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Abstract

In item response theory (IRT), item response probabilities are a function of item characteris-
tics and latent trait scores. Within an IRT framework, trait score misestimation results from
(a) random error, (b) the trait score estimation method, (c) errors in item parameter estima-
tion, and (d) model misspecification. This study investigated the relative effects of these
error sources on the bias and confidence interval coverage rates for trait scores. Our results
showed that overall, bias values were close to 0, and coverage rates were fairly accurate for
central trait scores and trait estimation methods that did not use a strong Bayesian prior.
However, certain types of model misspecifications were found to produce severely biased
trait estimates with poor coverage rates, especially at extremes of the latent trait conti-
nuum. It is demonstrated that biased trait estimates result from estimated item response
functions (IRFs) that exhibit systematic conditional bias, and that these conditionally biased
IRFs may not be detected by model or item fit indices. One consequence of these results is
that certain types of model misspecifications can lead to estimated trait scores that are non-
linearly related to the data-generating latent trait. Implications for item and trait score esti-
mation and interpretation are discussed.

Keywords

item response theory, score interpretation, estimation

In psychometric modeling, nontrivial errors in latent trait estimates are unavoidable for a vari-

ety of reasons, including a limited number of available items, time restrictions, and test-taker

fatigue. Nevertheless, those who design, administer, and score tests aim to achieve the most

reliable trait estimates possible. In other words, a primary psychometric concern is minimizing

the errors associated with trait estimates. Within an item response theory (IRT) framework, esti-

mated latent trait scores are computed based on a series of examinee item responses and charac-

teristics of the items. Errors in the resulting estimated trait scores result from random error, the

trait score estimation method, errors in item calibration, and model misspecification. The pur-

pose of this study was to identify the relative consequence of each error source on trait score

estimates. This study focuses in particular on misspecification of the item response function

(IRF) functional form.
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Error Sources

It is common practice in IRT analyses to estimate latent trait scores using a two-stage approach.

In the first stage, item calibration, item parameters are estimated using methods such as mar-

ginal maximum likelihood (MML; Bock & Aitkin, 1981). In the second stage, trait score esti-

mates are typically computed using methods such as maximum-likelihood estimation or

expected a posteriori (EAP) prediction and treating the item parameter estimates as fixed.

Because MML produces consistent and computationally efficient estimates of IRT item para-

meters, this approach is considered the gold standard technique for item parameter estimation.

Under a two-stage approach, errors in IRT trait estimation can be attributed to four nested

sources. These error sources (Jones, Wainer, & Kaplan, 1984, p. 2-3) are (a) random error due

to the probabilistic nature of the model, (b) errors in trait estimation due to the estimation

method, (c) errors in item parameter estimation, and (d) model misspecification. These error

sources are ordered hierarchically; the existence of a higher numbered error source implies the

existence of all lower numbered error sources. Strictly speaking, error sources (a) and (b) are

inseparable because trait estimates are only obtained using a particular trait estimation method.

Furthermore, when using estimated item parameters, errors due to the trait estimation method

persist. Finally, when the model is misspecified, errors in item parameter estimates and errors

due to the trait estimation method are all present. Because models are imperfect representations

of reality, it is reasonable to expect that all four error sources are present in any IRT analysis.

With regard to the first error source, errors may be attributed to random variation resulting

from the fact that IRT models are probabilistic rather than deterministic. The effect of random

error decreases as the number of administered test items increases, and so there are practical

limitations on the extent to which random error can be reduced. With regard to the second error

source, different methods for estimating latent trait scores introduce different types of errors. In

this article, three trait estimation methods—maximum likelihood (ML), Bayesian EAP (Bock

& Mislevy, 1982), and weighted likelihood (WL; Warm, 1989)—are considered. Details of the

properties of these methods and their standard errors (ses) are provided in Online Appendix A.

In brief, ML estimates are outwardly biased (Lord, 1983), EAP estimates are biased toward the

mean of the prior distribution, and WL estimates are unbiased (Warm, 1989).

A third source of error results from imperfect estimation of item parameters. Because item

parameter estimates need not equal their true values, errors in item calibration may affect the

accuracy of trait estimates. To complicate the issue, accurate item parameter estimates are often

difficult to obtain, particularly for highly parameterized models such as the three-parameter

(3PL; see Thissen & Wainer, 1982) and four-parameter (4PL; Culpepper, 2016; Waller &

Feuerstahler, 2017) IRT models. Accurate item parameter estimates are particularly difficult to

obtain when the calibration sample is small. In two-stage estimation, the uncertainty associated

with the item parameter estimates is typically ignored and as a result, the asymptotic properties

of the ML, EAP, and WL trait estimators do not necessarily hold when estimated item para-

meters are treated as known. For instance, WL is no longer unbiased when item parameters are

estimated instead of known (Zhang, 2005). Moreover, errors in item parameter estimation can

lead to increased bias of trait estimates (Zhang, Xie, Song, & Lu, 2011) and underestimated

standard errors (Cheng & Yuan, 2010), particularly when using small item calibration samples

(Tsutakawa & Johnson, 1990). Various corrections have been proposed to adjust û and se(û)

for the effects of item parameter estimation error (e.g., Patton, Cheng, Yuan, & Diao, 2014;

Tsutakawa & Johnson, 1990), but it is still common practice to treat estimated item parameters

as fixed when estimating trait scores. When item parameter estimation error is not accounted

for, the properties of the ML, EAP, and WL trait estimators should hold approximately for

highly accurate item parameter estimates. Moreover, the accuracy of item parameter estimates
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depends on the size and trait distribution of the calibration sample. Calibration samples of at

least several hundred examinees are recommended for the one-parameter (1PL) and two-

parameter (2PL) IRT models (e.g., Drasgow, 1989), and several thousand examinees are recom-

mended for the 3PL (Thissen & Wainer, 1982) and 4PL (Culpepper, 2016; Waller &

Feuerstahler, 2017).

In the majority of applications, latent trait estimates are computed assuming correct model

specification. Model misspecification in IRT, broadly speaking, occurs when an item response

model cannot accurately characterize item response probabilities. Under this definition, model

misspecification necessarily leads to incorrect item parameter estimates. In other words, correct

item parameters do not exist when the model is misspecified because the estimated IRFs can

never perfectly trace the true IRFs. One type of model misspecification not considered in this

article occurs when multidimensional data are fit to unidimensional models (e.g., Drasgow &

Parsons, 1983). In contrast, this manuscript is focused on one specific type of functional form

misspecification. Specifically, the author of the present study focuses on the effects of ignoring

the need for an IRF upper asymptote parameter less than 1; that is, fitting the 1PL, 2PL, or 3PL,

when the 4PL is the data-generating model.

Few studies have explicitly investigated the effects of functional form misspecification on

trait estimation error. Jones et al. (1984) generated item responses from a complex and nonstan-

dard IRT model, and fit the resulting data sets to the 1PL, 2PL, and 3PL. They then generated

item response vectors using the nonstandard model, and estimated ML trait scores using the esti-

mated 1PL, 2PL, and 3PL item parameters. The authors found that trait estimates computed

from the estimated 3PL parameters led to the least bias but highest mean squared error at low

trait values, and that ML trait estimates were severely biased for the 1PL and 2PL. Wainer and

Thissen (1987) simulated data in a similar manner to Jones et al. (1984) but focused on several

latent trait estimators. They found that in sufficiently long tests (� 20 items), the 3PL led to

more accurate trait estimates than the 1PL and 2PL at all trait levels. More recently, Markon

and Chmielewski (2013) studied the effects of model misspecification on the bias, variance,

mean squared error, and confidence interval coverage rates of IRT trait estimates. The authors

generated data according to the 3PL and estimated ML trait scores using the true 3PL item para-

meters and the estimated 1PL, 2PL, and 3PL item parameters. At all trait values, they found that

trait estimates computed from the 1PL and 2PL were higher than trait scores estimated from the

true and estimated 3PL item parameters. They also found that at moderate to low trait values,

trait estimates computed from the 1PL and 2PL had lower variance but higher mean squared

error than either set of 3PL trait estimates. However, at high trait values, trait estimates com-

puted from the true and estimated 3PL item parameters had small variance relative to the mis-

specified trait estimates. The authors also found that confidence interval coverage rates were

higher for the correctly specified model than for the misspecified models. Moreover, for both

correct and incorrect model specifications, they found substantial differences in coverage rates

across trait values. Specifically, under model misspecification, coverage rates tended to be lower

than their nominal rate at low u values and higher than their nominal rate at high u values. The

authors emphasized that both the bias and variance of a trait estimate—both of which affect con-

fidence intervals—can be severely affected by model misspecification.

Confidence Intervals for Trait Estimates

Many IRT trait recovery studies consider bias, variability, or correlation statistics that are func-

tions only of the true and estimated trait scores. Fewer studies incorporate the estimated standard

errors. As suggested by Markon and Chmielewski (2013), ‘‘The applied literature on misspecifi-

cation has focused much more extensively on bias effects than variance effects, which can be
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misleading given that overall error is a function of both’’ (p. 108). One way to assess the com-

bined accuracy of the estimate and its standard error is by comparing the nominal and observed

confidence interval coverage rates.

A primary use of trait standard errors, denoted se(û), is to construct confidence intervals

around û. Asymptotically, the ML û is unbiased and normally distributed with standard devia-

tion equal to se(û). Thus, a 95% confidence interval constructed around trait estimate equals

û61:963se û
� �

: ð1Þ

Notably, confidence intervals are traditionally constructed using the formula in Equation 1,

even for trait estimates computed with methods other than ML (see De Ayala, Schafer, & Sava-

Bolesta, 1995). Standard errors and confidence intervals play a central role in CAT (Weiss, 1982).

If obtaining point estimates of u, the computerized adaptive testing (CAT) might be terminated

once the observed standard error is sufficiently small (e.g., se(û)\:30). Instead, to classify an indi-

vidual as being above or below some predetermined threshold, the CAT may be terminated when

the threshold is no longer in the confidence interval around û (Waller & Reise, 1989).

Although it has been shown that trait scores estimated from misspecified models are often

inaccurate (Jones et al., 1984; Markon & Chmielewski, 2013; Wainer & Thissen, 1987), the rela-

tive contribution of model misspecification is unclear. For instance, it is not clear whether mises-

timated trait scores result from a lack of test information, the trait estimation method, inaccurate

item parameter estimates, or model misspecification. In the next section, a Monte Carlo simula-

tion study is described that elucidates the relative contributions of each of these error sources.

As noted earlier, our simulation study is limited to one type of functional form misspecifica-

tion, namely fitting data generated from the 4PL to the 3PL, 2PL, and 1PL. This type of func-

tional form misspecification was selected for this study first for its simplicity. Because the 4PL

extends the 3PL by adding a single upper asymptote parameter, any differences in trait estima-

tion accuracy under this type of model misspecification are attributable to the omission of the

upper asymptote parameter. In addition, recent interest in the 4PL suggests that an upper asymp-

tote is needed to avoid biased trait scores at the upper end of the trait continuum in the context

of computerized adaptive testing (Rulison & Loken, 2009). Finally, although the results of this

study will be limited to one type of functional form misspecification, the author hopes to pro-

vide a general framework in which the magnitude of functional form misspecification—the

form of which is unknown in real data—can be understood and assessed.

Method

A series of Monte Carlo simulations were conducted to gauge the effects of trait estimation

error, item parameter estimation error, and model misspecification on the bias and confidence

interval coverage rates for latent trait estimates. In all cases, item responses were generated

according to the four-parameter model (4PL; Barton & Lord, 1981). For item i and person j,

the 4PL models the probability of a keyed response yij = 1 as follows:

P yij = 1juj, ji

� �
= ci + di � cið Þ 1

1 + exp �ai uj�bið Þ½ � , ð2Þ

where ji = (ai, bi, ci, di) indicates a vector of item parameters, and uj indicates a latent trait

value. Importantly, the 3PL, 2PL, and 1PL are nested submodels of the 4PL. The 3PL is a

restriction of the 4PL, wherein all di = 1; the 2PL is a restriction of the 3PL, wherein all ci = 0;

and the 1PL is a restriction of the 2PL, wherein a common ai value is estimated for all items

(i.e., a1 = a2 = a3 = � � �).
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To simulate data, 4PL parameters for 100 items were generated by drawing parameter values

from the following distributions: a;LNð0; :5Þ, b;Unifð�2:5; 2:5Þ, c;Beta(2, 40), and

d;Betað40; 2Þ. This generating distribution for a provides a majority of moderately discrimi-

nating items in the range of those reported for the 3PL (e.g., Table 1 of Zhang, 2012) and 4PL

(e.g., Loken & Rulison, 2010; Waller & Reise, 2010). A uniform generating distribution for b

provides high test information at a wide range of u values. Finally, narrow generating distribu-

tions for c and d ensure that many items have ci and di values close to 0 and 1. Researchers

have suggested that it is unlikely that ĉi � 0 and d̂i � 1 for the same item (Reise & Waller,

2003), and few reported sets of estimated 4PL item parameters report both estimated asymp-

totes far from their boundaries (Loken & Rulison, 2010; Waller & Reise, 2010). A plot of the

test information function (TIF) and expected standard errors for this item bank, as well as the

specific item parameter values, is available upon request. For this item bank, there was slightly

more information at low u values than at high u values, but the asymptotic standard error was

less than 0.30 for �2:5 � u � 2:0. This standard error value is similar to standard error termina-

tion criteria often used in computerized adaptive testing (e.g., Dodd, Koch, & De Ayala, 1993).

All item responses used in this study were generated according to these model parameters.

A sequence of 13 u values ranging from 23 to 3 was next considered in increments of 0.5.

At each u value, 2,000 response vectors were randomly generated from the true item parameters

j for a total of 26,000 response vectors. For each response vector, û and se(û) were computed

using ML, WL, and EAP estimation conditioning on the true item parameters j. The EAP trait

estimation method was used twice with each response vector: once using a N(0,1) prior (EAP1)

and again using a N(0,2) prior (EAP2), where ‘‘2’’ indicates the prior standard deviation. All

trait estimates were obtained using the catR package (Magis & Raiche, 2012) in R (R Core

Team, 2016), and 33 quadrature points were used for the EAP trait estimates. For all conditions

and trait estimation methods, trait estimates were truncated at 24 and 4.

The simulation proceeded in three stages: In the first stage, trait estimates were computed

from the 26,000 response vectors and the data-generating 4PL item parameters. By using a long

100-item test, this simulation design allowed us to explore the accuracy of each trait estimation

method while minimizing the effects of random error. The results for this first set of simulations

should reflect the properties of the ML, EAP, and WL estimators that were described earlier.

Specifically, ML trait estimates should demonstrate a slight outward bias, WL trait estimates

should be unbiased, EAP1 estimates should demonstrate a strong inward bias, and EAP2 esti-

mates should demonstrate a mild inward bias.

In the second stage of simulation, trait estimates were computed from the 26,000 response

vectors and 100 sets of estimated 4PL item parameters. This second stage allowed us to explore

the error introduced by uncertainty in item parameter estimation. To obtain 4PL item parameter

estimates, 100 vectors of u values were drawn from standard normal distributions at each of

three sample sizes N = 1, 000, 5, 000, and 20, 000. Using each vector of u values and the true

item parameters, a total of 100 binary data sets were generated at each sample size. Note that

these binary data sets were only used to estimate item parameters; trait scores were estimated

for the 26,000 response vectors described earlier. Previous research (Culpepper, 2016) has con-

cluded that a sample size of N.2, 500 is usually sufficient for accurate 4PL item parameter

estimation, whereas N = 1, 000 may be too small. The sample sizes of (a) N = 1, 000, (b)

N = 5, 000, and (c) N = 20, 000 were chosen to represent sample sizes that were, respectively,

(a) too small for accurate parameter estimation, (b) sufficient for accurate parameter estimation,

and (c) large enough to minimize any effects of item parameter estimation. The author of the

present study then estimated 300 sets of 4PL item parameters (three sample sizes 3 100 repli-

cations) using marginal Bayes modal estimation (Mislevy, 1986) as implemented by the mirt

package (Chalmers, 2012) in R (R Core Team, 2016). Item parameter estimates were obtained
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by integrating over a N(0,1) latent trait distribution and by specifying a convergence tolerance

of .0001. To aid model convergence, the following priors were used: logitðcÞ;Nð�1:8; 1Þ and

logitðdÞ;Nð1:8; 1Þ. These 300 sets of estimated item parameters were then treated as known

parameters to obtain latent trait estimates. In this second set of simulations, the WL estimator

was no longer expected to be unbiased (Zhang, 2005), and increased bias in trait estimates was

also expected for particular sets of item parameter estimates (i.e., within calibrations; Zhang et

al., 2011). Moreover, prior research suggests that ignoring item parameter estimation error can

result in underestimated standard errors (Cheng & Yuan, 2010; Tsutakawa & Johnson, 1990).

As a result, reduced confidence interval coverage rates might be expected for these conditions

in our simulations, especially for smaller calibration samples.

In the third stage of simulation, trait estimates were computed from the 26,000 response vec-

tors and estimated 1PL, 2PL, and 3PL item parameters. To obtain estimated item parameters

from these misspecified models, the same 100 data sets were used with N = 20, 000 subjects that

were used in the second stage. Trait estimates were then computed for the 26,000 4PL-gener-

ated response vectors by conditioning on each set of estimated 1PL, 2PL, and 3PL item para-

meters. In the third stage, item parameters were only estimated for these misspecified models

using N = 20, 000 subjects, so as to isolate the unique effects of model misspecification (i.e., to

avoid conflation with item parameter estimation errors). As in the second stage of simulations,

item parameter estimates were computed using mirt. For the 3PL item parameter estimates, the

prior logitðcÞ;Nð�1:8; 1Þ was included to aid model convergence but no priors were used for

the a or b parameters for any models. With these specifications, all models converged according

to the criteria used in the mirt software.

Results

Effects of Trait Estimation

The combined effects of random error and trait estimation error are first evaluated. For the four

trait estimation methods, the observed conditional bias values are reported in rows 1 to 4 of

Table 1, and the observed conditional confidence interval coverage rates are reported in rows 1

to 4 of Online Table A. At almost all u values, the ML, WL, and EAP2 estimators are essen-

tially unbiased, although as expected (Lord, 1983), the ML estimator is outwardly biased at

extreme u values. Correspondingly, these three trait estimators have confidence interval cover-

age rates that are very close to the nominal rate of .95 at all u values. In contrast, but also as

expected (Bock & Mislevy, 1982), the EAP1 estimator exhibits a strong inward bias. The strong

inward bias of the EAP1 estimator, combined with the smaller standard errors associated with

Bayesian trait estimates (1982), leads to relatively low coverage rates for the EAP1 estimator

for extreme u values (juj.1:5). This result emphasizes that constructing confidence intervals

using Equation 1 is inappropriate for Bayesian estimates with highly informative priors, and

might lead to inappropriate classification decisions (De Ayala et al., 1995). Overall, apart from

the EAP1 estimator, trait estimation has only a small effect on person parameter bias or confi-

dence interval coverage rates. Although the results for this stage of our simulation are not novel,

they support previous research on the ML, WL, and EAP trait estimators, and provide useful

benchmark statistics against which to evaluate the effects of other error sources.

Effects of Item Parameter Estimation

The effect of item parameter estimation on latent trait estimates was evaluated using the same

sets of 13 (u levels) 3 2,000 (replications) response vectors used in the previous section. At this
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step, only the results for the EAP2 estimator are reported. Only the EAP2 estimator was consid-

ered because, in the first set of results, EAP2 was associated with coverage rates that were clo-

sest to the nominal rate of .95 and the smallest bias values apart from WL. Moreover, EAP2

has elsewhere demonstrated better bias values and confidence interval coverage rates than the

ML or EAP1 estimators (Rulison & Loken, 2009). Results for the other three trait estimators

are available upon request.

At each of the three sample sizes, average conditional bias and confidence interval coverage

rates were computed both across and within the 100 replications (i.e., the 100 sets of estimated

item parameters). Bias values are presented in rows 5 to 10 of Table 1. Here, the numbers out-

side parentheses are the bias values averaged across replications, and the numbers within par-

entheses are the maximum absolute bias values (sign reintroduced) within replications. Notice

that the three sample sizes lead to similar patterns and magnitudes of bias. Note also that the

conditional biases do not strictly increase as u increases (as one might expect from an inwardly

biased Bayesian trait estimator). Moreover, the direction of bias (inward vs. outward) is not

constant for moderate ranges of the u continuum. This result was also observed, although to a

lesser extent, when conditioning on the data-generating item parameters (Table 1, row 4). This

unexpected phenomenon appears to be unique to the EAP2 trait estimator. Although it is not

clear why the direction of bias is not a monotonic function of u, the across-replication magni-

tude of bias is small ( biasj j\:15) for all trait values and very small ( biasj j � :05) for central

trait values (juj � 2). Furthermore, although the maximum absolute bias within replications

decreases somewhat with larger sample sizes, there is not a consistent reduction in bias with

larger sample sizes.

Confidence interval coverage rates are presented in rows 5 to 10 of Online Table A. Here,

the numbers outside parentheses are the coverage rates averaged across replications, and the

numbers within parentheses are the minimum coverage rates within replications. Notice that

across replications, coverage is high for all three sample sizes and closest to the nominal rate of

.95 for central u values (high coverage at u = f�3, 3g may be attributed to large standard errors

in these conditions). However, at N = 1, 000, minimum within-replication coverage rates dip

below .90 for several u values, with u = � 1:5 exhibiting a minimum coverage rate of only .859.

Because standard errors are underestimated when item parameter estimation error is ignored

(Cheng & Yuan, 2010), some reduction in confidence interval coverage rates, particularly at

small sample sizes, is expected. Previous research also suggests that a calibration sample of

N = 1, 000 is too small to accurately estimate 4PL item parameters (Waller & Feuerstahler,

2017). Thus, it is not surprising that confidence interval coverage rates are far below .95 in the

N = 1, 000 conditions. Although coverage rates at N = 1, 000 are still relatively high, they are far

below the nominal rate of .95. Furthermore, at the two larger sample sizes, both minimum and

average coverage rates are close to the nominal rate of .95. This finding suggests that, when

using the 4PL, samples larger than N = 1, 000 are needed to obtain accurate estimates of both

the trait score and its standard error.

Effects of Model Misspecification

The effects of model misspecification on bias are shown in rows 11 to 16 of Table 1. As in the

previous set of analyses, the quantities outside parentheses indicate the average bias across the

100 replications, and the quantities within parentheses give the (signed) maximum absolute bias

observed within replications. The effects of model misspecification on confidence interval cov-

erage are shown in rows 11 to 16 of Online Table A. Here, the quantities outside parentheses

give the coverage rates across replications, and the quantities within parentheses give the mini-

mum coverage rate within replications. When interpreting these results, bear in mind that each
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set of 1PL, 2PL, and 3PL item parameter estimates was computed with the very large sample

size of N = 20, 000. A large sample size was chosen to minimize the effects due to item para-

meter estimation errors; when using smaller item calibration samples, the bias and coverage

rate statistics would likely be more variable due to the added variability of the item parameter

estimates.

Table 1 and Online Table A reveal that both the 1PL and 2PL lead to relatively unbiased trait

estimates ( biasj j.:15) that have coverage rates close to .95 (and always above .90) across the u

continuum. Notably, the bias of trait estimates is not much (or even consistently) worse for the

1PL and 2PL conditions compared with the 4PL conditions with N = 20, 000. Coverage rates for

the 1PL and 2PL trait estimates are slightly lower at most u values than the 4PL trait estimates

with N = 20, 000, but the magnitudes of these differences are small. In contrast, the 3PL leads to

trait estimates with a strong negative bias at both the lower and upper ends of the u continuum.

The magnitude of bias is only slightly larger at high u values than at low u values; average bias

at u = 3 equals 2.47, and average bias at u = �3 equals 2.35. As a result, coverage rates at high

u values are far below the nominal rate and dip as low as .546 at u = 3 (as low as .480 within

replications). At the lower end of the u continuum, coverage rates are also far below the nominal

rate of .95, but rates are still above .80 at these lower u values. Although both high and low u

estimates are biased under the 3PL, low u values have higher coverage rates than high u values

because low u values also have larger standard errors. Although not reported in this article, this

pattern of results for the 3PL was also observed for the other three trait estimators (coverage at

u = 3 with the EAP1 estimator dipped as low as .276 within replications!). These results suggest

that, if the data were generated from the 4PL, less biased trait estimates with better coverage

rates would be obtained by using the 1PL or 2PL instead of the more flexible 3PL. This surpris-

ing result deserves further exploration. In the following section, our attention is focused on the

bias of IRT trait estimates under the 3PL.

A Closer Look at Biased Trait Estimates

In the previous section, it was found that, for responses generated under the 4PL, trait estimates

computed from the misspecified 3PL were heavily biased at extreme trait levels. Unexpectedly,

trait estimates computed from misspecified 1PL or 2PL item parameter estimates were nearly

unbiased. The fact that this result occurred for the 3PL but not for the 1PL or 2PL—which are

submodels of the 3PL—suggests that some aspect of 3PL item parameter estimation causes

biased trait estimates. As a first step, then, it is necessary to identify the ways in which the 3PL

item parameter estimates differ from the 1PL, 2PL, and 4PL item parameter estimates. In previ-

ous studies of item parameter recovery, various indices have been used to evaluate item para-

meter recovery, including parameter bias and root mean square error (e.g., Hulin, Lissak, &

Drasgow, 1982) and overall IRF recovery (e.g., Ramsay, 1991). Parameter recovery is explored

by comparing the data-generating 4PL item parameters with the 100 sets each of 1PL, 2PL,

3PL, and 4PL item parameter estimates (i.e., the same sets of item parameters and estimates

used in the simulation study described earlier). First, the recovery of item difficulties b (the only

parameter estimated for each item in all four models) is considered. Considering only those item

parameters estimated with N = 20, 000 subjects, it was found that b parameters are indeed more

biased under the 3PL than under 1PL, 2PL, and 4PL: across items and replications, the b para-

meter bias equals .00, 2.02, .15, and .01 for the 1PL, 2PL, 3PL, and 4PL. Alternatively, the b

parameter root mean square errors across items and replications equal .57, .42, .53, and .29 for

the 1PL, 2PL, 3PL, and 4PL. Although these numbers indicate that the 3PL b recovery is not as

good as using the correct 4PL model, 3PL b recovery is comparable with b recovery for the

other models. In fact, b parameter root mean square errors are larger for the 1PL than for the
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3PL. Rather than b parameter recovery, perhaps trait estimation bias can be better predicted by

response function recovery, such as the root integrated mean square error (RIMSE; Ramsay,

1991). Across items and replications, the average RIMSE equaled .026, .022, .028, and .009 for

the 1PL, 2PL, 3PL, and 4PL, respectively. Although the 3PL is associated with slightly larger

RIMSEs than the other models, this index does not reflect the magnitude of bias observed only

in the 3PL. One reason why the RIMSE only weakly predicts 3PL trait estimation bias may be

because the RIMSE places greatest weight on central u values. In our simulation results, central

u values were recovered fairly well for all models, but extreme u values were poorly estimated

for the 3PL. To capture these conditional effects, IRF recovery is next evaluated as the IRF bias

conditional on u. The relationships between û bias and conditional IRF bias averaged across the

100 test items are displayed in Figure 1 for the 1PL, 2PL, 3PL, and 4PL. The four panels of this

figure correspond to the four item response models, and each panel includes 13 u values crossed

with 100 sets of item parameter estimates computed with N = 20, 000 subjects. In this figure,

darker colored points represent more extreme u values (i.e., closer to uj j = 3), lighter colored

points represent u values closer to 0, ‘‘o’’ points represent data-generating u\0, and ‘‘3’’

points represent data-generating u � 0. Notice in this figure that each panel displays a number

of clustered points that appear to have strong linear relationships within clusters. Further inves-

tigation reveals that these clusters correspond to different data-generating u values. Across u

values and replications, conditional IRF bias predicts .38, .26, .96, and .83 of the variance in

conditional û bias for the 1PL, 2PL, 3PL, and 4PL, respectively. Moreover, the 3PL estimated

IRFs have greater conditional bias than the 1PL and 2PL. Recall that each dot represents an

average across 100 test items. This means that the 3PL item parameter estimates are systemati-

cally conditionally biased. It is not necessarily that each estimated 2PL IRF reproduces the true

4PL IRF better than each estimated 3PL IRF. Instead, across test items, the conditional IRF

biases tend to be in the same direction for the 3PL, whereas they cancel out for the 2PL. These

results provide convincing evidence that (a) conditional IRF bias causes trait estimation bias,

and (b) our simulation results showed greatest bias for 3PL trait estimates because the 3PL con-

ditional IRFs exhibit greater systematic bias than the 1PL, 2PL, or 4PL conditional IRFs.

Before exploring why the 3PL estimated IRFs and trait scores are conditionally biased, it

should be noted that sets of estimated item parameters that lead to biased trait estimates do not

necessarily exhibit poor model–data fit. To illustrate this point, absolute model fit, relative

model fit, and item fit statistics are computed for the sets of 1PL, 2PL, 3PL, and 4PL estimated

item parameters described earlier. All fit results are reported in Table 2. Recall that each model

was fit to the same 100 data sets, where each data set was generated under the 4PL with

N = 20, 000 subjects. Absolute model fit was first considered as indexed by the M2 limited-

information goodness-of-fit statistic (Maydeu-Olivares & Joe, 2005) and the RMSEA2 (root

mean square error approximation) limited-information goodness-of-approximation measure

(Maydeu-Olivares & Joe, 2014). For the M2 statistic with a = .05, 94% of the 4PL models fit

(close to the expected rate of 95%), 81% of the 3PL models fit, and none of the 2PL or 1PL

models fit. These results show that in the majority of data sets generated from a 4PL and a very

large sample size (N = 20, 000), the M2 statistic will indicate acceptable model fit for the 3PL.

The average RMSEA2 indices also indicate close model fit for the 3PL. Across replications, the

average RMSEA2 value for the 3PL equals .0008, far below the RMSEA2\:05 cutoff recom-

mended by Maydeu-Olivares and Joe (2014) for assessing close model fit in IRT models.

Moreover, the RMSEA2 values for the 3PL are, on average, only .0004 larger than the RMSEA2

values for the 4PL. In fact, in 20% of data sets, the 3PL resulted in a lower RMSEA2 value for

the 3PL than for the 4PL. Although across replications these absolute model fit measures show

slightly better fit for the correct 4PL than for the 3PL, they do not suggest any major problems

with 3PL absolute model fit for most data sets. Relative model fit was next considered as
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indexed by the deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & van der

Linde, 2002),1 which selects an appropriate model by balancing improvements in model fit with

the costs of increased model complexity. For each of the 100 data sets of N = 20, 000, the DIC

selected the 4PL as the best fitting model. When the 4PL DICs were omitted from the model

comparison, the DIC selected the 3PL for every data set. These relative model fit results indicate

that the 3PL fits substantially better than the 2PL or the 1PL for data generated under the 4PL.

Next, for each set of estimated item parameters, the proportion of items that fit according to the

S � X 2 statistic (Orlando & Thissen, 2000) was looked at. Setting a Type I error rate of a = .05,

7%, 51%, 76%, and 94% of the 1PL, 2PL, 3PL, and 4PL items fit. Although more items fit

under the 4PL than under the other models, the 3PL still leads to a majority of items that fit and

Figure 1. Scatter plot of conditional EAP2 û bias versus conditional IRF bias.
Note. Results are displayed for 100 sets each of 1PL, 2PL, 3PL, and 4PL estimated item parameters computed with

N = 20, 000. Lighter colored dots correspond to data-generating uj j values closer to 0, and darker colored dots

correspond to data-generating uj j values closer to 3. In addition, ‘‘0’’ points represent data-generating, and ‘‘3’’ points

represent data-generating u � 0. EAP = expected a posteriori; IRF = item response functions.
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many more items that fit than the 2PL or 1PL. Although these fit results are not surprising—the

data-generating model is more complex than the 1PL, 2PL, and 3PL, and the 3PL is more com-

plex than the 1PL or 2PL—they also show that assessing fit does not detect items that produce

biased trait estimates.

Above, it was established that biased trait estimates are the result of systematically biased

IRF estimates, and that conditionally biased IRFs need not be detected by fit indices. The

effects of item elimination based on the S � X 2 statistic (see Online Appendix B) were also

considered, but it was found that this strategy only reduces trait estimation bias in extremely

large calibration samples. These results suggest that the added bias of 3PL IRFs leads to better

model–data fit than 3PL IRFs that are less systematically biased (e.g., the 2PL IRFs, which are

identical to 3PL IRFs with c = 0). However, it may also be that biased item parameter estimates

stem from suboptimal choices in item parameter estimation. Perhaps different item calibration

choices—in particular, different Bayesian priors—might produce different bias results. To eval-

uate the extent to which the choice of c prior affects bias results, the 3PL simulations were ran

at N = 20, 000 four more times with four different priors on logit(c) (recall that mirt places a

prior on logit(c) rather than on c itself). The studied priors were as follows: (a) a flat prior on

logit(c), (b) a N(25, .1) prior that is highly informative at c = 0 when logits are transformed to

the c metric, (c) a N(21.09, .01) prior that is highly informative at c = :25, and (d) a N(0, 1.5)

prior that is relatively flat across the 0, 1½ � interval on the c (probability) metric. Each of these

priors led to different amounts of EAP2 û bias when averaged across replications. At u = 3, bias

equaled 2.50 for the original N(21.8, 1) prior, 2.48 for the flat prior, .14 for the N(25, .1)

prior, and 21.08 for the N(21.09, .01) prior. Full bias results are available upon request. These

results suggest that even at very large sample sizes, the bias of trait estimates computed from

estimated 3PL item parameter estimates is highly sensitive to the choice of Bayesian priors.

Finally, to establish that these results are not specific to the mirt software, these results are suc-

cessfully reproduced using Hamiltonian Monte Carlo in the rstan (Stan Development Team,

2016) package for R. Results are reported in Online Appendix C.

Implications

The finding that trait estimates are biased under the misspecified 3PL suggests that the metric

of the estimated trait differs from the metric of the data-generating trait. The fact that the 3PL is

Table 2. Absolute and Relative Model and Item Fit Statistics.

M2 model fit
proportiona

RMSEA2 mean
(min, max)b

RMSEA2

lowestc
DIC

lowestd
S2 X2 item fit proportion

overall (min, max)e

4PL .94 .0004 (.0000, .0015) .80 1.00 .94 (.90, .99)
3PL .81 .0008 (.0000, .0018) .20 .00 .76 (.71, .83)
2PL .00 .0060 (.0057, .0063) .00 .00 .51 (.44, .55)
1PL .00 .0216 (.0210, .0221) .00 .00 .07 (.03, .11)

Note. This table represents model and item fit statistics for 100 data sets (replications), each with 100 items and

N = 20, 000 subjects fit to the 1PL, 2PL, 3PL, and 4PL. RMSEA = root mean square error approximation.
a
Proportions of estimated models that fit according to the M2 statistic with a = .05.

b
Average, minimum, and maximum RMSEA2 index across the 100 replications.

c
Proportion of data sets for which each model provides the lowest RMSEA2 value among the four competing models.

d
Proportion of data sets for which each model provides the lowest DIC value among the four competing models.

e
Proportion of items that fit according to the S2X2 statistic with a = .05. This proportion is reported across test

items and replications, and the minimum and maximum proportions within replications are reported in parentheses.
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negatively biased at both low and high trait scores implies a nonlinear relationship between u

and û. This result stands in stark contrast to the theoretical result that parametric item response

models—including the 3PL—are identified up to linear transformations of the latent trait. In

terms of Stevens’s (1946) taxonomy, the IRT latent trait is interval-level when using parametric

models. It is true that for parametric IRT models, the units and interval spacing of the latent trait

are determined, up to linear transformations, by the functional form of the IRF (Lord, 1975).

However, if the latent trait is transformed by a nonlinear but monotonic function, an item

response model exists that makes identical predictions only with a different IRF shape (Lord,

1975). If the IRF functional form is misspecified, then the units and interval spacing are not

determined by the correct IRF functional form. Thus, there is no reason to believe that the latent

trait determined by the misspecified functional form should be linearly related to the latent trait

determined by the correct functional form. Put another way, if the IRT latent trait is interval-

level conditional on the fitted IRF shape (e.g., 4PL), then if the fitted IRF shape deviates from

the data-generating IRF shape, the fitted latent trait need not retain the units and interval spac-

ing of the data-generating latent trait. Although fitting the 3PL to 4PL-generated data should

introduce some degree of model misfit, it is entirely plausible that the best fitting IRT model

under the misspecified IRF form implies a latent trait that is nonlinearly related to the data-

generating latent trait.

It is worth noting that this is not the first time that systematic biases in trait estimates—

implying a nonlinear distortion of the latent trait metric—have been found with regard to the

3PL. A similar result was found by Yen (1981) in a slightly different context. She found that,

when analyzing 3PL-generated data with the 2PL and 3PL, the two models fit equally well, but

that the two sets of trait estimates were curvilinearly related, with ‘‘the [2PL] trait estimates

more stretched out at the high end than the [3PL] traits’’ (p. 259). Yen explained her results in

terms of model misspecification and the ability of the 2PL parameters to compensate for the

lack of lower asymptote. Our results add nuance to this understanding of trait estimation under

misspecified models. Rather than attempting to find and fit the true data-generating model, sim-

pler IRT models may perform well so long as they make relatively unbiased test-level predic-

tions conditional on all u values of interest. To be more precise, it is not necessary that all IRFs

are conditionally unbiased; it is good enough if the test response function (i.e., the sum of

IRFs) is conditionally unbiased. One way to achieve unbiased IRFs is to fit nonparametric item

response models (e.g., Ramsay, 1991). Nonparametric models fit item response curves that are

less conditionally biased than those of parametric models. However, nonparametric IRT trait

estimates should only be interpreted as ordinal quantities, and so this solution will not provide

the user with trait estimates with meaningful units. Ultimately, if one aims to develop a scale

with meaningful units, the units should either be referenced against an external variable (e.g.,

grade levels), or a measurement approach should be taken that permits interval-level interpreta-

tions (see, for example, Perline, Wright, & Wainer, 1979).

Perhaps the most important implications of these findings might relate to how the latent trait

metric is interpreted. In fact, many of the statistics and procedures used on IRT trait estimates

imply an interval-level metric. For instance, linear item linking, evaluating change or growth

over time, and even the use of confidence intervals based on normally distributed standard errors

all depend on the idea that intervals on the latent trait are fixed and meaningful. Furthermore,

distributional statements about the latent trait and parametric statistics applied to latent trait

scores imply an interval-level latent trait. One may argue that interval-level interpretations are

justified so long as the same procedures are applied to all individuals (i.e., so long as all individ-

uals are scored using the same set of estimated item parameters). The trouble with this idea is

that the units and spacing of the trait scores are then inextricably bound to the estimated item

parameters of the test. If the test’s item parameters were to be validated with independent data,
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small differences in methodology, such as a change in Bayesian prior, could lead to different

substantive conclusions.

Solutions to the problem of biased trait estimates are not obvious, partly because it is not

easy to detect bias when the data-generating model is unknown. As demonstrated above, item

elimination based on item fit statistics might reduce trait estimation bias in extremely large item

calibration samples, but these methods are less effective in moderate to small item calibration

samples. Trait estimation methods that adjust for both the bias and variability associated with

item parameter estimation (e.g., Lewis, 1985, 2001; Tsutakawa & Johnson, 1990) might result

in less biased trait estimates, although these methods assume correct model specification and

have not yet been tested on misspecified IRT models. At minimum, researchers can perform

additional checks when calibrating item parameters to detect whether the estimated latent trait

is unstable. For instance, when calibrating item parameters, researchers could fit additional

models with other methodological choices, and check whether methodological differences lead

to test response functions that predict very different scores for some ranges of the latent trait

continuum.2 An example of such a check was demonstrated in the previous section, in which

the 3PL model was refit using several choices of Bayesian priors. In this example, it was found

that trait estimates at extremes of the latent trait had very different average values depending

on the choice of Bayesian priors. If these robustness checks suggest that item calibration is

indeed sensitive to methodological choices, either a less malleable (but still well-fitting) model

should be chosen, or caution should be exercised to avoid interval-level score interpretations.

Conclusion

The goal of this study was to determine the relative impact of trait estimation error, item para-

meter estimation error, and model misspecification on the bias and confidence interval cover-

age rates of IRT latent trait estimates. Our results clearly showed that, assuming sufficiently

large data sets, the greatest errors in latent trait estimates result from model misspecification.

However, it was found that not all misspecified models introduce estimation errors, and the

effect of model misspecification is not directly related to the complexity of the fitted model.

Specifically, it was found that when 4PL data were fit to the 3PL, trait estimates were heavily

biased and had poor coverage at extreme trait levels. Surprisingly, when 4PL data were fit to

the 2PL or 1PL, trait estimate bias statistics and confidence interval coverage rates were similar

to those from the correctly specified model. Follow-up analyses demonstrated that bias in latent

trait estimates can be predicted from systematic conditional bias in the estimated item response

functions.

Our simulation study was limited to only one type of model misspecification, and so the spe-

cific results reported in this article may not directly apply to other types of functional form mis-

specifications or misspecified dimensionality. However, the results of this study clearly

demonstrate that seemingly minor model misspecification can have large effects on the scaling

of the latent trait metric. Put another way, it was demonstrated that there is not a direct relation-

ship between model/item fit and parameter estimation bias, a result which ought to be explored

for other types of IRT model misspecification. Our results show that estimated models that

demonstrate acceptable fit are not necessarily immune from the effects of model misspecifica-

tion, especially when item calibration samples are not extremely large.

In this article, it was found that item parameter estimation methods that systematically

underestimate or overestimate response probabilities can lead to trait estimates that are nonli-

nearly related to the true latent trait. Systematic bias could also occur if, for example, guessing

behavior is not taken into account (low ability examinees will have systematically underesti-

mated trait scores, even if a guessing parameter is fixed to a certain value but is inappropriate
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for the data). It is recommended that researchers routinely evaluate the sensitivity of estimated

item parameters and response functions to small methodological choices. Researchers are also

encouraged to draw interval-level score interpretations with great caution and only after evalu-

ating the sensitivity of their fitted models.
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Notes

1. The deviance information criterion (DIC) was originally developed, and is often used in the context of

Markov chain Monte Carlo estimation. In the present context, the DIC can be seen as a generalization

of the Akaike Information Criterion (AIC; Akaike, 1974) that takes prior information into account

(Berg, Meyer, & Yu, 2004). Specifically, DIC = D(ĵ) + 2p, where D(ĵ) is the posterior deviance eval-

uated at the estimated item parameters ĵ and, as used in this article, p is the number of estimated para-

meters. In the special case of flat prior distributions (i.e., maximum-likelihood estimation), the AIC

and the DIC are identical.

2. Of course, not all methodological choices are created equal. The methodological choices that should

be varied are those with little a priori justification, or those that have been demonstrated to perform

comparably well in simulation studies. Examples of these ‘‘small’’ methodological choices include

the choice of item calibration software and choice of Bayesian prior (e.g., there is often no a priori

reason to believe that logit(c) parameters follow a normal distribution rather than a uniform

distribution).
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