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Abstract
The voltage-gated sodium channel 1.5 (Nav1.5), encoded by the SCN5A gene, is respon-

sible for the rising phase of the action potential of cardiomyocytes. The sodium current

mediated by Nav1.5 consists of peak and late components (INa-P and INa-L). Mutant Nav1.5

causes alterations in the peak and late sodium current and is associated with an

increasingly wide range of congenital arrhythmias. More than 400 mutations have been

identified in the SCN5A gene. Although the mechanisms of SCN5A mutations leading to

a variety of arrhythmias can be classified according to the alteration of INa-P and INa-L as

gain-of-function, loss-of-function and both, few researchers have summarized the mech-

anisms in this way before. In this review article, we aim to review the mechanisms under-

lying dysfunctional Nav1.5 due to SCN5A mutations and to provide some new insights into

further approaches in the treatment of arrhythmias.
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Introduction

The a-subunit (Nav1.5) encoded by the SCN5A gene is the
predominant element in heart tissue and plays a critical
role in the excitability of cardiomyocytes. Nav1.5 channels
mediate the inward sodium current (INa) and induce fast
depolarization, thereby initiating the excitation–contraction
coupling cascades in the cells. INa mediated by Nav1.5 can
be classified into peak and late sodium currents (INa-P and
INa-L). Mutations of SCN5A can impair Nav1.5 function and
change the magnitude and duration of INa-P and INa-L, con-
sequently leading to different types of fatal arrhythmias.
Gain- or loss-of-function mutations are responsible for
most of the pathogenesis of SCN5A mutation-induced car-
diac disorders. More than 400 mutations have been

identified in the SCN5A gene (updated SCN5A mutations
from 2013 to 2018 are depicted in Figure 1). In this review,
we will firstly introduce the biology of the Nav1.5 channel
and then focus on the mechanisms underlying gain or loss
of function and summarize arrhythmic consequences of
mutant Nav1.5 and their clinical implications.

Biology of the Nav1.5 channel

Sodium channels are hetero-multimeric proteins composed
of a pore-forming a subunit and auxiliary b subunits. The a
subunit consists of four homologous domains (DI–DIV).
Each domain contains six transmembrane-spanning seg-
ments (S1–S6), of which the S4 segment functions as a volt-
age sensor and the S5 and S6 regions form the pore with the
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intermembrane P-loop.1 The a-subunit (Nav1.5) encoded
by the SCN5A gene is the predominant element in the
heart and plays a critical role in the excitability of cardio-
myocytes. In terms of its biophysical properties, Nav1.5
channels can be observed at three states: closed at resting
membrane potential (approximately �85 mV), activated
during depolarization, and inactivated. Transition between
these states depends primarily on the transmembrane
potential, time, temperature, and pH value. Recovery
from inactivation occurs within the repolarization phase
during diastole under physiological conditions. The
upstroke speed of the AP and conduction is determined
by the numbers of Nav1.5 channels that are available
for opening. The inactivation process is rapid and stable
for most ion channels. However, sodium channels may
inactivate incompletely, therefore generating a so-called
INa-L throughout the plateau phase of the AP.2 In addition,
some channels may reactivate during the repolarizing
phase of the AP at a range of potentials in which inactiva-
tion is not complete and exhibits overlap with activation,
resulting in the “window current.”3 Both INa-L and the
window current can play critical roles in genetic and
acquired cardiac diseases, as discussed below.

The SCN5A gene, which is expressed in a circadian pat-
tern, is also expressed in extracardiac cells such as the excit-
able cells of the cerebral limbic system, and diverse
subtypes of non-excitable cells, including microglia, astro-
cytes, T-lymphocytes, macrophages, fibroblasts, endotheli-
al cells, and different type of cancer cells. Mounting
evidence has demonstrated that sodium channels can
take part in various effector functions and lead to non-
classical effects in non-excitable cells. For instance,

in cancer cells, Nav1.5 is related to enhanced invasiveness
and metastasis. Nav1.5 affects Naþ/Hþ exchanger activity
in breast cancer cells and causes local extracellular acidifi-
cation, which results in activated cathepsin and conse-
quently leads to the breakdown of the extracellular
matrix. Naþ inflow is equally important in this process, as
blocking Nav1.5 channels decreases the invasion of cancer
cells. In addition, Nav1.5 in endosomes of macrophages
from individuals with multiple sclerosis contributes to
phagocytosis and pH regulation. It is suggested that target-
ing Nav1.5 could be a putative therapeutic approach in
this disease.4

The Nav1.5 channel mediates the rapid entry of the
sodium current (INa), a current that mainly contributes to
the depolarization of the action potential (AP) in cardiac
myocytes and the His-Purkinje system.5 INa mediated by
Nav1.5 can be classified into peak and late sodium currents
(INa-P and INa-L). INa-P occurs during phase 0 of the AP with
a density of approximately 391 uA/uF and is quickly inac-
tivated within 1–2 ms. The INa-L amplitude is much smaller
than the INa-P amplitude in many species (approximately
0.1%–1%) and is inactivated more slowly during the pla-
teau of the AP6 with the time constant ranging from 75 to
450 ms.7,8 The INa-P is mainly associated with the initiation
of cardiac excitability and electrical conduction. The INa-P

drives the rapid AP upstroke, resulting in further channel
activation. This transient increase in intracellular sodium
leads to calcium current (ICa) influx via L-type voltage-
gated channels when the voltage upstroke reaches approx-
imately �25 mV. The depolarization-activated ICa induces
Ca2þ release from intracellular sarcoplasmic reticular Ca2þ

stores and initiates myocardial mechanical activity.9

Figure 1. Updated SCN5A mutations identified from 2013 to present. The red represents gain of INa-P, blue represents gain of INa-L, green represents loss of INa-P,

yellow represents loss of INa-L, the mixed colors represent coexistence of gain- and loss-of-function mutations. (A color version of this figure is available in the

online journal.)
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Pathogenesis of SCN5A mutations

SCN5A gene mutations impair Nav1.5 function and conse-
quently change the magnitude and duration of INa-P and
INa-L, which lead to different types of fatal arrhythmias.10

SCN5A mutations are responsible for various types of
cardiac disorders, including Brudaga syndrome (BrS),11

long QT syndrome 3 (LQT3),12 cardiac conduction disease
(CCD),13 sick sinus syndrome (SSS),14 atrial fibrillation
(AF),15,16 progressive cardiac conduction defect (PCCD),
dilated cardiomyopathy (DCM),17 multifocal ectopic
Purkinje-related premature contraction (MEPPC),18 and
the onset of a variety of non-cardiac diseases, including
bowel syndrome,19 myotonic dystrophy,20 epilepsy,21

pain,22 and ataxia.23

SCN5A mutations result in the dysfunction of Nav1.5
due to defective protein trafficking, targeting, fixation to
specific cellular compartments, post-translational protein
processing, the modulation of biophysical properties and
many unclear mechanisms.24 Genotype and phenotype
vary significantly, as the phenotypic characterization
ranges from asymptomatic phenotypes to sudden cardiac
death (SCD) in individuals that carry the same mutations.
In addition, specific SCN5A mutations cause an individual
phenotype or compound phenotypes, indicating that a
complex pathogenesis underlies SCN5A mutations.

Gain-of-function mutations and arrhythmias

Long QT syndrome (LQTS) is characterized by prolonged
ventricular repolarization, which predisposes individuals
to develop torsades de Pointes (TdP) and SCD. LQTS3 is
caused by gain-of-function mutations of SCN5A.
Approximately 8–10% of patients with SCN5A mutations
are positively phenotypic as having LQTS.25,26 The first
SCN5A mutation related to LQT3, the deletion of amino
acids 1505–1507 (DKPQ), was identified by Wang et al.27

According to previous reports, cardiac events primarily
occurred during sleep in LQT3 patients, and 18% died sud-
denly.28 The gain-of-function SCN5A mutation leads to
enhanced INa-P and INa-L, which finally triggers life-
threating arrhythmias primarily in LQT3 patients.

Gain-of-function mutations of INa-P
The underlying mechanisms of SCN5A mutations that
lead to the gain-of-function of INa-P are mainly due to
abnormalities in mutation-induced kinetic properties,
including augmented INa-P amplitudes, negative shifts in
the voltage-dependence of activation, and an increased
speed of recovery from inactivation. The most recently
identified SCN5A mutations over the last five years (from
2013 to 2018) are shown in Table 1.29–34

First, gains of channel function can be caused by variants
that lead to augmented INa-P amplitudes. LQT3 mutations,
such as I1748V31 and G1748D,29 exhibited greater INa-P than
wild type, whereas variants A572D35 and G615E36 also
showed a significant gain of function of INa-P, but with an
unclear clinical phenotype. However, some SCN5A muta-
tions identified in clinical LQTS patients, such as F1250L37

and N406K38 variants, showed no significant changes
in INa-P amplitudes. These phenomena suggested that
although altered INa-P amplitudes affect phenotypes of the
diseases directly, there may be other unknownmechanisms
that are related to certain environmental factors or
unknown gene mutations that contribute to genotype–
phenotype interactions.

Second, the gain of function of INa-P could be generated
by a negative shift in voltage-dependent activation poten-
tials. It was reported that Nav1.5 reached its maximal cur-
rent at �20 mV, while the variants G1748D,29 H1849R,30

S216L,39 G983D, and F816Y40 showed peak inward currents
at a more negative voltage. Patients with G1748D and
H1849R showed typical LQT3 features. However, patients
that carried the variants S216L, G983D, and F816Y showed
an unclear phenotype. These cases indicate that not all neg-
ative shifts of activation result in a gain of function of
SCN5A and manifest the LQT3 phenotype; there must be
other unidentified mechanisms that underlie genotype–
phenotype interactions.

Third, gain of function of INa-P can be induced by a faster
recovery from inactivation. According to this underlying
mechanism, variants A572D and G983D showed a faster
resumption of inactivation due to a fast component of the
recovery. Moreover, the dedication of the fast component to

Table 1. The newest identified gain of INa-P function of SCN5A mutations from 2013 to 2018 and their reported electrophysiological properties.

Mutation

Protein

domain Biophysical properties of mutant protein

Cardiomyopathy and

accompanied features References

I141V DI/S1 Increased Iwindow: negative shift of activation PVC, tachycardia 33

G213D DI/S3-S4 Increased INaP: negative shift of act, positive shift

of inactivation

AA, VA, DCM 34

Q1476R DIII-DIV Increased INaP: positive shift of inactivation;

increased INaL

LQT3 32

G1748D N-terminus

DIV S6

Increased INaP: positive shift of inactivation,

accelerated recovery from inactivation

LQT3 29

I1768V DIV/S6 Increased INaP, Iwindow: negative shift of the

activation, faster recovery from inactivation

LQT3, SCD 31

H1849R C-terminus Increased INaP and INaL: negative shift of inacti-

vation, slower inactivation

LQT, AF, VT, SCD 30

AA: atrial arrhythmia; AF: atrial fibrillation; DCM: dilated cardiomyopathy; LQT: long QT syndrome; PVC: polymorphic ventricular complexes; SCD: sudden cardiac

death; VA: ventricular arrhythmia; VT: ventricular tachycardia.
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the recovery from inactivation was relatively augmented in
G983D. The A572D variant manifested as atria tachycardia,
and G983D manifested as an abnormal T-wave on the elec-
trocardiography (ECG).41–43 The configuration of the
T-wave pointed out the differences in the time course of
ventricular repolarization. Morphologic changes in the T
wave are sometimes more immediately remarkable than
the mere prolongation of the QT interval; in some cases,
the morphology of the T-wave is the only sensitive sign of
ventricular repolarization disturbances.44,45

Gain-of-function mutations of INa-L
INa-L has also been called steady-state INa, slow inactivation,
persistent current, and late current. Under physiological
conditions, the amplitude of INa-L is larger in mid-
myocardial cells (M cells) and Purkinje fibers than epicardial
and endocardial cells.46 Although the magnitude of persis-
tent INa-L is negligible compared to INa-P (0.1%–1%), the
delay in inactivation breaks the delicate equilibrium of
inward and outward currents, resulting in a prolongation
of the action potential duration (APD), which manifests as
a prolonged QT interval on ECG.7

An increase in INa-L due to acquired conditions or
inherited SCN5A mutations in favor of intracellular Ca2þ

loading,47,48 the occurrence of early and delayed after depo-
larization (EAD and DAD),49,50 triggered activities,51 and
spontaneous diastolic depolarization52 that promotes the
spatial and temporal dispersion of ventricular repolariza-
tion can lead to reentrant arrhythmias (Figure 2).

The detrimental effects of a pathological persistent INa-L

contribute to the development of arrhythmic disorders. The
mechanisms are as follows:

(i) During phase 2 of the AP plateau, membrane resis-
tance is high while the ionic conductance is low,53 which

caused marked APD prolongation. A prolonged APD helps
L-type Ca2þ channels recover from inactivation and reacti-
vate to form the upstroke of an EAD during the AP pla-
teau.54 (ii) An increase in INa-L due to delayed inactivation
increased intracellular Ca2þ entry via the Naþ/Ca2þ

exchanger (NCX, 3 Naþ out, 1 Ca2þ in)55,56 and interacted
with calmodulin in a protein kinase II (CaMKII)-dependent
manner,51,57 which had a positive feedback on Naþ load-
ing. Additionally, it increased sarcoplasmic reticulum (SR)
Ca2þ loading-induced Ca2þ release.47,58 The increases in
INa-L, the activity of CaMKII and SR Ca2þ release contrib-
uted to a substrate precipitating DAD.59 (iii) Diastolic depo-
larization during phase 4 of the AP usually occurred
in spontaneous pace-making cells of the sinoatrial and
atrioventricular nodes.60 However, spontaneous diastolic
depolarizations were often observed in Purkinje fibers
and atrial tissue isolated from a diseased heart with a per-
sistent INa-L. According to reports, the gain of function of
SCN5A may lead to spontaneous AP firing and abnormal
automaticity, especially in myocytes that were relatively
depolarized and had low resting Kþ conductance.61 After
all, the formation of EAD and DAD due to the gain of func-
tion of INa-L occurred more frequently in M cells than
endo and epi and increased the transmural dispersion of
ventricular repolarization, which finally caused reentrant
arrhythmic events, which manifested as TdP and ventricu-
lar fibrillation (VF).

Previous studies revealed several gain-of-function
mechanisms of INa-L with an alteration in channel kinetics,
including a slower speed of inactivation or a positive shift
in the voltage-dependence of inactivation (Table 2).62–70

First, gain-of-function mutations of SCN5A resulted in
slower inactivation kinetics and increased INa-L, which
included the LQT3-causing variant A993T as well as
A572D43 and K480N42 in patients with an unclear

Figure 2. The ion mechanism of gain of function of INa-L leading to arrhythmia.
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phenotype. In a patient with a mutation of T1526P,71 the
cardiac examination was nearly normal, but T1526P
showed a fractional gain-of-function property by a reduced
speed of inactivation.

Second, gain of function can be caused by a positive shift
in the voltage-dependence of inactivation, which also
increased the magnitude and duration of INa-L. For exam-
ple, the LQT3 mutation F1486L,72 which results in a gain of
function, showed a positive shift in the voltage-dependence
of inactivation. This effect of the N1325S73,74 variant with an
unclear phenotype was also observed in patients.

Loss-of-function mutations and arrhythmias

SCN5A loss-of-function mutations often cause BrS which is
characterized by ST-segment elevation in the right precor-
dial leads (V1–V3). Over 300 SCN5A loss-of-function muta-
tions have been identified in connection with BrS.75,76

Misfolded channels, trafficking defects, and negatively
shifted steady-state inactivation curves contribute to a
reduced availability of functional Nav1.5 channels on the
plasma membrane.77

CCD mutations were also related to loss of function in
Nav1.5.78 SCN5A loss of function reduced the AP upstroke
velocity, which further delayed the rapid conduction of
the electrical impulse through the highly specialized con-
duction system.79 Most SCN5A loss-of-function mutations
prolonged the rising time of the AP and rendered it more
difficult to reach the membrane potential, which is neces-
sary for the fast AP upstroke. In addition, defects in channel
gating kinetics, an inability to conduct sodium, and channel

retention in the ER would further reduce the availability of
channels. The SCN5A mutations that lead to a loss of chan-
nel functions can be classified as follows:

Loss-of-function mutations of INa-P
Mutations that lead to a loss of function of INa-P are related
to an alteration in channel kinetics, including decreased
INa-P amplitudes and retention in the ER, but the function
of the channels was restored when they reached the mem-
brane (Table 3).80–107

Decreased current amplitudes cause loss of function of
Nav1.5. As shown in the variants R222stop and R2012H,42

patients diagnosed with BrS matched the loss of function
with a reduction of INa-P. In addition, there were a number
of SCN5A mutations, such as E161K108 and P336L,109 that
exhibited a dramatic reduction in INa-P density, while the
kinetics and gating properties of the mutant channels
were unaffected. These findings demonstrated that the
decrease in INa-P density of the mutant channels was pri-
marily caused by their retention in the ER, but the function
of the channels was restored when they reached the mem-
brane. Thus, we hypothesized that amino acid mutations
might affect the protein structure, which would lead to
misfolding and ER retention.

Loss-of-function mutations of INa-L
Loss of SCN5A channel function manifesting as ECG
ST-segment elevation in right precordial leads was thought
to contribute to an early repolarization of the right ventric-
ular sub-epicardial myocardium that differentially altered

Table 2. The newest identified gain of INa-L function of SCN5A mutations from 2013 to 2018 and their reported electrophysiological properties.

Mutation

Protein

domain Biophysical properties of mutant protein

Cardiomyopathy and

accompanied features References

R225P DI/S4 Increased INaL and Iwindow: slower inactivation,

shallower activation curve slope

Multifocal Ventricular Ectopy-

associated Cardiomyopathy, LQT

66

N406Ka DI/S6 Decreased INaP: positive shift of activation;

increased INaL

BrS, LQT 65

R800L DII/S3-S4 Increased INaL, Iwindow: incomplete inactivation

and slowed decay of currents

LQTS, in compound with

A261V-SNTA1

64

A1180Va DII-DIII Decreased INaP: negative shift of inactivation;

increased INaL

DCM, AVB 63

V1328M DIV/S6 Increased INaL: positive shift of inactivation drug-induced BrS 69

F1473C DIII-DIV Increased INaL, Iwindow: negative shift of the

inactivation

LQT3, TdP, VT, AVB 62

F1486dela DIII-DIV Decreased INaP; increased INaL: positive shift of

inactivation, negative shift of activation, slower

Naþ current decay

BrS, LQT 65

N1774D C-terminus Increased INaL: negative shift of activation, slower

Naþ current decay; increased INaP

LQT 65

S1787N C-terminus Increased INaL due to splice variant and

environmental factors

LQT3 67

M1851V C-terminus Increased INaL: slower inactivation, faster

recovery from inactivation, positive shift of

inactivation

AF, VA 70

V2016Ma C-terminus Increased INaL: PKA activation; decreased INa LQT, SND 68

aBoth gain and loss of function mutations;

AF: atrial fibrillation; AVB: atrioventricular block; BrS: Brugada syndrome; DCM: dilated cardiomyopathy; LQT: long QT syndrome; SND: sudden nocturnal death;

TdP: Torsade de pointes; VA: ventricular arrhythmia; VT: ventricular tachycardia
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Table 3. The newest identified loss of INa-P function of SCN5A mutations from 2013 to 2018 and their reported electrophysiological properties.

Mutation Protein domain Biophysical properties of mutant protein

Cardiomyopathy and

accompanied features References

A226V DI/S4 Decreased INaP BrS, in compound with p; R1629X 102

C335R DI/S5-S6 Decreased INaP AF, BrS 107

D349N No detected current SSS 89

R367G Decreased INaP: trafficking defect CCD 40

R367H DI/S5-S6 Decreased INaP: positive shift of activation, negative

shift of inactivation, faster recovery from

inactivation

BrS, SUNDS 106

R376C DI/S5-S6 Decreased INaP: positive shift of activation SSS, SCD 91

R526H DI/DII Decreased INaP: trafficking defect BrS, SCD, RBBB 94

S528A Phosphorylation site Decreased INaP: trafficking defect BrS, SCD, RBBB 94

R811H DII/S4 Decreased INaP: negative shift of inactivation, slower

recovery from inactivation

BrS 82

L812Q DII/S4 Decreased INaP, Iwindow: trafficking defect, negative

shift of inactivation

BrS 96

I890T P-loop of DII Decreased INaP: positive shift of the activation BrS 80

S910L DII/S5-S6 Decreased INaP: trafficking defect, positive shift

of activation

BrS, DCM 20

R1023C DII-DIII No detected current ERS, VF, structural myocardi-

al alteration

84

A1055G DI/S5-S6 Decreased INaP: negative shift of inactivation,

degradation

ERS 100

W1095X No detected current BrS, epilepsy 87

S1218I DIII/S1 Complete loss of INaP: trafficking defect BrS 82

D1275V DIII/S3 Decreased INaP: positive shift of activation, enhanced

degradation, trafficking defect

CCD, DCM, SND, AT, VT 105

N1380del DIII/S5-S6 No detected current CCD, VT 103

R1390Ha DIII/S4 Decreased INaP: positive shift of activation, negative

shift of inactivation, slower recovery from inactiva-

tion; increased INaL: slower deactivation

BrS, LQT, AA, VA 99

A1428S DIII/S5-S6 Decreased INaP BrS 97

D1430N DIII/S5-S6 Complete loss of INaP: blockade of ion permeation BrS, SCD 86

N1472del DIII-DIV Decreased INaP: positive shift of the activation and

inactivation, slower recovery from inactivation

BrS, LQT, syncope, SCD, 2:1

AV block

83

1493delKa DIII-DIV Decreased INaP: trafficking defect; enhanced recov-

ery from inactivation

CCD, VA, SCD 85

R1629X DIV/S4 No detected current BrS, in compound with p; A226V 102

R1632C DIV/S4 Decreased INaP: negative shift of inactivation, slower

recovery from inactivation

BrS, sinus node dysfunction(SND) 98

D1690N DIV/S5-S6 Decreased INaP: positive shift of activation, slower

recovery from inactivation;

BrS 101

G1748D N-terminus

of DIV/S6

Decreased INaP: positive shift of activation curve,

faster inactivation

BrS 29

F1775Lfs15a DIV/S6 Decreased INaP overlap syndrome of SSS and BrS 81

L1786Qa Decreased INaP: positive shift of activation, negative

shift of inactivation; increased INaL

overlap syndrome of LQT3 and BrS 92

D1790N No detected current SSS 89

D1816VfsX7a Truncation

of C-terminus

Decreased INaP: trafficking defect, positive shift of

activation; increased INaL: positive shift of inacti-

vation, accelerated activation, faster recovery from

inactivation

BrS, VF, bradycardia, AF 90

Q1832E C-terminus Decreased INaP: trafficking defect BrS, SIDS, in compound

with R1944�

104

R1860Gfs12a Truncation

of C-terminus

Decreased INaP: negative shift of inactivation, deg-

radation, positive shift of activation; increase INaL:

delayed inactivation

SSS, AF, AVB 93

V2016M SIV motif Decreased INaP: trafficking defect, positive shift

of activation

BrS 95

c; 4297G>C DIII/S5-S6 Decreased INaP: prolonged recovery from inactiva-

tion, positive shift of activation, affect translation

process or degradation of the mutant protein

ERS 88

aBoth gain and loss of function mutations;

AA: atrial arrhythmia; AF: atrial fibrillation; AT: atrial tachycardia; AVB: atrioventricular block; BrS: Brugada syndrome; CCD: cardiac conduction disease; DCM:

dilated cardiomyopathy; ERS: early repolarization syndrome; LQT: long QT syndrome; RBBB: right bundle branch block; SCD: sudden cardiac death; SIDS: sudden

infant death syndrome; SND: sudden nocturnal death; SSS: sick sinus syndrome; SUNDS: sudden unexpected nocturnal death syndrome; TdP: Torsade de pointes;

VA: ventricular arrhythmia; VT: ventricular tachycardia.
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the AP morphology of epicardial versus endocardial
cells.11,110 Loss-of-function of SCN5A results in a reduction
in INa-L; this alteration increases the relative amplitude
of the fast, transient outward Kþ current (Ito), which
is the most prominent in epicardial cells of the right
ventricle.111,112 Under normal conditions, Ito inhibited the
depolarizing effect of the INa-L during the AP plateau,
resulting in a marked AP notch in association with depola-
rizing Ca2þ currents in a “spike-and-dome” morphology.113

Consequently, the loss of INa-L and increase in Ito leads to a
negative shift in the membrane potential, resulting in an
“all-or-none” repolarization and causing an enhanced dis-
persion of repolarization in epicardial cells.114 Finally,
this results in premature repolarization, phase 2 reentry,
and significant AP shortening. In contrast, endocardial
cells show a much smaller Ito and INa-L reduction, which
do not significantly affect AP morphology and duration.
The transmural heterogeneity of the cellular membrane
voltage ultimately causes ST-segment elevation, a J wave,
and even severe “R on T,” which leads to fatal VF on an
ECG (Figure 3).115 Previous studies showed that the alter-
ation of channel kinetics, such as a faster speed of inactiva-
tion or a negative shift in the voltage-dependence of
inactivation, causes a loss of function of INa-L (Table 4).116

First, faster inactivation kinetics contribute to a decreased
INa-L. For example, V1591L was detected in a BrS patient
with a decreased INa-L as a result of faster inactivation kinet-
ics.117 However, an R568H variant identified in a patient42

diagnosed with QT prolongation also showed loss of

function by faster inactivation kinetics. The mechanism of
genotype-phenotype interactions remained unknown.
Second, a negative shift of the voltage dependence of fast
inactivation leading to a reduced INa-L caused loss of func-
tion of SCN5A. T1620K118,119 mutant channels in CCD
patients, for instance, inactivate rapidly at less depolarized
potentials, which may result in a significant reduction in
INa-L and consequently lead to delayed AP upstroke in the
Purkinje system. Similarly, the R2012H variant in BrS
patients also resulted in a loss of function due to a negative
shift of the voltage-dependence of inactivation.42

Loss-of-function mutations in both
INa-P and INa-L
Studies pointed out that most of the mutant Nav1.5 associ-
ated with a conduction disorder displayed either a drastic
current reduction or shifts of steady-state inactivation/acti-
vation or both,120,121 which may involve the alteration of
INa-P and INa-L at the same time. As seen in G514C122,123

mutant channels, a positive shift of both steady-state acti-
vation and inactivation, leading to changes in both INa-P

and INa-L, was observed and the shift of the activation
curve predominated by only 3 mV, which was still suffi-
cient to produce a reduced upstroke velocity. This type of
mutation may cause overlap syndromes. It is reasonable to
speculate that simultaneous alterations of inactivation/
activation kinetics may lead to this type of phenotype.

Table 4. The newest identified loss of INa-L function of SCN5A mutations from 2013 to 2018 and their reported electrophysiological properties.

Mutation Protien domain

Biophysical properties of

mutant protein

Cardiomyopathy and

accompanied features References

R1629Q DIV/S4 Decreased INaL: negative shift of

inactivation, enhanced interme-

diate inactivation, prolonged

recovery from inactivation

BrS, SCD 116

BrS: Brugada syndrome; SCD: sudden cardiac death.

Figure 3. The ion mechanism of loss of function of INa-L leading to arrhythmia.
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Coexistence of gain- and loss-of
function mutations

SCN5A mutations that present with an overlapped pheno-
type of LQT3 and BrS were also described.124 In vitro stud-
ies suggested that these uncommon SCN5A mutations
cause a mixed phenotype by altering the amplitude of
INa-P and INa-L through enhanced sodium channel inactiva-
tion, a negative shift in steady-state sodium channel inac-
tivation, and enhanced tonic block in response to sodium
channel blockers.78,125

R1193Q,126,127 E1784K,128 and S216L variants in SCN5A
are proposed to cause either BrS or LQTS. E1784K, origi-
nally described by Wei et al.129 and subsequently explored
by several other groups, is the most common mutation that
causes both LQT3 and BrS phenotypes. INa-P amplitude is
significantly reduced, whereas the steady-state inactivation
is shifted to much more positive potentials that lead to an
enhanced INa-L. The R1193Qmutation reveals a slower inac-
tivation with a persistent INa-L, which accounts for the gains
of channel function and is in line with the LQT3 manifes-
tations. Additionally, the steady-state inactivation of this
mutation was shifted to a more negative voltage that low-
ered INa-L, which explains the loss of function of sodium
current and BrS clinical characteristics. S216L is proposed
to be an LQTS3-causing mutation because of a significant
increase in the persistent INa-L, as well as an acceleration of
the recovery from inactivation. It was also identified in a
BrS patient due to a significant reduction in the INa-P.
Therefore, S216L is considered to cause a mixed BrS/LQT
phenotype. The mechanisms of the coexistence of gain and
loss of channel functions remain unclear; studies speculate
that some environmental factors may play a vital role in the
formation of the phenotype, and there might be other gene
mutations to identify.

Perspectives

Since the first-generation gene sequencing technology was
invented by Sanger in 1977, it has made tremendous prog-
ress. The brand-new third-generation sequencing technolo-
gy has made the identification of gene mutations and
genotypes more convenient. Functional analysis, including
automatic patch clamp to study ion currents, in silico model
simulation, and cryo-electronic microscopy to observe pro-
tein structure are advanced approaches to investigate the
function of ion channels. New mutant models, such as
iPSC-CM and transgenic animals, are more practical meth-
ods to investigate genotype–phenotype interactions. In
clinical practice, we should also take more advantage of
the current methods, such as ECG. ECG reflects the imme-
diatemanifestation of cardiac electrical activities on the body
surface, provides the most direct evidence, and is a conve-
nient approach for diagnosis. The alteration of Twave mor-
phology and duration on the ECG is now used to distinguish
different types of gene mutations. These discoveries stand
out as notable landmarks in the progression of modernmed-
ical science that will allow further interpretations of the relat-
ed pathogenesis. Additionally, in reference to these
underlying mechanisms, many targeting therapies are

desperately needed. Therapies that target these specific
mutations with gene therapy, including RNA interference
(RNAi) and CRISPER/Cas9, are under exploration, in addi-
tion to other traditional medicine therapies that affect the
physiologic derangements of the mutations. The present
findings enhance the general concept that the in vitro char-
acterization of mutant ion channel functions is a key com-
ponent for the generation of specific therapeutic strategies
for patient management. Late sodium channel blockers,
including mexiletine, ranolazine, flecainide, and a new com-
pound, GS-6615, have been used in patients with LQT3 to
restore the gain of channel function. Mexiletine also rescues
the membrane expression of the Nav1.5 channel that
expresses the BrS mutation. Mexiletine may be able to
rescue the retention of Na1.5 in the ER to increase the
sodium current, but it can also block the INa-L, which man-
ifests as an inhibitory effect.

In this review, we summarized the gain and loss of chan-
nel functions in the SCN5A gene and discussed the under-
lying mechanisms of its genotype–phenotype relationship.
The detailed mechanisms that underlie dysfunctional
Nav1.5 due to SCN5A mutations are described herein,
and we also provide some new evidence for additional
approaches in the treatment of arrhythmias due to
mutant Nav1.5 channels.
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