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Abstract
Osteoporosis, the most frequent metabolic disorder of bone, is a complex disease with a

multifactorial origin that is influenced by genes and environments. However, the pathogen-

esis of osteoporosis has not been fully elucidated. The theory of “Developmental Origins of

Health and Disease” indicates that early life environment exposure determines the risks of

cardiometabolic diseases in adulthood. However, investigations into the effects of maternal

nutrition and nutrition exposure during early life on the development of osteoporosis are limited. Recently, emerging evidence has

strongly suggested that maternal nutrition has long-term influences on bonemetabolism in offspring, and epigenetic modifications

maybe the underlying mechanisms of this process. This review aimed to address maternal nutrition and its implications for the

developmental origins of osteoporosis in offspring. It is novel in providing a theoretical basis for the early prevention of

osteoporosis.
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Introduction

Osteoporosis, as the most frequent bonemetabolic disorder,
increases morbidity and mortality of humans. The main
characteristics of osteoporosis in bone tissue include
lower bone mass and abnormal micro-architecture, result-
ing in increased risks of bone fracture and fragility.1 It is a
common bone metabolic disease in humans affecting both
sexes and all races. It is estimated that the number of oste-
oporosis in women who were aged more than 50 years will
rise to over 10 million by 2020.2 The prevalence of osteopo-
rosis related fracture is over 1.5 million annually in the
United States.3 Mortality and morbidity rates as a result
of hip fractures are substantial and the mortality rate
within one year of the fracture is between 5% and 20%.4

The number of hip fracture is estimated to increase by 240%
in women and 310% in men, with 6.26 million hip fractures

worldwide in 2050.5 Vertebral fractures have been called
the hallmarks of osteoporosis and tend to occur at younger
ages than other fractures. Vertebral fractures can increase
the future risks of additional vertebral fractures by 5 to 10
times, and are associated with increased risks of non-
vertebral fractures.6 As a global health concern, osteoporo-
sis dramatically increases social and economic burden
throughout the world.5

Pathophysiology and etiology of
osteoporosis

The skeleton is one of the body’s largest organs, composed
of mineralized extracellular matrix and bone remodeling
unit, with osteocytes, osteoblasts, osteoclasts, and lining
cells.2 Osteoblasts and osteoclasts are the critical partici-
pants of bone remodeling. Osteoclasts are a type of bone
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cell that degrade the bone matrix, while osteoblast are cells
with single nuclei that build bone.7 The process of bone
remodeling cycle is tightly coupled. The rate of bone for-
mation is approximately the same with bone resorption in
adulthood. Osteoporosis can occur when bone resorption
process is faster than bone formation.8

Osteoporosis is a frequent disease with a complicated
origin that is influenced by genes and environments.
Kung et al.9 reviewed that 63 genes were associated with
bone mineral density (BMD) and several phenotypes relat-
ed with osteoporosis. Both humans and experimental ani-
mals showed certain quantitative trait loci were associated
with osteoporosis,10 such as vitamin D receptor (VDR),11

insulin-like growth factor 1 (IGF-1),12 and estrogen receptor
a genes.13 However, the role of single gene polymorphism
in bone metabolism is less than 1% to 3%.14 Thus, the path-
ogenesis and etiology of osteoporosis have not been clear-
ly elaborated.

Recently, it is increasingly clear that early life environ-
ment determines the develpoment of diseases in adult-
hood.15 Substantial epidemiological and animal studies
showed that early life malnutrition can determine the
development of a number of cardiometabolic diseases,
such as obesity, insulin resistance, type 2 diabetes, cardio-
vascular diseases, and stroke.16–19 Environment during
early life, especially intrauterine and postnatal nutrition
consumption, has long-term metabolic effects in later life.
This theory raised interests in the fetal programming of
diseases in adulthood and was first proposed in the
1990s, known as “Developmental Origins of Health and
Disease (DOHaD).”20,21 It noted that the adaptive responses
in infant can impose long-term risk of diseases in adult.22

Growing numbers of studies suggest that early life environ-
ment determines the risks of metabolic diseases in adult
life. However, the associations between maternal and/or
perinatal nutrition and osteoporosis in offspring have not
been fully elucidated. This review aimed to address early
life nutrition and its implications for the developmental
origins of osteoporosis in later life.

Early life nutrition and its implication
for osteoporosis

Extensive research is focused on fetal origins hypothesis
and this hypothesis proposes that early life environment
can affect the development of diseases in adulthood,
which was known as DOHaD.23 In recent years, increasing
evidence demonstrate that environmental influences
during early life can modify the risks of osteoporosis.24 It
demonstrated that bone mineral accrual can be affected by
environmental exposures during childhood and puberty.
The rate of mineral gain is relatively rapid during early
life development. Thus, it provides the possibility that envi-
ronment plays a significant role in bone metabolism during
early life.25 Thus, increasing evidence suggests that early
life environmental and nutrition exposure determine the
susceptibility of osteoporosis in later life.

Evidence from clinical studies about maternal nutrition
and osteoporosis in offspring

One epidemiological evidence of early life environment
and its implication of osteoporosis indicated that body
weight at one year was associated with increased bonemin-
eral content (BMC) at the femoral neck and lumbar spine at
about 20 year old.26 Cooper et al.27 showed that the growth
rate of infancy was associated with skeletal size in adult-
hood in a cohort aged about 70 years old. Dennison et al.28

also found that birth weight and body weight at one-year
old determined the bone mass when they were aged about
70 years old. A series of clinical studies related to maternal
nutrition and the developmental origins of osteoporosis
in United States,29 Finland,30 Sweden,31 Norway,32

Australia,33 and the Netherlands34 also demonstrated the
same phenomenon. The information of the studis is shown
in Table 1.

Vitamin D, an important nutrient, can regulate mineral
and bone metabolism. A longitudinal, prospective study in
Western Australian found that serum 25(OH)D level of
mothers during pregnancy was associated with increased
BMC of total body and BMD in their females offspring at 9-
year old,36 and even up to about 20-year old.35 Antoniades
et al.37 showed that the differences in birth weight between
twins were significantly related with BMC in a twin cohort-
recruited 4008 female twins aged about 47.5 years old.
These data implicate the fetal origins of bone health in
later life, with the evidence from genetically identi-
cal subjects.

Experimental studies in animals about maternal
nutrition and osteoporosis in offspring

In addition to the evidence of human studies, animal
models also demonstrated that early life nutrition is asso-
ciated with osteoporosis in adult life. The evidence of
animal models is summarized in Table 2. Maternal protein
restriction is a commonly used scheme for malnutrition in
animal studies. Mehta et al.38 showed that maternal low-
protein diet changed the morphology of growth plate and
decreased bone mass in adult rats. Lanham et al.39 indicated
that maternal protein restriction during pregnancy predi-
posed lower serum IGF-1 level in four-week-old female
offspring and higher serum osteocalcin concentration in
four-week-old male and female offspring. It also decreased
serum 25(OH)D concentration in 8, 12, and 20-week-old
male offspring.39 Oreffo et al.40 further found that maternal
low-protein diet consumption from conception until the
end of pregnancy downregulated bone marrow stromal
cells proliferation and differentiation in four and eight-
week-old offspring.40 -Jahani et al.41 showed maternal
low-vitamin D diet (25 IU vitamin D3 /kg diet) during
pregnancy and lactation induced lower VDR expression,
and increased offspring colon TNF-a and IL-1b genes
expressions, which are known to be involved in osteoclas-
togenesis. Conversely, Suntornsaratoon et al. showed that
maternal high dietary vitamin D consumption during preg-
nancy and lactation period resulted in lower fasting glucose
and serum lipopolysaccharide concentrations in male off-
spring. Maternal vitamin D intake during pregnancy and
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Table 1. Human studies of early life nutrition and osteoporosis.

Study ID Year Country Sample size Mean age Primary outcomes

Cooper et al.26 1995 United Kingdom 153 women 21 years Significant associations between weight at one

year and BMC at the lumbar spine and

femoral neck; Infant growth and physical

activity in childhood are important determi-

nants of peak bone mass in women;

Cooper et al.27 1997 United Kingdom 189 women and

224 men

63–73 years Significant associations between weight at one

year and BMC at the spine and femoral

neck among women, and spine among

men; Serum osteocalcin was negatively

correlated with BMD;

Dennison et al.28 2005 United Kingdom 498 eight men and

468 women

About 70 years Birth weight and weight at one year are inde-

pendent determinants of bone mass in the

seventh decade;

Yarbrough et al.29 2000 USA 305 postmenopausal

women

70 years Birth weight was positively correlated with

BMC at the forearm, hip and lumbar spine;

Mikkola et al.30 2017 Finland 178 women 60.4 years Birth length and growth in height before seven

years of age were positively associated with

femoral neck area and growth in height at all

age periods studied with spine bone area;

Callréus et al.31 2013 Sweden 1,061 young

adult women

25.00–25.99

years

Significant correlations were observed

between birth weight and total body-BMC,

femoral neck-BMC, total hip-BMC, lumbar

spine L1-L4-BMC, and lean mass;

Christoffersen et al.32 2017 Norway 961 participants 15–18 years Birth weight was positively associated with

BMD and BMC at all sites among girls, and

birth length was positively associated with

BMC in boys;

Hyde et al.33 2017 Australia 475 pregnant women 29.7–30.3 years Offspring bone area was associated with

maternal diet; Birth length, weight and head

circumference correlated poorly with all

DXA measures at 11 years at both sites;

Leunissen et al.34 2008 the Netherlands 312 young adults 18–24 years Adult weight, lean body mass, fat mass and

weight gain during childhood were the main

positive determinants for BMD of the total

body in early adulthood;

Antoniades et al.37 2003 London 4,008 white

female twins

47.5�12.3 years Significant relationships were found between

the intra-pair differences in birth weight and

in BMC;

BMC: bone mineral content; BMD: bone mineral density; DXA: dual energy X-ray absorptiometry.

Table 2. Animal models for the developmental origins of osteoporosis.

Dietary conditions Species Period Age Main findings References

Maternal low-protein diet

(9% vs. 18%

w/w casein)

Wistar rats Throughout the 21

days of gestation

4, 8, 12, and

20 weeks

of age

Serum IGF-1 levels were lower in

female restricted diet offspring at

4 weeks of age, and serum

osteocalcin was significantly

higher at 4 weeks of age in male

and female offspring from

mothers fed the restricted diet,

whereas serum 25-OH vitamin D

was significantly lower in

restricted diet males at 8, 12, and

20 weeks of age;

Mehta et al.38

Maternal low-protein diet

(9% vs. 18%

w/w casein)

Wistar rats Throughout the 21

days of gestation

8, 12, and 20

weeks of age

Lower serum insulin-like growth

factor-1 (IGF-1) and 25(OH)D

levels; higher serum osteocalcin

in offspring rat;

Lanham et al.39

Maternal low-protein diet

(9% vs. 18%

w/w casein)

Wistar rats Throughout the 21

days of gestation

4 and 8 weeks Downregulated the proliferation and

differentiation of bone marrow

stromal cells;

Oreffo et al.40

(continued)
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lactation also improved both femur and lumbar vertebra
trabecular bone structure in offspring.42 Interestingly, pre-
suckling calcium supplements with normal chow diet in
lactating rats during pregnancy exhibited greater bone
elongation, and increased trabecular BMD in offspring
even at the age of 27 weeks old.43

In addition to vitamin D and calcium supplements,
Chen et al.,44 maternal high-fat diet inhibited embryonic
day 18.5 embryos bone development and the development
into mature osteoblasts in offspring rats.44 They further
found that high-fat diet obese dams increased cell senes-
cence in embryonic rat osteogenic calvarial cells, with
decreased osteoblastic cell differentiation and
proliferation.46One recent animal study indicated that con-
tinuous soy protein isolate diet throughout life protected
against one week post-ovariectomy-associated bone loss in
rats, with diminished total, trabecular, and cortical bone
mineral density loss.46 Thus, all these evidence indicate
that early life nutrition can impact the develpoment of
bone health in offspring in later life.

Potential mechanisms underlying maternal nutrition
and osteoporosis in offspring

Critical time windows during fetal stage and neonatal stage
can impact the growth and development in adult life.
Emerging clinical studies and animal experiments indicat-
ed that maternal and postnatal nutrition status determines
offspring health in adult life. Recently, increasing evidence
has strongly demonstrated that epigenetic modifications
maybe the underlyingmechanisms of fetal metabolism pro-
gramming.24 In 1942, the term “epigenetics” was first put
forward as a process that can change gene expression and
transcription without DNA sequence alteration.47

Epigenetic modifications are inheritable and it can be

passed on to the next generation steadily by cell prolifera-
tion, differentiation, and division.48 The altered gene
expressions may contribute to changes in functions of cer-
tain genes and metabolic status, that can persist, and even
transmit to the next generation.49 Therefore, epigenetics is
supposed to be a potential molecular mechanism of the
early life nutrition and the development of osteoporosis
in later life.

However, investigations into epigenetic mechanisms
between early life nutrition consumption and bone meta-
bolic health are are limited. Calcium and vitamin D are
known critical nutrients of bone metabolism. Earl et al.50

showed the effects of maternal nutrition regulate DNA
methylation of the promoter region of specific genes, such
as placental calcium transporters and VDRs can regulate
bone mass in offspring. Circulating cortisol level can
decrease bone density and increase bone loss rates in
adult life. Lillycrop et al.51 showed that maternal protein
restriction during pregnancy decreased DNA methylation
of glucocorticoid receptor (GR) gene, with increased GR
gene expression and hypercortisolism status. Recently, the
Southampton Women’s Survey reported that higher peri-
natal cyclin-dependent kinase inhibitor 2A (CDKN2A)
methylation was asscociated with lower bone area, BMC,
and areal BMD of whole-body minus head. They further
found that each 10% increase in CDKN2A DNA methyla-
tion was related with BMC decrease (about 4–9 g) at age
4 years in offspring.52 However, Fernandez-Rebollo et al.53

indicate that primary osteoporosis was not associated with
DNA methylation or epigenetic modifications in blood
obtained from 32 patients. That maybe due to the small
sample size, stratification of patients by BMD, and variable
clinical characteristics. In summary, the aforementioned
evidence demonstrates that epigenetic regulation plays

Table 2. Continued.

Dietary conditions Species Period Age Main findings References

Maternal low-vitamin D

diet (25 IU vitamin

D3/kg diet vs. 5000 IU

vitamin D3/kg diet)

CD1 mice During pregnancy

and lactation

3 months of age Predisposed offspring with reduced

vitamin D receptor and increased

expression of pro-inflammatory

genes in colon in offspring;

Jahani et al.41

High dietary vitamin D C57BL/6J mice During pregnancy

and lactation

7 months of age Improved trabecular bone structure

at both the lumbar vertebra and

femur in male offspring;

Villa et al.42

Calcium supplementation Sprague-Dawley

rats

Presuckling for

14 days

3 months of age

and 27 weeks

Exhibited increases in trabecular

bone mineral density; greater

bone elongation in offspring;

Suntornsaratoon

et al.43

High-fat diet Sprague-Dawley

rats

10 weeks before

mating and

during pregnancy

Gestational

embryonic

day 18.5

Inhibited bone development, less

potential to develop into mature

osteoblasts

Chen et al.44

High-fat diet Sprague-Dawley

rats

12 weeks before

mating and

during pregnancy

Gestational

embryonic

day 18.5

Increased in p53/p21-mediated cell

senescence signaling, decreased

glucose metabolism and

decreased osteoblastic cell dif-

ferentiation and proliferation.

Chen et al.45

Soy protein isolate diet Sprague-Dawley

rats

continuous diet

throughout life

About 6 months

of age

Protected against one week post-

ovariectomy-associated bone

loss, diminished total, trabecular,

and cortical bone mineral densi-

ty loss.

Chen et al.46
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a significant role in the developmental origins of osteopo-
rosis. The proposal of an ‘epigenetic vicious circle’ of mater-
nal nutrition and its implication for bone health in offspring
is shown in Figure 1.

In addition to epigenetic modifications, we propose that
hormonal axis maybe an important mechanism and it
should be included, especially for the relationship of para-
thormone (PTH) to calcium and the disturbance of this axis
on the mother and thus the offspring. It indicates that pla-
cental calcium transport capacity is both regulated by genes
and hormones, such as 1,25 (OH)2 vitamin D3, PTH, PTH-
related protein (PTHrP), and calcitonin.54,55 Maternal
hyperparathyroidism and hypoparathyroidism appear to
be able to increase or decrease the calcium load, and then
it can impact the fetus. It shows that lack of fetal parathy-
roids decreased serum calcium levels and mineralization in
mice. Calvi et al.54 further found that PTH and PTHrP
affected mineralization of cortical and trabecular bone dif-
ferentially. Thus, it is proposed that the PTH-calcium hor-
monal axis maybe an important candidate for fetal bone
programming mediation.

Conclusion

In summary, early life stage, especially during perinatal
period, is the critical time window for growth and devel-
opment. Exposure to nutrients during these periods may
determine the effects on bone metabolic health in offspring.
Emerging evidence has strongly suggested that epigenetic
modifications maybe the underlying mechanisms of the

developmental origins of osteoporosis. However, the
detailed mechanism between epigenetics and osteoporosis
has not been fully elucidated yet. Thus, further clinical and
basic studies to clarify the potential mechanisms are
urgently warranted. We believe that the developmental ori-
gins of osteoporosis can novelly provide a theoretical basis
for the early prevention of osteoporosis.
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