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Abstract

Background

Singapore experiences endemic dengue, with 2013 being the largest outbreak year known

to date, culminating in 22,170 cases. Given the limited resources available, and that vector

control is the key approach for prevention in Singapore, it is important that public health pro-

fessionals know where resources should be invested in. This study aims to stratify the spa-

tial risk of dengue transmission in Singapore for effective deployment of resources.

Methodology/principal findings

Random Forest was used to predict the risk rank of dengue transmission in 1km2 grids, with

dengue, population, entomological and environmental data. The predicted risk ranks are

categorized and mapped to four color-coded risk groups for easy operation application. The

risk maps were evaluated with dengue case and cluster data. Risk maps produced by Ran-

dom Forest have high accuracy. More than 80% of the observed risk ranks fell within the

80% prediction interval. The observed and predicted risk ranks were highly correlated

(r�0.86, P <0.01). Furthermore, the predicted risk levels were in excellent agreement with

case density, a weighted Kappa coefficient of more than 0.80 (P <0.01). Close to 90% of the

dengue clusters occur in high risk areas, and the odds of cluster forming in high risk areas

were higher than in low risk areas.

Conclusions

This study demonstrates the potential of Random Forest and its strong predictive capability

in stratifying the spatial risk of dengue transmission in Singapore. Dengue risk map pro-

duced using Random Forest has high accuracy, and is a good surveillance tool to guide vec-

tor control operations.
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Author summary

Dengue fever, the most prevalent mosquito-borne viral disease today, is caused by Dengue

virus (DENV) and transmitted to human by Aedes mosquitoes, primarily the Ae. aegypti
and Ae. albopictus. The key approach to mitigating dengue transmission is to control the

Aedes population, and this often involve vector control strategies such as larval source

reduction and preventive surveillance that are labour-intensive and require effective deploy-

ment of valuable resources. Spatial risk profiling of dengue transmission is therefore neces-

sary to ensure the optimal utilization of limited resources, and achieving maximum impact

of dengue vector control. Here, we developed a dengue risk map by stratifying the spatial

risk of dengue transmission in Singapore. Random Forest was used to predict the risk rank

of dengue transmission in 1km2 grids, and the predicted risk ranks are then categorized

and mapped to color-coded risk groups. The dengue risk map is a good surveillance tool to

guide vector control operations. Valuable resources can be deployed in a strategic manner,

mitigating the spread of dengue transmission.

Introduction

Dengue is a viral infection caused by one of the four closely related yet antigenically distinct

virus serotypes (DENV-1, DENV-2, DENV-3 and DENV-4), and transmitted by Aedes mos-

quitoes, primarily the Ae. aegypti and Ae. albopictus [1,2]. Infection confers lifelong immunity

to the infecting serotype [3]. However, it increases risk for dengue haemorrhagic fever (DHF)

and dengue shock syndrome (DSS), a deadly form that present with severe complications, in

subsequent infections [4]. Since the publication of the GBD 2010, it was estimated that 390

million dengue infections occur each year globally, of which 500,000 develop into DHF [5,6].

Dengue poses a substantial public health threat globally, especially throughout the tropical and

subtropical regions [7,8].

Located one and a half degrees north of the equator and lying in the dengue belt, Singapore

is prone to dengue transmission, with all four dengue serotypes co-circulating and frequent

introduction of new genotype virus [9]. Though intensive vector control efforts have success-

fully suppressed the Aedes population, from an Aedes house index of over 50% in the 1960’s to

the present 1–2%, Singapore remains susceptible to dengue outbreaks [10–12]. The increased

in human population density and the low herd immunity resulting from sustained period of

low dengue transmission are factors that may have contributed to the resurgence of dengue in

Singapore [13,14]. A significant amount of funding and resources has been allocated for den-

gue every year [15]. The estimated economic and disease burden of dengue were 9–14 disabil-

ity-adjusted life years (DALYs) per 100,000 population and US$41.5 million per annum [16].

A dengue temporal model was developed in 2013 by the Environmental Health Institute, a

research institute of the Singapore’s National Environment Agency (NEA) in collaboration

with the National University of Singapore (NUS) to aid vector control measures. The model

predicts trends and incidence up to 12 weeks ahead, providing early warnings of outbreak and

facilitating public health response to moderate impending outbreak [17]. This model was able

to accurately project an upward trend of dengue cases in 2013 and 2014, predicting the two

major outbreaks [18]. NEA has been using the model in planning vector control and public

communication [19]. However, a limitation of the model is the missing spatial resolution as it

does not highlight areas with high risk of dengue transmission. Given that NEA’s key strategy

in dengue control is preventive surveillance and larval source reduction, a labour-intensive

activity that requires effective deployment of a limited pool of skilled vector control officers,
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spatial risk profiling of dengue transmission is thus necessary for effective deployment of

resources, and achieving maximum impact.

In this paper, we describe a new approach for spatial risk stratification of dengue transmis-

sion in Singapore. Using Random Forest, we quantify the risk of dengue transmission in differ-

ent areas and categorize them into different risk groups to guide the pre-emptive source

reduction exercise conducted by NEA vector control officers. Predictive performance of the

model is evaluated with both dengue cases and clusters.

Materials and methods

Statistical analysis

Proposed by Leo Breiman, Random Forest is an ensemble machine learning method that uses

an ensemble of decision trees [20]. In Random Forest, several (N = 1000) bootstrap samples

are drawn from the training set data, and an unpruned decision tree fnðxÞ, is fitted to each

bootstrap sample. At each node of the decision tree, variable selection is carried out on a small

random subset of the predictor variables, so as to avoid the “small n large p” problem. The best

split on these predictors is used to split the node. The predicted response is obtained by averag-

ing the predictions of all trees, i.e. 1

N

PN

n ¼ 1

fnðxÞ (Fig 1). Random Forest was used to predict the

percentile rank of dengue case count in 1km2 grids, with past dengue exposure (total number

of cases in previous year, total number of cases in neighbouring grids in previous year and

number of non-resident cases in previous year), human population (estimated population

density), vector population (estimated ratio of Aedes aegypti mosquitoes out of all Aedes
moquitoes—breeding percentage) and environmental data (vegetation index, connectivity

index and ratio of residential area). The predicted percentile ranks are then categorized and

mapped to four color-coded risk groups (RG1-4, lowest risk as RG1 and highest risk of dengue

transmission as RG4) for easy operation application. Although administrative boundaries are

Fig 1. Framework of random forest algorithm. 1000 random bootstrap samples were drawn from the data, and an unpruned decision tree is fitted

to each bootstrap sample. At each node, a small subset of the covariates was chosen at random to optimize the split. The predicted risk rank is

obtained by averaging the prediction of all trees.

https://doi.org/10.1371/journal.pntd.0006587.g001
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more compatible with ground operation, 1km2 grids were used as study units as they are more

consistent in area size and do not change over time. We use residential grids exclusively for the

analysis and risk mapping. Random Forest analyses were performed using the randomForest

package implemented in the R statistical language [21].

Model evaluation

Data from 2006 to 2013 were used to parameterize the model, and performance of the model

is evaluated with new dengue case data from 2014 to 2016. Apart from visually comparing the

risk map and distribution of dengue cases, we applied the following quantitative metrics to

evaluate the model: 1. correlation between predicted and observed percentile ranks, 2. cover-

age of prediction intervals, 3. summary statistics of the number of cases within each risk

group, and 4. weighted (square) Kappa agreement coefficients of risk grouping.

In addition to using dengue case data, data on dengue cluster, which indicates possible

transmission within the locality, were considered for model evaluation as well. We investigated

the odds of clusters forming in high (RG 3 and 4) and low (RG 1 and 2) risk areas, and exam-

ined if transmission intensity, comprising of cluster’s growth rate, transmission duration and

cluster size differ between high and low risk areas. Differences were analysed using Kruskal-

Wallis tests.

Data

Table 1 shows the various risk factors considered for the risk mapping. The risk factors were

identified from literature review and examined with historical data [11,22,23]. All data (Den-

gue, Population and Entomological) were aggregated to the 1km2 grids. The time period used

for all variables was January 2006 to December 2016, and their sources are:

Dengue cases. Dengue is a notifiable disease in Singapore, where medical practitioners

are required to notify all clinically diagnoses and laboratory confirmed dengue cases to the

Ministry of Health (MOH), Singapore [24]. Residential and workplace address and onset date

of each dengue cases are recorded and shared with NEA on a daily basis. Dengue cases were

tagged to the address, either residential or workplace address, after epidemiological investiga-

tion has been carried out by officers to determine and confirm the location where the cases

acquired dengue. The addresses were then geocoded using the Geographic Information Sys-

tem (GIS). Geo-referenced data on dengue cases was extracted from the GIS database of NEA,

and anonymized prior to analysis.

Population density. The number of residential units were provided by Housing Develop-

ment Board (HDB) for public housing and sourced online from the Real Estate Information

Table 1. Overview of the risk factors used for dengue risk mapping.

Category Type Covariates

Dengue exposure Spatio-temporal Dengue burden in previous year

Dengue burden of neighbouring grids in previous year

Number of non-resident cases in previous year

Population Spatio-temporal Number of residential units

Entomological Spatio-temporal Breeding percentage in previous year

Environmental Spatial Vegetation index

Spatial Connectivity index

Spatial Percentage covered by residential areas

https://doi.org/10.1371/journal.pntd.0006587.t001
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System (REALIS), an online database managed by Urban Redevelopment Authority, for pri-

vate housing.

Entomological. Breeding Percentage (BP) is an in-house index developed by NEA to esti-

mate the proportion of Ae. aegypti relative to Ae. albopictus, which is ubiquitous in Singapore

[25]. BP is calculated from the number of Aedes mosquito breeding sites recorded during

ground inspections carried out by NEA using the formula:

BP ¼
NaegyptiðtÞ

NaegyptiðtÞ þ NalbopictusðtÞ � NmixedðtÞ

NEA carried out routine inspection surveillance across Singapore throughout the year.

These inspections include those scheduled for regular preventive surveillance, and those con-

ducted in response to dengue transmission in a location. To estimate the yearly BP for each

grid, geo-referenced data on Aedes spp. larval counts from the routine surveillance was

extracted from the GIS database of NEA and mapped the location of Aedes breeding sites onto

each grid to extract the number of Ae. aegypti and/or Ae. albopictus breeding sites found within

each grid for each year. BP value for grids with inspections was calculated by definition. For

grids that were not inspected, their BP values were estimated using ordinary Kriging with a

spherical variogram model.

Environmental factors. Vegetation index, also known as the Normalized Difference Veg-

etation Index (NDVI), is an index of plant “greenness” or photosynthetic activity. NDVI data

was provided by Centre for Remote Imaging, Sensing and Processing in NUS after processing

satellite image. Connectivity index measures the total connectivity (accessibility) of the grid

relative to all other grids, and is derived from public transport data from Future City Lab

ETH-NUS.

Dengue clusters. Dengue cases are clustered for vector operations purposes based on

their geographical and temporal proximity. A dengue cluster is formed when two or more

cases are located within a 150-meter radius and with the onsets of illness within a 14-day

period. Dengue clusters are generated using the Geographical Information System (GIS), and

information such as transmission duration, serotypes detected and the number of dengue

cases is recorded for every cluster [12].

Results

Associations between covariates and dengue burden were examined through partial depen-

dence plot. Consistent with our prior knowledge, all covariates are associated with dengue bur-

den, as contrasted by the flat line partial effect of random noise (Fig 2). Among the covariates,

the number of residential units, dengue burden in previous year and the breeding percentage

in previous year are top-ranked in terms of variable importance (Fig 3), and impose a larger

influence on model accuracy, relative to the other covariates. This, therefore, suggests that pop-

ulation density, dengue burden and abundance of Ae. aegypti are significant risk factors for

dengue transmission.

The predicted percentile ranks were categorized and mapped to four color-coded risk

groups based on the three quartiles so that the number of grids in each risk group is approxi-

mately the same. The distribution of risk groups is comparable in all three years, with high risk

groups (RG 3 and 4) congregating in the eastern part of Singapore. When dengue cases were

overlaid onto the risk maps, we observed good agreement between the cases and risk groups

(Fig 4). Majority of the cases fell in risk group 3 and 4. There was strong positive correlation

between the observed and predicted risk ranks, a correlation of 0.86 (P<0.01), 0.87 (P<0.01)

and 0.88 (P <0.01) in 2014, 2015 and 2016 respectively. In addition, the risk level

Mapping Dengue risk

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006587 June 18, 2018 5 / 12

https://doi.org/10.1371/journal.pntd.0006587


commensurate with case density. The predicted risk levels were in excellent agreement with

the case density, a weighted Kappa coefficient of 0.814 (P<0.01) in 2014, 0.839 (P<0.01) in

2015 and 0.821 (P<0.01) in 2016. This is further supported by the increasing trend of dengue

case count from risk group 1 to 4 (Table 2). Fig 5 shows the predicted percentile ranks and its

80% prediction interval. 82% and 83% of the observed percentile ranks fell within the 80% pre-

diction interval in 2014 and 2015 respectively. In 2016, 81% of the observed percentile ranks

Fig 2. Partial dependence plot of the risk factors showing how dengue burden varies with one variable when all other variables are held constant at their average

values.

https://doi.org/10.1371/journal.pntd.0006587.g002

Fig 3. Variable importance plot showing population density, dengue burden and breeding percentage having stronger predictive power than other variables.

https://doi.org/10.1371/journal.pntd.0006587.g003
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fell within the 80% prediction interval. Overall, cases in 2015 have slightly better agreement

with the risk map than in 2014 and 2016.

Evaluation of risk maps with 2014 to 2016 clusters data shows that the number of dengue

clusters in high risk areas was almost 8 times the low risk areas (Fig 6). Each year, close to 90%

of the dengue clusters were found in high risk areas, which represent 22% of Singapore land

area and 50% of residential areas. The odds of cluster forming in high risk areas was higher

than in low risk areas for all three years. The odds ratios were 11.1 (P <0.01), 14.6 (P<0.01)

and 12.1 (P <0.01) for 2014, 2015 and 2016 respectively. Clusters were further stratified by the

number of serotypes into single serotype and multiple serotypes clusters. High risk areas have

a larger proportion of multiple serotypes clusters than low risk areas, and interestingly, 3-sero-

types clusters were only present in high risk areas, especially in RG4 (Fig 6). Transmission

intensity, comprising of cluster’s growth rate, transmission duration and cluster size were sig-

nificantly different between single serotype and multiple serotypes clusters (P <0.01). Clusters

Fig 4. Risk grouping of a small area with 2016 dengue cases (black circles) overlaid. The risk groups are color-

coded, with RG 4 (highest risk) as red and RG 1 (lowest risk) in light yellow. The figure was created using R

software with base layer obtained from https://landsatlook.usgs.gov/.

https://doi.org/10.1371/journal.pntd.0006587.g004

Table 2. Summary statistics of dengue case count in grids for all risk groups in 2014–2016.

Year Risk Group Percentile Rank Count Min 1st Quartile Median Mean 3rd Quartile Max

2014 1 [0, 25) 79 0.0 2.0 4.0 8.5 9.0 157.0

2 [25, 50) 78 3.0 10.0 16.0 21.9 22.0 151.0

3 [50, 75) 79 13.0 27.5 43.0 59.8 63.0 512.0

4 [75, 100] 79 27.0 53.5 75.0 112.6 163.5 390.0

2015 1 [0, 25) 78 0.0 1.0 3.0 4.5 6.0 29.0

2 [25, 50) 79 2.0 9.0 14.0 16.0 19.0 83.0

3 [50, 75) 79 7.0 20.0 29.0 38.3 41.5 176.0

4 [75, 100] 79 23.0 38.5 56.0 64.3 78.5 304.0

2016 1 [0, 25) 79 2.0 6.0 12.0 16.9 22.0 67.0

2 [25, 50) 78 12.0 28.0 37.0 39.5 48.0 91.0

3 [50, 75) 79 26.0 51.0 60.0 61.7 73.0 92.0

4 [75, 100] 79 41.0 73.0 85.0 82.2 94.0 100.0

https://doi.org/10.1371/journal.pntd.0006587.t002
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with more serotypes present have a faster growth rate, longer transmission duration and larger

cluster size (Table 3). The same characteristics were seen when we grouped the clusters by

high and low risk areas. Though there were less clusters in low risk areas, the transmission

intensity of clusters in these low risk areas was of no significant difference (P>0.1) when com-

pared with those in high risk areas (Table 3).

Discussion

Dengue has been endemic in Singapore since its first reported outbreak in 1901 [26]. Though

the dengue temporal model is capable of predicting impending outbreaks, it does not indicate

where the outbreak will be [17]. As a result, source reduction inspections are conducted on a

frequency based on the risk level of the premises types (e.g. construction sites are of higher risk

than apartment homes). Spatial risk mapping of dengue transmission is therefore essential for

the prioritization and allocation of scarce resources especially manpower need to inspect

premises.

Dengue risk map has been developed in many countries as a surveillance tool to enhance

public health preparedness for dengue outbreak [27]. Statistical approaches such as logistic

Fig 5. The predicted percentile ranks and its 80% prediction interval for 2014 to 2016 (left to right). In each panel, the green circles indicate the

predicted percentile ranks that fall within the prediction intervals and the red circles indicate the predicted percentile ranks that fall outside the prediction

intervals.

https://doi.org/10.1371/journal.pntd.0006587.g005

Fig 6. Stratification of clusters (2014–2016) by risk groups and the number of serotypes present in cluster.

https://doi.org/10.1371/journal.pntd.0006587.g006
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regression models, generalized linear models and general additive models were most com-

monly used to compute risk level and create dengue risk map [28–32]. Although very good

predictive accuracy can be achieved from Random Forest, it has yet to be reported in the devel-

opment of dengue risk map [27]. In this paper, we demonstrated the use of Random Forest, an

ensemble learning method that has garnered much interest in the machine-learning commu-

nity, to develop a dengue risk map with high accuracy and robustness. Studies have shown that

Random Forest has excellent performance in classification tasks, and even outperforms its

counterparts such as discriminant analysis, neural networks and support vector machines

[33,34]. The methodology has several advantages over the traditional approaches, with the

utmost advantage being highly tolerant to interactions among the input covariates. Dengue

transmission is a multi-factorial stochastic process where often one risk factor is correlated

with other risk factors, making it difficult to quantify the effect of a particular risk factor as

well as to construct a risk map using classical modelling method such as regression.

The model ranked the overall risk of dengue transmission of different areas in a year and

mapped the ranks as color-coded risk groups. By comparing the risk groupings of the grids

over the years, NEA could identify recurring risk areas (i.e. grids that are persistently risk

group 4 over the years) that are of concerns, fluctuating risk areas (i.e. grids that have fluctuat-

ing risk grouping over the years) and even potential risk areas that were not seen in the previ-

ous years (i.e. grids whose risk group change from 1 to 4). Evaluation using latest dengue case

data showed the model had strong predictive capability. Strong positive correlation between

the observed and predicted risk ranks, and an almost perfect agreement between the predicted

risk levels and case density were observed. High risk areas are where clusters, in particular

multiple serotypes clusters are most likely to occur. However, surprisingly, despite the differ-

ence in risk levels, there was no difference in the transmission intensity of clusters in high and

low risk areas, and this may be attributed to the presence of small pockets of high Ae. aegypti
population within the low risk areas. For instance, construction sites along Flora Road and Bel-

gravia Drive had led to large dengue cluster of size 46 and 35 in traditionally low risk areas in

2014 and 2016 respectively. This, therefore, highlights the importance of ground inspections in

identifying high risk sites in low risk areas.

The dengue risk map complements the dengue temporal model in allowing the operation

department of NEA to prioritise vector control efforts. While the dengue temporal model pro-

vides the time component of when the next outbreak will be, it is thus now possible for NEA to

deploy limited resources ahead of time, targeting at the places with high risk of transmission.

Table 3. The median transmission duration, cluster size and growth rate of clusters with different number of serotypes present in Singapore (2014–2016), and sepa-

rated by lowa and highb risk areas.

No. of serotypes

in cluster

Median transmission duration

(days)

Median cluster size (no. of cases) Median growth rate (no. of new

cases per day)

No. of clusters

Combined� Low risk

areas

High risk

areas

Combined� Low risk

areas

High risk

areas

Combined� Low risk

areas

High risk

areas

Combined Low risk

areas

High risk

areas

1 13 13 13 4 4 4 0.28 0.28 0.28 1319 168 1129

2 21 18 21 7 7 7 0.35 0.34 0.35 328 32 291

3 53 n/a 93 25 n/a 70 0.52 n/a 0.68 31 0 30

4 n/a n/a n/a n/a n/a n/a n/a n/a n/a 0 0 0

a Low risk areas are RG 1 and RG 2 grids.
b High risk areas are RG 3 and RG 4 grids.

n/a, data not available

Kruskal-Wallis test (P <0.01 are highlighted by �)

https://doi.org/10.1371/journal.pntd.0006587.t003
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There are, however, some limitations to the use of Random Forest, the key on being the

model not amenable to interpretation. The Random Forest is an ensemble method―it con-

structs many “weak” models and then combines them to achieve a “strong” model. There is no

explicit formulae-form relationship between risk of dengue transmission and risk factors,

making it virtually impossible to decompose a particular prediction output into contribution

of risk factors. Understanding that the primary objective is to accurately stratify the risk of

dengue transmission liberated us from concerns over interpretability. Nevertheless, the Ran-

dom Forest model is able to offer some insights about dengue transmission by estimating

importance and partial effects of variable at a macro level.

The dengue risk map has become an integral part of Singapore’s dengue control program.

The dengue risk map would be generated at the start of each year, and NEA operations would

use the risk map as a guide to prioritize resource allocation for dengue control and plan the

preventive surveillance activities for the year. Dengue risk map has been used since 2015 by

the operational division of NEA to guide targeted preventive interventions. Future work will

include incorporating real time data to develop a spatio-temporal risk map.

Conclusions

This study demonstrates the potential of Random Forest and its strong predictive capability in

stratifying the spatial risk of dengue transmission in Singapore. Dengue risk map produced

using Random Forest has high accuracy, and is a good tool to guide vector control operations,

allowing targeted preventive measures before and in times of dengue outbreak. Valuable

resources can then be deployed in a strategic manner, mitigating the spread of dengue

transmission.
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