increases in resorption. This finding points to a 

potential benefit of neutralizing sclerostin strategies compared to the current therapeutic 

approach to treat GC-induced bone fragility.

In summary, the deleterious effects of GC on the skeleton are linked to increased expression 

of the osteocyte-derived Wnt/β-catenin antagonist Sost/sclerostin and to downregulation of 

Wnt/β-catenin target genes; and Sost/sclerostin deficiency prevents GC-induced 

osteoporosis by anti-catabolic, not anabolic, actions.

3. GLUCOCORTICOID EXCESS IN MUSCLE AND ATROPHY-RELATED 

GENES IN BONE AND MUSCLE

1. Effects of GC excess in muscle

GC induce loss of skeletal muscle mass and strength particularly at the hip and shoulder 

girdle, which in turn increase the risk of falls. These effects on muscle are of rapid onset and 

detected as early as 7 days after initiation of GC administration in humans [149,150]. GC 

reduce sarcolemma excitability, decrease serum levels of creatine kinase and myoglobin, 

decrease cross sectional area of type 1, 2A and 2B myofibers, and reduce the specific force 

(strength) of muscle fibers. Muscle atrophy induced by GC is accompanied by suppression 

of protein synthesis with simultaneous increase in protein catabolism, leading to reduced 

myotube diameter [61,151]. The formation of new myotubes is also impaired, as GC inhibit 

myogenesis by down-regulating myogenin gene expression. GC-induced protein catabolism 

in skeletal muscle is associated with enhanced Forkhead Box O (FoxO)-dependent 

transcription of members of the protein degradation machinery, including the ubiquitin-

proteasome system of E3 ubiquitin ligases, the lysosomal system of cathepsins, and the 

calcium-dependent system of calpains [61,152]. E3 ubiquitin ligases muscle atrophy F-box 

(MAFbx, also known as atrogin1) and muscle RING finger 1 (MuRF1, also known as 

TRIM63) are known regulators of GC-induced muscle atrophy both in vivo and in vitro, as 

well as a number of other sarcopenia-inducing conditions including denervation, 

immobilization, disuse, diabetes, and renal failure [153–155]. Mice lacking MuRF1 are 

partially protected from muscle loss induced by GC, and muscle-specific deletion of the GR 
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prevents the increased atrophy gene expression and muscle loss induced by GC [156–158]. 

The ubiquitin ligase MUSA1 (muscle ubiquitin ligase of the SCF complex in atrophy-1, also 

known as Fbxo30) has also been associated with increased protein catabolism and reductions 

in total protein content in muscle models of denervation injury/disuse [159].

2. Regulation of atrophy related genes in muscle and bone

A recent study in a mouse model of GC excess provided information about the mechanisms 

by which GC upregulate the expression of atrophy-related genes in muscle and demonstrated 

that GC also increase atrophy-related genes in bone [79]. GC increase the expression in bone 

in vivo and in osteoblasts and osteocytes in vitro of the traditionally considered muscle-

specific E3 ligases atrogin1, MuRF1, and MUSA1 (Figure 3). GC also increase the 

expression of Notch ligands, receptors, and target genes in muscle, but not in bone. GC-

induced expression of atrophy-related genes and muscle cell atrophy were prevented by 

pharmacologic inhibition of the Notch pathway. These findings demonstrate that GC-

induced loss of bone and muscle mass are accompanied by increased expression of atrophy-

related genes, although the upstream mechanisms are tissue-specific. Further, they identify 

the Notch signaling pathway as a potential therapeutic intervention to prevent skeletal 

muscle atrophy and weakness induced by GC, and provide the mechanistic basis for 

combining therapies that target each tissue to treat GC-induced osteopenia and sarcopenia.

This evidence notwithstanding, the relevance of atrophy gene expression for the action of 

GC in bone remains unclear. Earlier studies have shown that genetic global deletion in mice 

of MuRF1 protects from the loss of bone induced by hind limb unloading [160]. MuRF1 KO 

mice were also protected from the decrease in bone formation and the increase in osteoclasts 

[160]. This evidence, together with the findings in our study [79], raises the possibility that 

upregulation of MuRF1, and possibly other atrophy-related genes, contributes to the reduced 

bone formation and increased bone resorption induced by GC, and suggests that targeting 

the atrophy pathway may block GC action in bone.

The decrease in muscle mass, quantified by lean body mass, mass of individual muscles rich 

in fast-twitch fibers like the extensor digitorium longus (EDL) induced by GC in our murine 

model, is detected as early as after 14 days of GC administration [79]. Importantly, muscles 

from GC-treated mice exhibited decreased strength (force), quantified ex vivo by 

contractility tests of individual muscles, and in vivo, by measuring isometric plantarflexion 

torque generated by muscles of the posterior compartment of the leg. Remarkably, we 

detected decreased strength (specific force) in the slow-twitch soleus muscle in the absence 

of reduction of soleus mass, suggesting that GC might alter muscle function in the absence 

of detectable tissue loss, at least in muscles traditionally considered resistant to GC 

[161,162]. In contrast, the reduction in strength in the EDL muscle can be explained by loss 

of muscle mass, because it is corrected by normalizing for tissue mass. The lower rate of 

fatigue detected in the fast-twitch EDL muscles treated with GC compared to placebo-

treated muscles may be explained by the fact that EDL muscles are mainly composed of the 

highly fatigable myosin-rich type 2 fibers, which are preferential targets of GC-induced 

muscle atrophy [163,164]. Thus, GC might induce loss of highly fatigable fibers and the 

remaining fibers fatigue more slowly in EDL muscles. In contrast, slow-twitch soleus 
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muscles fatigue at the same rate in GC- and placebo-treated mice despite reductions in 

overall strength. This effect may in part explain the proximal myopathy seen in patients with 

Cushing syndrome. The current findings with the C57BL/6 mouse model of GC excess are 

consistent with the previously reported reduction in muscle fiber specific force in humans 

treated with GC [150]. Importantly, the reduction in muscle mass correlated with increased 

expression of the atrophy genes. Future studies are warranted to establish the role of E3 

ubiquitin ligases in muscle weakness induced by GC.

GC decrease C2C12 myotube diameter by 20%, comparable with earlier in vitro and in vivo 
studies [150,157,158,162,165], as well as studies with starvation [162,166] and denervation 

[158,166]. Decreases of 10–17% myotube diameter translates into reductions of 25–35% in 

strength (specific force) with GC administration in humans, suggesting that modest 

reductions in myotube diameter result in a notable impairment of muscle function [150].

Activation of the Notch signaling pathway is required for expansion of a satellite cell 

population, a known critical event for skeletal muscle repair [167,168]. Notch signaling also 

inhibits myogenic differentiation of progenitor cells by decreasing myoblast determination 

protein 1 (MyoD) and myogenin expression and by reducing MyoD activity [167,169,170]. 

These findings support the notion that Notch signaling is crucial for maintaining the self-

renewal capacity of muscle satellite cells. The recent findings showing that the expression of 

components of the Notch pathway was upregulated by GC in skeletal muscle reveal a novel 

role of this pathway. [79]. Moreover, the fact that inhibition of Notch signaling with the 

gamma secretase inhibitor, GSI XX, blocked the upregulation of atrophy-related genes and 

prevented the reduction in C2C12 myotube diameter induced by GC, suggest a potential 

therapeutic benefit of blocking Notch signaling to maintain muscle strength.

In contrast to the effects on muscle, GC did not increase the expression of components of the 

Notch pathway in vivo, ex vivo, or in vitro models of bone and osteoblastic/osteocytic cells 

[79]. This finding is consistent with previous studies demonstrating that the expression Dll1 

and Jag1 Notch ligands was not altered by GC administered to osteoblastic cells [171]. 

Thus, GC activate Notch signaling in muscle, but not in bone, to induce atrophy. Although 

the mechanism underlying the upregulation of atrophy genes by GC in bone remains 

unknown, it is possible that Forkhead box O (FoxO) transcription factors are involved. In 

muscle, FoxO family members (FoxO1, 3, and 4) regulate atrogen-related gene expression 

and are required for the full atrophic response by several inducers of skeletal muscle 

wasting, including starvation, denervation, and chronic kidney disease [165,166,172]. In 

bone, FoxOs are activated by and are critical for the defense against ROS [173]. In addition, 

at least part of the effects of GC in bone are due to accumulation of ROS as well as to ER 

stress, and are abolished by ROS or ER stress inhibitors [122]. Activation of FoxO in 

osteoblasts by GC is blocked by ROS inhibition [119]. FoxO-mediated transcription is 

favored over Wnt/β-catenin transcription [119], and activation of Wnt/β-catenin signaling 

protects from GC-induced osteoporosis [129]. Future studies will be required to reveal the 

role of FoxOs in the upregulation of atrophy-related genes by GC in bone.
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4. CONCLUSIONS AND FUTURE STUDIES

Research in the last two decades have enormously increased our understanding of the 

mechanisms of action of GC excess in the musculoskeletal system. It is now clear that GC 

act directly on individual bone cell types (osteoclasts, osteoblasts and osteocytes) (Figure 2), 

and that they also affect muscle cells. GC stimulate the production of osteoclasts and delay 

apoptosis, thus increasing number and resorption activity, primarily in the early phase of GC 

bone disease. GC induce the premature death of osteoblasts and markedly decrease their 

matrix synthesizing activity, resulting in marked decreased bone formation rate throughout 

GC treatment. GC increase apoptosis of osteocytes, contributing to deterioration of the 

osteocytic canalicular network, which is crucial for the regulation of bone metabolism and 

function. GC increase the expression of the osteocyte-derived bone formation antagonist 

Sost/sclerostin, which in turn decreases Wnt/β-catenin signaling and reduces OPG 

expression contributing to the increase in bone resorption. GC induce in both muscle and 

bone the expression of atrophy-related genes (Figure 3), which are involved in muscle and 

bone atrophy. GC are important therapeutic agents for many chronic diseases, but they 

produce serious adverse effects on the musculoskeletal system. Future research is urgently 

required to develop therapeutic interventions that simultaneously prevent the loss of bone 

and muscle mass and preserve the functionality of musculoskeletal tissues. In addition, 

clinical studies on early osteonecrosis and cell biology studies to clarify the mechanisms that 

lead to osteonecrosis are needed to develop preventative and curative treatment. Further, 

studies to clarify differences between myopathy and muscle atrophy and the development of 

therapeutic interventions for prevention and treating myopathy induced by GC are 

warranted.
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Figure 1. Adverse effects of GC in the musculoskeletal system
A. Percent occurrence of adverse effects in bone and muscle with endogenous or exogenous 

GC excess. B. Comparison of fracture and osteonecrosis occurrence in specific bones 

induced by endogenous and exogenous GC excess. C. GC metabolism: Inactive GC 

metabolites are converted to active metabolites and vice versa by the enzymatic activity of 

11β-HSD 1 and 2, respectively. Active GC metabolites bind to the glucocorticoid receptor to 

initiate the GC response. D. Relative potency of active GC analogs. References in the graph 

and tables correspond to data sources. See abbreviations in text.
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Figure 2. Mechanisms of action of GC on bone cells
GC induce an early increase in osteoclasts and a decrease in osteoblasts and osteoid 

production. The early increase in osteoclasts is due to prolongation of survival of preexisting 

osteoclasts and stimulation of osteoclastogenesis via increased RANKL/OPG ratio, through 

combined downregulation of OPG and upregulation of RANKL expression in osteoblasts 

and osteocytes. GC also induce apoptosis of osteoblasts and osteocytes through activation of 

the Pyk2 kinase, and accumulation of ROS and the resulting endoplasmic reticulum (ER) 

stress. GC inhibit the synthetic capacity of osteoblasts through suppression of OCN and Col 

1a1 transcription. Osteocytic Sost/sclerostin expression is increased by GC, which reduces 

Wnt/β-catenin signaling in the bone microenvironment, with the consequent decreased in 

OPG expression in osteocytes and osteoblasts. Table summarizes GC effects at the tissue and 

cellular levels. The early phase of GC-induced bone disease is due to increased osteoclasts 

and bone resorption and decreased osteoblasts and bone formation. The late, chronic disease 

phase is associated with decreased osteoclasts and osteoblasts, leading to a low bone 

remodeling state. Increased osteocyte apoptosis in both phases of GC-induced bone disease 

contributes to decreased bone strength by disrupting the function of the osteocytic lacunar-

canalicular network.
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Figure 3. Regulation of atrophy-related genes in muscle and bone by GC
GC activate distinct pathways in muscle and bone that converge in the upregulation of 

atrophy-related E3 ubiquitin ligase genes or atrogens (atrogin1, MuRF1, and MUSA1); these 

in turn lead to atrophy and loss of mass in both tissues (sarcopenia and osteopenia). The 

combined adverse effects of GC in bone and muscle contribute to GC-induced myopathy 

and the increased occurrence of bone fractures.
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