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Abstract

Objective—To examine longitudinal associations between structural magnetic resonance 

imaging (MRI) and cognition in a diverse sample.

Method—Older adults (n=444; MAge=74.5 ± 7.0) − 121 African Americans, 212 Whites, and 111 

Hispanics – underwent an average of 5.3 (SD=2.7) annual study visits, including brain MRI and 

cognitive assessment. Approximately half were cognitively normal at baseline (global Clinical 

Dementia Rating M=0.5, SD=1.2). Of the patients with dementia, most (79%) were diagnosed 

with Alzheimer’s disease (AD). MRI measures of gray matter volume (baseline and change), and 

hippocampal and white matter hyperintensity (WMH) volumes (baseline) were used to predict 

change in global cognitive functioning. Multilevel latent variable modeling was used to test the 

hypothesis that brain effects on cognitive change differed across ethnoracial groups.

Results—In a multivariable model, global gray matter change was the strongest predictor of 

cognitive decline in Whites and African Americans and specific temporal lobe change added 

incremental explanatory power in Whites. Baseline WMH volume was the strongest predictor of 

cognitive decline in Hispanics and made an incremental contribution in Whites.

Conclusions—We found ethnoracial group differences in associations of brain variables with 

cognitive decline. The unique patterns observed in Whites appeared to suggest a greater influence 

of AD in this group. In contrast, cognitive decline in African Americans and Hispanics was most 

uniquely attributable to global gray matter change and baseline WMH, respectively. Brain changes 

underlying cognitive decline in older adults are heterogeneous and depend on fixed and modifiable 

risk factors that differ based on ethnicity and race.
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Some of the most salient risk factors for dementia – including apolipoprotein (APOE) 

genotype, cerebrovascular disease, and diabetes mellitus – have been shown to differ across 

ethnic and racial groups. Although cognitive decline and, eventually, dementia result from 

progressive brain injury and dysfunction, different pathogenetic pathways are likely to have 

different brain manifestations and different cognitive outcomes that reflect the specific 

patterns of brain impairment. We have previously demonstrated an association between brain 

structure changes and cognitive functioning changes in a diverse sample of older adults 

without explicitly considering ethnoracial differences (Fletcher et al., 2017). The goal of the 

current study is to expand on our previous work by investigating whether and how the 

associations between brain variables and cognitive change differ across ethnoracial groups. 

We will focus on three of the largest ethnoracial groups in the United States: African 

Americans, Whites, and people of Hispanic, Latino, or other Spanish origin ethnicity 

(which, for simplicity, will be referred to as Hispanic in the current paper).

There is evidence for ethnoracial differences in the pathogenesis of dementia, which implies 

that cognitive impairment might have different brain substrates across groups (Zahodne et 

al., 2015). For example, Hispanic ethnicity has been associated with less frequent possession 

of at least one APOE ε4 allele (Haan et al., 2003; O’Bryant et al., 2013a, 2013b). Some have 

interpreted the existing evidence to suggest that dementia in Hispanics may be largely driven 

by metabolic dysfunction (e.g., diabetes) and depression (Johnson et al., 2015; Mayeda, 

Haan, Kanaya, Yaffe, & Neuhaus, 2013; O’Bryant et al., 2011, 2013a). For African 

Americans and Whites, the pathogenetic mechanisms of dementia may be less dependent on 

metabolic factors and more dependent on variables such as inflammation (Goldstein, Zhao, 

Steenland, & Levey, 2015; Jordanova, Stewart, Davies, Sherwood, & Prince, 2007; O’Bryant 

et al., 2010, 2014; Windham et al., 2014). In particular, dementia in African Americans may 

be strongly related to an increased prevalence of cardiovascular risk factors that can be 

mediated by inflammatory mechanisms (Froehlich, Bogardus, & Inouye, 2001; Howard, 

2013; Kurian & Cardarelli, 2007; Tang et al., 2001). In contrast, dementia in Whites may 

have a more pronounced genetic influence (Evans et al., 2003; Farrer et al., 1997).

Studies of ethnoracial differences in brain effects on cognition are limited and do not show 

consistent patterns of findings. In one cross-sectional study, for instance, hippocampal 

volumes and white matter hyperintensity (WMH) burden were found to be differentially 

associated with episodic memory test scores in White versus Hispanic individuals and 

language, processing speed, and executive functioning test scores in African American 

versus White individuals (Zahodne et al., 2015). In contrast, DeCarli et al., (2008) found that 

the relationship between hippocampal volumes and episodic memory ability did not differ 

across African Americans, Hispanics, and Whites. However, vascular risk factors were more 

pronounced in African Americans, and this group was more likely to have non-amnestic 

MCI (DeCarli et al., 2008). Similarly, Mungas, Reed, Farias, & DeCarli (2009) found 

stronger association between spatial difficulties and WMH in African Americans compared 

to Whites and Hispanics. These cross-sectional measures of cognitive function are broadly 

influenced by life history variables (e.g., education, early life experiences; Melrose et al., 

2015) that often differ by ethnoracial group and contribute to dementia risk independent of 

brain injury pathways (Diaz-Venegas, Downer, Langa, & Wong, 2016; Liu, Glymour, 

Zahodne, Weiss, & Manly, 2015; Melrose et al., 2015; Sisco et al., 2015; Zahodne, Stern, & 
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Manly, 2015). In many cases, such life history variables have stronger relations than brain 

variables on cross-sectional cognitive test scores (Mungas et al., 2009).

In contrast to the prominent influence of life history variables on cross-sectional cognitive 

test scores, there is evidence that longitudinal decline in cognitive functioning is a relatively 

specific marker for brain changes (Early et al., 2013; Fletcher et al., 2017; Mungas et al., 

2010). There have been very few studies to examine the co-occurrence of changes in brain 

structure and cognitive functioning, especially in diverse samples, and those have largely 

relied upon basic cognitive screening instruments such as the Mini-Mental State 

Examination (Morra et al., 2009). The limitations of basic screening measures highlight the 

need for a more comprehensive battery of cognitive tests that is free from cultural and 

linguistic biases, floor and ceiling effects, and which has been validated for tracking 

longitudinal changes in cognition. The present study used the Spanish and English 

Neuropsychological Assessment Scales (SENAS) to measure changes in cognitive 

functioning over time. The SENAS provides psychometrically matched measures of episodic 

memory, semantic memory, spatial skills, and executive functioning and has been optimized 

for measuring cognitive change in ethnoracially and linguistically diverse older adults 

(Crane et al., 2008; Mungas, Reed, Marshall, & González, 2000; Mungas, Reed, Crane, 

Haan, & González, 2004; Mungas, Reed, Haan, & González, 2005a; Mungas, Reed, 

Tomaszewski Farias, & DeCarli, 2005b; Mungas, Widaman, Reed, & Tomaszewski Farias, 

2011).

Cognitive decline is the hallmark of dementia, is a relatively specific marker for brain 

disease and degeneration, and appears to be minimally affected by confounding variables 

associated with ethnoracial differences in cross-sectional scores (Early et al., 2013; Mungas 

et al., 2009). To help disentangle pathological brain changes from premorbid differences in 

cognitive abilities, it is important to understand the longitudinal associations between brain 

structure and cognitive function in diverse older adults. Identification of ethnoracial group 

differences in brain-cognition associations can be valuable for appropriate interventions and 

for better understanding the variables that create risk and protective factors for the various 

pathogenetic mechanisms that can cause cognitive decline and dementia. By accounting for 

important background variables (e.g., age, education, APOE ε4 genotype), and relations of 

baseline brain integrity with cognitive change, we can explore the hypothesis that the 

associations between cognitive changes and brain changes differ by ethnoracial group.

Method

The methods described below are nearly identical to those reported in our companion paper 

(Fletcher et al., 2017) and are reprinted here for reference.

Participants

The University of California Davis (UCD) Aging Diversity Cohort provided the study 

sample. This is a longitudinal study of cognitive aging in an educationally, ethnically, and 

cognitively diverse cohort of older adults. This cohort approximates the diverse racial, 

ethnic, and socioeconomic composition of a six-county catchment area in the central 

Sacramento/San Joaquin valley and east San Francisco Bay area of Northern California, is 
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composed of Hispanics, African Americans, and non-Hispanic Whites, has wide variability 

in educational attainment, and spans a spectrum of cognitive function from normal to mildly 

impaired to demented. About two-thirds of this cohort were recruited through a community 

screening program that was designed to recruit community dwelling individuals without 

regard to their level of cognitive function, that is, to represent the range and distribution of 

cognitive function in the community. The other one-third were initially seen for clinical 

evaluation at a university memory/dementia clinic and referred for research. Cohort 

composition and recruitment methods are described in Hinton et al. (2010).

Participants were 444 persons who had received at least two cognitive evaluations and at 

least one MRI brain scan; 282 had two or more scans. There were 212 Whites, 111 

Hispanics, and 121 African Americans; 64 Hispanics were tested in Spanish and all others 

were tested in English. Approximately two-thirds of the Hispanic participants reported 

Mexican ancestry. The community screening program identified 302 individuals (97 Whites, 

98 Hispanics, 107 African Americans) while 142 (115 Whites, 13 Hispanics, 14 African 

Americans) were clinical referrals. Clinical diagnosis was made via consensus conference 

using standard diagnostic criteria (e.g., Albert, 2011; McKhann, 1984; McKhann, 2011; 

Winblad, 2004).

Participants were evaluated and followed within the research program of the UCD 

Alzheimer’s Disease Center (ADC). Enrollment began in 2001 and a rolling enrollment 

design was used to build the cohort with substantial enrollment continuing through 2010. All 

participants in this study had at least two evaluations but due to rolling enrollment there was 

variability in the number of evaluations completed by each participant. Inclusion criteria for 

the longitudinal cohort included age 60 or older at their first examination and ability to 

speak English or Spanish. Exclusion criteria included unstable major medical illness, major 

primary psychiatric disorder, and substance abuse or dependence in the last five years. 

Participants received clinical evaluations through the UCD ADC on a roughly annual basis 

that included diagnosis, based on standard diagnostic criteria, of normal cognition versus 

mild cognitive impairment (MCI) versus dementia as well as etiologic diagnosis. All 

participants signed informed consent, and all human subject involvement was overseen by 

institutional review boards at University of California at Davis, the Veterans Administration 

Northern California Health Care System, and San Joaquin General Hospital in Stockton, 

California.

Cognitive Assessment

The cognitive outcomes in this study were composite measures of episodic memory, 

semantic memory, executive function, and spatial ability derived from the SENAS. The 

SENAS has undergone extensive development as a battery of cognitive tests relevant to 

cognitive aging that allow for valid comparisons across race/ethnic groups (Mungas et al. 

2004; Mungas et al., 2005a; Mungas et al., 2000; Mungas et al., 2005b). The episodic 

memory composite score is derived from a multi-trial word-list-learning test (Mungas et al., 

2004). The semantic memory composite is derived from highly correlated verbal (object-

naming) and nonverbal (picture association) tasks. The executive function composite is 

constructed from component tasks of category fluency, phonemic (letter) fluency, and 
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working memory (digit-span backward, visual-span backward, list sorting). Spatial ability 

was measured using the SENAS Spatial Localization scale, which assess ability to perceive 

and reproduce two-dimensional spatial relationships that are increasingly complex. These 

measures were administered at all evaluations. Language of test administration was 

determined by an algorithm that combined information regarding each participant’s 

language preference in several specific contexts (e.g., conversing at home, listening to radio 

or television, conversing outside the home, preferred language for reading). Administration 

procedures, measure development, and psychometric characteristics of the SENAS battery 

are described in more detail elsewhere (Mungas et al., 2004).

MRI Measures

Cross-sectional baseline volumes—MRI baseline measurements were made as part of 

our in-house processing pipeline described previously (e.g. Fletcher, 2014; Lee et al., 2010). 

Briefly, structural MRI images were processed to remove the skull using an atlas-based 

method (Aljabar, Heckemann, Hammers, Hajnal, & Rueckert, 2009) followed by human 

quality control to provide generally minor cleanup if needed. Structural MRI brain images 

were then nonlinearly registered to a minimal deformation template (MDT) synthetic brain 

image (Kochunov et al., 2001) adapted for age range of 60 and above; the registration was 

performed by a cubic B-spline deformation (Rueckert, Aljabar, Heckemann, Hajnal, & 

Hammers, 2006). Gray, white, and CSF tissues segmentation was performed using automatic 

tissue class initialization followed by iterated alternating voxel class assignment and tissue 

class parameter estimation until convergence, in an algorithm designed to enhance accuracy 

at likely tissue boundaries (Fletcher, Singh, Harvey, Carmichael, & DeCarli, 2012). Finally, 

native lobar gray matter volumes were computed by reverse transforming MDT lobar 

regions of interest (ROIs) into native space using the B-spline registration parameters. Lobar 

ROIs included frontal, temporal, parietal and occipital lobes. The lobar ROIs used in our 

analyses were defined in MDT space by an experienced neurologist and have been used in a 

prior publication from our laboratory (Lee et al., 2010).

WMH quantification—White matter hyperintensities were quantified at baseline time 

scans using an automated segmentation algorithm using T1 and fluid-attenuated inversion 

recovery (FLAIR) images in a method of our laboratory described previously (DeCarli et al., 

2005). Briefly, the technique involves segmenting voxels of the FLAIR image with 

intensities exceeding 2.5 standard deviations above the FLAIR mean, after this image has 

been normalized so that the intensity mode is at a standard value. Refinements include 

mapping WMH probability priors from a pre-determined atlas onto native images in order to 

better account for likelihoods of WMH occurrences.

Longitudinal volume change—For participants having at least two longitudinal 

structural MRI scan acquisitions, we computed longitudinal structural change between the 

most widely separated time points. We used a tensor-based morphometry (TBM) method 

designed to enhance sensitivity and specificity for biological change by incorporating 

estimates of likely tissue boundaries (Fletcher, 2014; Fletcher et al., 2013). TBM generates 

deformation fields registering brain scans at differing time points and uses these to estimate 

local volume changes between the scans (Ashburner & Friston, 2000). This processing was 
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done via an in-house processing pipeline that has been previously described (Fletcher et al., 

2016). Briefly, we linearly aligned images at time 1 and time 2 to a “halfway space” to avoid 

interpolation biases when only one image is transformed. Each brain scan was then 

corrected for field inhomogeneities using an atlas-based technique and finally tissue-

segmented using an algorithm sensitive to edge presence. The log-transformed determinant 

of the 3×3 Jacobian matrix of the TBM deformation at each voxel (i.e. log-Jacobian) 

quantifies local brain change.

To perform voxel-wise longitudinal change analysis across subjects in a common space, we 

transformed subject native-space log-Jacobian images onto MDT template space as 

described above for baseline volumes. Statistical analysis of longitudinal change in native 

space was performed using ROIs transformed to native space also as described above, then 

calculating the mean log-Jacobian for each subject in segmented GM on each native ROI.

APOE Genotyping

Apolipoprotein E (APOE) genotyping was carried out using the LightCycler ApoE mutation 

detection kit (Roche Diagnostics, Indianapolis, IN).

Data Analysis

Measures and data processing—SENAS measures of Episodic Memory, Semantic 

Memory, Executive Function, and Spatial Ability were the primary dependent variables. 

Baseline lobar MRI volumes and change in these volumes were the primary independent 

variables (prefrontal, temporal, parietal minus post-central gyrus, occipital). Cognitive and 

baseline MRI variables were reasonably normally distributed. MRI change variable were 

symmetrical but had high kurtosis. The Blom inverse normal rank order transformation was 

applied to all cognitive and MRI variables to establish a common scale (M = 0, SD = 1) and 

normalize the variables. Age (centered at 70) and education (centered at 12) were continuous 

covariates. Gender, ethnoracial group, language of test administration, and APOE ε4 status 

were categorical covariates with female, White, English test administration, and APOE ε4 

negative serving as reference categories.

Analysis of variance and the χ2 test were used to compare baseline characteristics of study 

participants across ethnoracial groups. Mixed effects regression analyses were used to 

estimate parallel process growth models to characterize cognitive trajectories and to assess 

the impact of covariates and MRI variables on baseline cognitive scores and rate of change.

MRI modeling—MRI measures tend to be highly correlated and cross-sectional MRI 

volumes are strongly related to size of the intracranial vault independent of brain atrophy. 

We used latent variable methods to adjust baseline volumes for intracranial volume (ICV) 

and to decompose correlated groups of MRI measures into global components and lobe-

specific deviations from the global averages. Figure 1 shows a schematic model of this 

approach. For baseline, MRI volumes were regressed on ICV and a global factor (brain bl) 

was fitted using the four regional ROIs as indicators. The ROI-specific residuals were 

captured as latent variables. ICV and the global volume factor were constrained to be 

uncorrelated to identify the model and residuals were uncorrelated with ICV and brain bl. 
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This process yielded 6 variables for subsequent analyses: ICV, brain bl, and four specific 

lobar volumes not fully explained by ICV or brain bl. For change, the four ROI change 

measures were indicators for a global change factor (brain ch) and latent variables were used 

to capture ROI specific change not fully explained by the brain ch. This yielded five latent 

variables that were used as independent variables in subsequent models: brain ch and the 

four lobe-specific change variables.

Longitudinal modeling of cognitive trajectories—Mixed effects, parallel process 

longitudinal analyses were performed using Mplus version 7.3 multilevel modeling (Muthén 

& Muthén, 1998–2015). This modeling platform simultaneously estimates “within” and 

“between” level parameters. Figure 2 shows a schematic of the basic modeling approach. In 

the “within” part of the model, each of the four cognitive outcomes was regressed on time in 

study. This generated person-specific intercept and linear slope random effects for each 

outcome. These random effects were dependent variables in the “between” part of the 

model. Mixed effects models estimate the baseline value and rate of change of outcomes of 

interest (Within model), and also estimate how differences in these components relate to 

variables of interest (fixed effects) that differ between subjects (e.g., covariates, MRI 

variables; Between model). The inclusion of random effects accounts for individual variation 

not measured by the variables included in the model. Mixed effects models allow for 

heterogeneity in the number of assessment time points and in the lags between assessments 

across persons. This approach replicates that reported in a previous paper.

We utilized multiple group models to evaluate ethnoracial group similarities and differences 

in effects of brain variables and covariates on cognitive baseline and change components. In 

effect, the model depicted in Figure 2 is estimated for each group. Multiple group analysis 

allow parameters to be estimated independently in different groups. Alternatively, specific 

model parameters can be constrained to be the same across groups. Less constrained models 

can be compared to nested, more constrained models to determine if the fit is significantly 

better when the parameters of interest are allowed to differ across groups. Ethnoracial group 

(African American, White, Hispanic) was the grouping variable for these analyses. The 

likelihood ratio test for nested models (Satorra & Bentler, 2001) was used to determine if 

freely estimating specific parameters across groups resulted in significantly better model fit 

to the data.

Model building proceeded in steps. Step 1 developed a base model to estimate intercept and 

slope random effects for all four outcomes, and included a within-subjects term to account 

for practice effects. For each of the four cognitive outcome measures, a variable coding for 

previous exposure vs. no exposure was created and included as a time-varying fixed effect. 

The initial model allowed the eight random effects latent variables (intercept and slope 

random effects for each of the four outcomes) to freely correlate, but we then estimated 

second order latent variables (one with intercepts as indicators, one with slopes) that 

explained the correlations among the random effects. This step was taken to determine 

whether baseline cognition and cognitive change in our sample was best characterized by the 

four SENAS composite measures of Episodic Memory, Semantic Memory, Executive 

Function, and Spatial separately, or by second-order latent variables that estimate “global 

cognition” reflected in covariance among the four SENAS measures. We compared fit of 
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models with 0, 1, and 2 second order factors using comparative fit indices including the 

Akaike Information Criterion (AIC; Akaike, 1987), the Bayesian Information Criterion 

(BIC; Schwarz, 1978), and the sample size-adjusted Bayesian Information Criterion (aBIC; 

Sclove, 1987). These indices differ in the relative weighting of model fit and model 

parsimony, with AIC valuing parsimony the least and BIC the most. Lower values on all 

indices indicate better model fit.

In Step 2, we added APOE genotype and age, gender, education, and ethnoracial group as 

fixed effect covariates to explain cognition baseline and change. We examined interaction 

effects involving ethnoracial group and other covariates in preliminary analyses and retained 

any significant interactions in subsequent analyses.

In Step 3 we examined univariable effects of baseline MRI volumes and MRI volume 

change on cognition. First, we added specific MRI baseline volumes one at a time to the best 

model from Step 2 to examine simple associations of baseline MRI variables with cognitive 

intercepts and slopes adjusted for covariates. These volumes included ICV, hippocampus 

(adjusted for ICV), total WMH, brain bl (the global baseline volume factor), and each lobar 

ROI adjusted for ICV - but not for brain bl. We then fit four separate models that jointly 

included brain bl and ICV as well as each individual, specific lobar measurement as 

presented in Figure 1. Finally, we generated a multivariate model that jointly included 

significant MRI variables from previous steps. We then followed a similar process for MRI 

change variables. We first examined simple associations with cognition, adjusted for 

covariates, then examined each lobe specific residual entered jointly with brain ch, and 

finally, fit a multivariate model incorporating significant effects from previous analyses in 

this step. In Step 4 we generated a final multivariable model that jointly included significant 

effects from previous steps.

All parameters were simultaneously estimated within each model. Latent variables for MRI 

variables, latent random effects for cognitive variables, and regressions of cognitive random 

effects on MRI variables and covariates were simultaneously estimated. While we estimated 

intercept random effects and evaluated the effects of MRI variables on intercepts, the focus 

of this report is on cognitive change so intercept results are not reported. Complete data was 

not available on all variables, and the missing data analysis option of Mplus was used. 

Mplus uses full information maximum likelihood estimation, which provides unbiased 

parameter estimates in the context of missing at random (Newman, 2003). Missing data was 

primarily missing by design, which meets requirements for missing at random (Bollen & 

Curran, 2006). All individuals with longitudinal cognitive assessments were used to estimate 

baseline and change random effects for the four cognitive outcomes and how demographic 

covariates and APOE ε4 influenced cognitive baseline and change. MRI change data was 

not available for the full sample but was missing by design. Statistical power for MRI effects 

is reduced by missing data, but parameter estimates should be unbiased.

Mixed model regression analyses are sensitive to assumptions of linearity, normality, and 

constant variance. These assumptions were examined using graphical and statistical 

diagnostics. Residuals and random effects were examined to assure that they were normally 

distributed, and plots of residuals against predicted values and effects were examined to 
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verify that non-linear trends in the data or non-constant variances were not present. 

Additional diagnostics included evaluation of variance components related to random effects 

and within subject error variance to address adequacy of statistical estimation procedures 

associated with the random effects modeling.

Voxelwise analysis of longitudinal change—We performed voxel based analyses to 

characterize the associations of brain regions with cognitive change. Voxelwise log-Jacobian 

images in template space enable cross-sectional averaging and regression analysis of 

longitudinal change, to identify patterns of atrophy and associations with cognition 

independent of prior hypotheses about locations where these might occur. In voxel-based 

regressions, the log-Jacobian change value at a voxel was an independent variable with 

covariates of age, gender, education and interscan interval between baseline and follow-up 

scans. Outcomes or dependent variables were cognitive baseline (intercept) and change 

(slope) measurements estimated as described above from the Step 1 unconditional model 

that included a global slope. We focused on global cognitive slope as the outcome of 

interest. Significance testing for regression coefficients of log-Jacobians predicting cognitive 

outcomes was performed by non-parametric super-threshold cluster testing (Nichols & 

Holmes, 2002) with 1000 iterations of random permutations. Clusters of a determined 

threshold with size in the top 5% of the distribution generated by these iterations were 

deemed significant. We selected a range of thresholds for the coefficient t-values, generating 

significant contiguous clusters for each threshold. To generate images of average estimated 

change over equivalent intervals, we further scaled each subject log-jacobian image in MDT 

space by 2 /Δ where Δ is the interscan interval. These normalized log-Jacobians represented 

change of each subject over two years.

Results

Sample Characteristics

Sample characteristics are presented in Table 1. Participants completed an average of 5.3 

annual study visits, and this did not differ by group (F [2,441] = 2.196, p = .112). About 

59% were females. Gender differed across ethnoracial groups (χ2 [2] = 19.74, p = .001); 

African Americans and Hispanics were more likely to be female but White cases were 

evenly divided among males and females. About 51% were Normal, 36% had a diagnosis of 

MCI, and 13% were Demented. Diagnosis differed by group (χ2 [4] = 38.77, p = .001) with 

Whites more likely to have a diagnosis of MCI and Hispanics more likely to be Normal. 

There was no significant difference in suspected dementia etiology across ethnoracial groups 

(χ2 [12] = 10.89, p = .538). Approximately two thirds of the sample was recruited from the 

community (68%). Recruitment source differed by group (χ2 [2] = 92.45, p = .001), with 

clinic referrals more likely to be Whites. Average age was about 75 years and this differed 

across groups (F [2, 441] = 6.63, p = .001) with Hispanics younger on average than African 

Americans and Whites. Average education was 12.8 and differed across groups (F [2, 441] = 

95.59, p = .001), with highest education in Whites, slightly lower average education in 

African Americans, and much lower levels in Hispanics. APOE ε4 differed across groups 

(χ2 [2] = 18.72, p = .001) with approximately 50% lower prevalence of ε4 positivity in 

Hispanics compared to the other two groups. Groups did not differ in terms of the frequency 
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of baseline MRI availability (χ2 [2] = 1.22, p = .545), but did differ in terms of the 

frequency of follow-up MRI availability (χ2 [2] = 8.67, p = .013), with the least data 

available for African Americans and the most available for Hispanics.

Model for Cognitive Intercepts and Slopes

Table 2 shows fit indices for different models for explaining covariance of cognitive 

intercepts and slopes. The best fitting model by all three criteria had separate intercepts for 

the four cognitive outcomes, but a global slope factor that accounted for covariance among 

the four slope random effects. Separate analyses within ethnoracial groups confirmed that 

the model with a global slope and individual intercepts provided optimal fit in all three 

groups.

Covariate Effects

We next tested for differences in covariate effects on cognitive trajectory components, 

separately evaluating each covariate and its effect on intercepts and global slope. A model in 

which all covariate effects on all intercepts and global slope were freely estimated served as 

a common basis for comparison. Group differences in individual covariate effects on 

intercepts were evaluated by comparing the base freely estimated model with a model in 

which the effects of the covariate on all four intercepts were constrained to be equal across 

groups. None of these groupwise tests were significant for any of the covariates, so tests of 

differences for intercepts of individual cognitive variables were not performed. Group 

differences in the effect of each covariate on global slope were evaluated by comparing the 

freely estimated model with a model in which the covariate effect on the global slope was 

constrained to equality across groups. Again, significant differences were not observed in 

covariate effects. Subsequent models constrained covariate effects to be the same across 

ethnoracial groups. Results of tests for differential covariate effects are presented in Table 3.

Two of the five covariates in the model exerted a significant influence on global cognitive 

decline. Clinic recruitment source was associated with faster cognitive decline (b = − 0.06, 

SE = 0.01) as was APOE ε4 genotype (b = −0.03, SE = 0.01). To ensure the robustness of 

the across-group equality constraints on covariate effects, we also ran the models with these 

parameters freely estimated and found no meaningful differences in the results (data not 

shown).

Brain Volume Effects on Global Cognitive Change - Single Variable Models

Table 4 shows the effects of brain baseline and change variables on global cognitive slope. 

These models included one brain variable at a time and covariates. Global gray baseline and 

temporal lobe gray baseline were associated with global cognitive slope in all three groups, 

as were all gray matter change variables, except occipital gray change, which was related 

only in Whites. Prefrontal gray baseline was related to cognitive change in African 

Americans and Whites, parietal gray baseline in African Americans and Hispanics, and 

hippocampus baseline in Hispanics and Whites.
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Specific Brain Volume Effects on Global Cognitive Change

The next step of analysis examined specific effects of lobar gray matter ROIs not explained 

by global gray matter. The primary independent variables in these analyses were the global 

gray matter volumes (baseline and change) and lobar ROIs residualized for the 

corresponding gray matter volume, and for ICV for baseline volumes. Separate models were 

fitted for each baseline gray matter ROI and each gray matter change ROI. Multiple group 

models freely estimated effects of these variables on Global Cognitive Slope and intercepts 

in the three ethnoracial groups. Baseline lobar specific gray matter volumes – that is, 

volumes residualized for global volume – were not related to cognitive change in any group. 

Specific temporal gray change was incrementally related to cognitive change beyond global 

gray change in Whites (estimate [SE] = 0.042 [0.010], p = .001); in Hispanics, this effect 

was of similar magnitude, but was estimated with less precision (estimate [SE] = 0.036 

[0.020], p = .062).

Multivariable Model Including Baseline Brain Volumes and Brain Volume Change

The final analytic model included brain baseline and change variables that were significantly 

associated with global cognitive change in the previous steps, along with covariates. Brain 

volumes included as independent variables in the analysis were: baseline global gray matter, 

hippocampus, and WMH; and change in global gray matter and specific temporal lobe gray 

matter. These effects were freely estimated in the three groups in a multiple group model. 

Group differences in the effects of these variables were evaluated by estimating models in 

which specific effects were constrained to equality and comparing fit with the freely 

estimated base model using the modified likelihood ratio test.

Table 5 presents the results from the freely estimated multivariable model. Global gray 

change was significantly related to global cognitive slope in Whites and African Americans, 

but not Hispanics, after accounting for all other variables in the model. Specific temporal 

gray change made an incremental contribution in Whites. WMH was related to cognitive 

change in Hispanics and Whites. Summarized by ethnoracial group, global gray change, 

specific temporal change, and WMH were incrementally associated with cognitive change in 

Whites. Global gray change was the only variable that was related to cognitive change in 

African Americans, controlling for all other variables in the model, and WMH was the only 

significant incremental association in Hispanics.

Table 6 shows the results of tests for group differences in specific effects in the multivariable 

model. Global gray change and WMH effects significantly differed across groups. None of 

the other variables had differential effects across group, but these variables were not 

independently associated with cognitive change in any group.

Discussion

A companion study based on this diverse sample but not stratified by ethnoracial group 

showed that cognitive decline was best explained by global gray matter atrophy and, 

incrementally, by specific temporal gray matter atrophy (Fletcher et al., 2017). Baseline 

WMH and hippocampal volume also made incremental contributions to cognitive decline. 
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The current study examined MRI-based brain measures as predictors of cognitive decline 

within specific ethnoracial groups and compared results across groups. When MRI variables 

were entered individually as predictors of cognitive decline, baseline global gray matter and 

temporal lobe gray matter volume – along with volume changes in global gray matter and 

frontal, temporal, and parietal gray matter – were associated with cognitive decline in all 

three groups (Table 4). The effect sizes of gray matter change on cognitive change tended to 

be largest in Whites, smallest in Hispanics, and intermediate in African Americans. When 

significant simple effects were combined in a multivariable model, different patterns of 

results emerged as salient for the different ethnoracial groups (Table 5). Global gray matter 

change was the strongest predictor of cognitive decline in Whites and African Americans. Its 

effect significantly differed across groups (Table 6), and this variable was not incrementally 

associated with cognitive decline in Hispanics. Specific temporal lobe change effects did not 

significantly differ across groups, but this effect had a significant effect on cognitive decline 

only in Whites. Baseline WMH volume was the strongest predictor of cognitive decline in 

Hispanics and also made an incremental contribution in Whites, but not African Americans.

These results show unique brain-behavior associations that differ based on ethnoracial 

group. Gray matter atrophy and, specifically, temporal lobe atrophy are commonly 

associated with AD pathology, whereas WMH is regarded as a marker of microvascular 

disease associated with non-AD processes like type 2 diabetes and cerebrovascular disease. 

These associations of brain changes with diseases are not entirely specific, however. Brain 

atrophy can also be associated with cerebrovascular disease (Schuff et al., 2009) and WMH 

can be a manifestation of AD brain injury (Brickman, 2013). But the overall pattern of 

results in the current study suggests that, despite the fact that mixed AD and WMH 

pathology is common (Chui & Ramirez-Gomez, 2015), different groups may be affected by 

a differential mix of these pathologies. Specifically, our results suggest that AD is a more 

important contributor to cognitive decline in Whites than in Hispanics, and this conclusion 

appears to be supported by the nearly twofold difference in APOE ε4 prevalence across 

these two groups (Table 1).

Although global WMH significantly contributed to cognitive decline in both Whites and 

Hispanics (Table 5), it is possible that the mechanisms of WMH contribution to cognitive 

decline differ between the groups, with WMH in Whites being more strongly related to AD 

pathology and in Hispanics being more strongly related to metabolic or cerebrovascular 

causes. Such an outcome would be consistent with evidence suggesting that rates of diabetes 

tend to be higher in Hispanic populations (Schneiderman et al., 2014), and that disrupted 

glucose metabolism is a prominent contributor to dementia in this population (Mayeda et al., 

2013). Previous work from our group has shown differential regional distributions of WMH 

in AD and cerebrovascular disease (Yoshita et al., 2006; but also see Holland et al., 2008 and 

Gootjes et al., 2004), so it would also be relevant to examine whether regional WMH 

differentially predicts cognitive decline in Whites and Hispanics.

Global gray matter volume atrophy was the strongest contributor to cognitive decline in 

African Americans. One possible explanation for this finding is that it may reflect the effects 

of AD in this sample, since African Americans also had relatively high APOE ε4 

prevalence. However, given the higher rate of cerebrovascular disease often reported in 
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African Americans (Howard, 2013), it is somewhat surprising that WMH was not an 

independent predictor of cognitive decline in the current cohort.

In contrast to the significant effects described above, there were many ways in which the 

three groups did not differ. For example, in univariable analyses, atrophy in most areas of 

cortical gray matter was an important predictor of cognitive decline (Table 4). Similarly, the 

demographic (age, education, and gender), clinical (recruitment source) and genetic (APOE 

genotype) covariates did not exert differential effects on cognitive intercepts or slopes across 

the three ethnoracial groups (Table 3).

Two variables were found to exert a differential influence on cognitive change across groups 

using univariable analyses, but not using multivariable analyses: baseline global gray matter 

volume and hippocampal volume. In the univariable analyses (Table 4), baseline global gray 

matter volume was a significant predictor of cognitive decline in each group, with the largest 

effect observed in the White group and the smallest effect in the African American group. 

For baseline hippocampal volumes, the effect on cognitive decline was largest in the White 

group and smallest in the Hispanic group. Although this effect was numerically larger in the 

African American group compared to the Hispanic group, it was significant in the Hispanic 

group but not the African American group.

Only one baseline measure, WMH, was found to differentially affect subsequent cognitive 

decline when multivariable results were considered; this variable influenced Hispanics and 

Whites to a much greater degree than African Americans. None of the baseline regional 

cortical volume measurements were found in multivariable analyses to differentially affect 

rate of change in cognitive functioning over time, despite the fact that a few of these 

variables were differentially associated with change in univariable analyses. This pattern of 

results suggests that although baseline regional cortical gray matter effects are observable in 

univariable models, these effects on cognitive decline are largely consistent across 

ethnoracial group. This suggests that any differences that may exist between African 

Americans, Hispanics, and Whites in terms of the pathogenesis of anterograde cognitive 

decline are related to subsequent cortical volume changes and not gray matter integrity at a 

static baseline.

Although the current results are useful for determining similarities and differences in the 

brain-behavior relationships underlying cognitive decline in diverse populations, conclusions 

about underlying pathophysiological mechanisms for brain changes must be considered 

tentative. Ethnoracial groups can differ in many ways – such as genetics (e.g., APOE ε4 

allele frequency), quality of education, early life experiences, occupational history, diet and 

nutritional status, medical risk factors, access to health care, socioeconomic status, smoking, 

and leisure activities. We did not directly measure the presence of neurodegenerative disease 

processes such as CSF AD biomarkers or PET imaging of brain amyloid. Consequently, the 

current data are limited with respect to identifying the exact reasons for the observed 

ethnoracial differences in how brain structure changes affect cognitive decline.

Another limitation of this study is that the sample size limits statistical power for detecting 

ethnoracial group differences in brain-cognition effects. This, for example, might account 
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for the seeming contradiction that specific temporal lobe change did not differ across groups, 

but was significantly different from zero only in Whites. Another complication in the results 

is that variables that were significant predictors of cognitive change when entered separately 

were not independently related when entered in a multivariable model. However, while the 

variables that did emerge as significant incremental predictors in the final multivariable 

model may not be the only predictors of cognitive decline, they are likely the most salient 

variables. These results should also be interpreted with the understanding that availability of 

follow-up MRI scans differed across the three ethnoracial groups. MRI measures of brain 

change were available for 53% of African Americans, 66% of Whites, and 70% of 

Hispanics, which may introduce some bias into the longitudinal brain measurement data. 

Specifically, statistical power would likely be less for detecting effects in the African 

American group. Finally, the results presented in Table 2 show that a global slope provided a 

better fit for the data than separate slopes. This approach did not allow us to examine 

associations between brain changes and differential patterns of cognitive decline across the 

four cognitive domains measured by the SENAS.

The above caveats notwithstanding, the current results do help to shed light on important 

ethnoracial differences that can serve as catalysts for future research. For instance, the 

effects of WMH on cognitive decline may represent a modifiable risk factor that could be 

targeted through interventions aimed at reducing rates of type 2 diabetes and cerebrovascular 

disease. This would be especially important if future research is able to clarify group-

specific differences in the pathogenetic mechanisms for WMH, such as blood glucose 

dysregulation, hypertension, inflammation, or AD pathology. These results also suggest that 

clinical trials of AD pharmacotherapies should be especially mindful of diversity when 

enrolling participants and monitoring outcomes. When enrolling individuals of Hispanic 

ethnicity into clinical trials targeting AD pathologies, there may be an increased likelihood 

of including participants whose cognitive decline is mediated by non-AD pathologies that 

cause WMH. Finally, these results also highlight the need for future research to investigate 

the upstream mechanisms responsible for the group differences reported here.

These results support previous research that dissociates the effects of brain-based and non-

brain-based variables on baseline cognitive status and rate of cognitive decline (Early et al., 

2013; Fletcher et al., 2017; Gross et al., 2015; Mungas et al., 2009). At baseline, brain 

disease accounts for a smaller percentage of the variation in cognitive status than non-brain 

disease factors, such as education, early life experiences, and socioeconomic status. In 

contrast, cognitive decline is less influenced by non-brain factors and more influenced by 

progressive brain changes. Our findings also provide evidence that ethnoracial group 

differences exist in the relationships between MRI-based baseline and longitudinal 

indicators of brain health and changes in cognitive functioning. These differences suggest 

that the pathogenesis of cognitive decline may vary by race and ethnicity. This implies that 

race and ethnicity may serve as proxies for fixed (e.g., APOE genotype) and modifiable 

(e.g., cardiovascular disease risk and metabolic) factors affecting cognitive decline and 

dementia.
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Public Significance Statement

Dementia in older adults is driven by systematic brain changes. However, the associations 

between changes in brain structure and cognitive decline are not uniform across ethnic 

and racial groups. Uniquely salient associations between brain structure and cognitive 

decline were found for global gray matter volume changes in African Americans, 

baseline white matter hyperintensities for Hispanics, and baseline white matter 

hyperintensities, global gray matter volume changes, and regional temporal lobe volume 

changes in Whites.
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Figure 1. 
Analytic model for decomposing MRI baseline and change. ICV = intracranial volume; bl = 

baseline; fr = prefrontal lobe gray matter; res – residual; tem = temporal lobe gray matter; 

par = parietal lobe gray matter; occ = occipital lobe gray matter; frch = prefrontal lobe gray 

matter change; temch = temporal lobe gray matter change; parch = parietal lobe gray matter 

change; occch = occipital lobe gray matter change; ch = change.
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Figure 2. 
Analytic model for cognitive trajectory components, MRI variables, and covariates. Mem = 

Spanish and English Neuropsychological Assessment System (SENAS) Episodic Memory 

Index; Sem = SENAS Semantic Memory Index; Exec = SENAS Executive Functioning 

Index; Spat = SENAS Spatial Index; memsl = slope of change in SENAS Episodic Memory 

Index over time; memint = intercept (baseline) of SENAS Episodic Memory Index; semsl = 

slope of change in SENAS Semantic Memory Index over time; semint = intercept (baseline) 

of SENAS Semantic Memory Index; execsl = slope of change in SENAS Executive 

Functioning Index over time; execint = intercept (baseline) of SENAS Executive 

Functioning Index; spatsl = slope of change in SENAS Spatial Index over time; spatint = 

intercept (baseline) of SENAS Spatial Index; MRI = magnetic resonance imaging; global = 

slope of change in global cognition.
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Table 1

Sample characteristics.

African American Hispanic White Total

n 121 111 212 444

Number of Visits – M (SD) 5.1 (2.4) 5.8 (2.8) 5.1 (2.7) 5.3 (2.7)

Baseline MRI Available; n (%) 110 (90.9%) 96 (86.5%) 186 (87.7%) 392 (88.3%)

Change MRI Available; n (%) 64 (52.9%) 78 (70.3%) 140 (66.0%) 282 (63.5%)

Gender - Female; n (%) 87 (71.9%) 71 (64.0%) 102 (48.1%) 260 (58.6%)

Age - M (SD) 75.2 (6.9) 72.5 (6.6) 75.2 (7.1) 74.5 (7.0)

Education - M (SD) 13.3 (3.3) 8.6 (5.3) 14.8 (3.3) 12.8 (4.6)

Recruitment Source – Clinic; n (%) 14 (11.6%) 13 (11.7%) 115 (54.2%) 142 (32.0%)

Global CDR – M (SD) 0.5 (1.3) 0.4 (1.1) 0.5 (1.2) 0.5 (1.2)

Diagnosis - Normal; n (%) 68 (56.7%) 72 (66.7%) 82 (39.0%) 222 (50.7%)

Diagnosis - MCI; n (%) 37 (30.8%) 17 (15.7%) 105 (50.0%) 159 (36.3%)

Diagnosis - Demented; n (%) 15 (12.5%) 19 (17.6%) 23 (11.0%) 57 (13.0%)

 Possible AD; n (%) 1 (6.7%) 2 (10.5%) 3 (20.0%) 6 (10.5%)

 Probable AD; n (%) 10 (66.7%) 13 (68.4%) 16 (69.6%) 39 (68.4%)

 Probable VaD; n (%) 1 (6.7%) 1 (5.3%) 0 (0.0%) 2 (3.5%)

 Possible DLB; n (%) 0 (0.0%) 2 (10.5%) 1 (4.3%) 3 (5.3%)

 FTD; n (%) 0 (0.0%) 0 (0.0%) 1 (4.3%) 1 (1.8%)

 Mixed; n (%) 3 (20.0%) 0 (0.0%) 2 (8.7%) 5 (8.8%)

 Missing; n (%) 0 (0.0%) 1 (5.3%) 0 (0.0%) 1 (1.8%)

APOE ε4 Positive; n (%) 54 (44.6%) 26 (23.4%) 101 (47.6%) 181 (40.8%)

Note. CDR = Clinical Dementia Rating (baseline score); MCI = mild cognitive impairment; AD = Alzheimer’s disease; VaD = vascular dementia; 
DLB = dementia with Lewy bodies; FTD = frontotemporal dementia; APOE = apolipoprotein E.
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Table 2

Fit indices of alternate models to characterized covariance among cognitive intercepts and slopes.

Model AIC BIC aBIC

Separate Intercepts - Separate Slopes 16890 17254 17057

Global Intercept - Separate Slopes 17024 17305 17153

Separate Intercepts - Global Slope 16888 17170 17017

Global Intercept - Global Slope 17026 17261 17134

Note. AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion; aBIC = Sample size adjusted Bayesian Information Criterion. 
The bolded row indicates the model with the best relative fit indices.
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Table 3

Likelihood Ratio Tests for Significance of Ethnoracial Group Differences in Covariate Effects on Cognitive 

Intercepts and Global Cognitive Slope.

Covariate Component χ2 difference df p

Gender Intercepts 5.83 8 .666

Education Intercepts 12.79 8 .119

Age (Baseline) Intercepts 5.59 8 .693

Recruitment Source Intercepts 11.62 8 .169

APOE ε4 Intercepts 9.31 8 .317

Gender Global Slope 1.02 2 .601

Education Global Slope 1.04 2 .594

Age (Baseline) Global Slope 3.18 2 .204

Recruitment Source Global Slope 1.62 2 .444

APOE ε4 Global Slope 3.82 2 .148

Note. APOE = apolipoprotein E.
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Table 4

Brain Effects (SE) on Global Cognitive Change by Ethnoracial Group (univariable).

Variable African American Hispanic White

Global Gray BL 0.034 (0.016)* 0.041 (0.019)* 0.057 (0.028)*

Prefrontal Gray BL 0.020 (0.008)* 0.008 (0.006) 0.025 (0.011)*

Temporal Gray BL 0.024 (0.011)* 0.020 (0.006)* 0.038 (0.011)*

Parietal Gray BL 0.017 (0.007)* 0.015 (0.007)* 0.017 (0.010)

Occipital Gray BL 0.005 (0.008) 0.011 (0.006) 0.000 (0.011)

Hippocampus BL 0.023 (0.012) 0.016 (0.007)* 0.042 (0.009)*

WM Hyperintensity BL −0.002 (0.006) −0.022 (0.007)* −0.024 (0.009)*

Intracranial Volume BL −0.004 (0.008) −0.002 (0.007) −0.014 (0.013)

Global CH 0.067 (0.017)* 0.030 (0.011)* 0.096 (0.016)*

Prefrontal CH 0.035 (0.010)* 0.021 (0.009)* 0.067 (0.014)*

Temporal CH 0.046 (0.011)* 0.034 (0.011)* 0.093 (0.013)*

Parietal CH 0.045 (0.011)* 0.019 (0.009)* 0.087 (0.014)*

Occipital CH 0.020 (0.012) 0.001 (0.008) 0.053 (0.014)*

Note. BL = baseline, WM = white matter; CH = change.

*
p < 0.05
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Table 5

Brain Effects (SE) on Global Cognitive Change by Ethnoracial Group (multivariable).

Variable African American Hispanic White

Global Gray Change 0.063 (0.018)* 0.017 (0.012) 0.079 (0.013)*

Temporal Gray Change Residual 0.008 (0.011) 0.034 (0.023) 0.039 (0.011)*

Global Gray Baseline −0.003 (0.010) 0.007 (0.010) 0.007 (0.013)

Hippocampus Baseline 0.006 (0.010) 0.002 (0.010) 0.011 (0.010)

WMH Baseline −0.004 (0.005) −0.022 (0.007)* −0.022 (0.009)*

Intracranial Volume −0.002 (0.007) 0.005 (0.006) −0.009 (0.011)

Note. WMH = white matter hyperintensity.

*
p < .05
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Table 6

Likelihood Ratio Tests for Significance of Ethnoracial Group Differences in Brain Variable Effects on Global 

Cognitive Slope.

Variable χ2 difference df p

Global Gray Change 36.85* 2 .001

Temporal Gray Change 4.89 2 .087

Global Gray Baseline 0.67 2 .715

Hippocampus Baseline 0.36 2 .835

WMH Baseline 8.63* 2 .013

Intracranial Volume 1.45 2 .484

Note. WMH = white matter hyperintensity.

*
p < .05
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