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Summary

Protein/RNA clusters arise frequently in spatially-regulated biological processes, from the 

asymmetric distribution of P granules and PAR proteins in developing embryos to localized 

receptor oligomers in migratory cells. This co-occurrence suggests that protein clusters might 

possess intrinsic properties that make them a useful substrate for spatial regulation. Here, we 

demonstrate that protein droplets show a robust form of spatial memory, maintaining the spatial 

pattern of an inhibitor of droplet formation long after it has been removed. Despite this 

persistence, droplets can be highly dynamic, continuously exchanging monomers with the diffuse 

phase. We investigate the principles of biophysical spatial memory in three contexts: a 

computational model of phase separation; a novel optogenetic system where light can drive rapid, 

localized dissociation of liquid-like protein droplets; and membrane-localized signal transduction 

from clusters of receptor tyrosine kinases. Our results suggest that the persistent polarization 

underlying many cellular and developmental processes could arise through a simple biophysical 

process, without any additional biochemical feedback loops.

ETOC Blurb

Dine et al use mathematical modeling and cellular optogenetics to determine that phase-separated 

protein clusters act as a long-lived ‘memory foam’ that can retain spatial patterns in cells.
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Introduction

Across many biological contexts, cells must be able to sense external spatial cues and 

generate asymmetric distributions of their internal components. Anisotropic patterns of 

protein/RNA localization play crucial roles during embryo development (Kloc and Etkin, 

2005; Sailer et al., 2015), and motile cells can migrate by generating persistent internal 

asymmetries even in a uniform environment (Prentice-Mott et al., 2016). It is often assumed 

that both the establishment and maintenance of these persistent spatial patterns require 

complex genetic and/or biochemical networks, such as Turing-like mechanisms that 

combine short-range positive feedback with long-range negative feedback (Gierer and 

Meinhardt, 1972; Turing, 1953) or stochastic processes that rely on depleting a limiting pool 

of proteins that participate in an auto-regulatory positive feedback loop (Altschuler et al., 

2008).

Many spatially-regulated biological processes also exhibit hallmarks of protein phase 

separation, a process where multivalent interactions between monomers drive large-scale 

assembly into liquid-like droplets or solid aggregates (Figure 1A). Developmental processes 

rely on localized RNA and/or protein aggregation, including the asymmetric partitioning of 

PAR proteins (Goldstein and Macara, 2007), RNA granules in Drosophila embryogenesis 

(Forrest and Gavis, 2003), and P granules that dissolve and condense along the anterior-

posterior axis of C. elegans embryos to be inherited by cells that form the germline 

(Brangwynne et al., 2009). Similar principles may also underlie spatially-restricted signaling 

in differentiated cells. Localized clustering of membrane receptors is thought to promote 

actin nucleation during cell migration (Banjade and Rosen, 2014), local clustering of 

signaling proteins was recently shown to enhance signaling downstream of T cell receptor 

activation at the immunological synapse (Su et al., 2016), and receptor clustering in neurons 

is thought to play a role in regulating synaptic plasticity (O’Brien et al., 1998). In many of 

the above examples, clustering is primarily thought of as playing a biochemical role: 

segregating proteins away from undesired interaction partners or increasing reaction rates 
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between components that are co-localized within the separated phase (Shin and 

Brangwynne, 2017).

Here, we set out to investigate whether protein phase separation might directly contribute to 

the establishment or maintenance of spatial patterns within the cell. Using a combination of 

mathematical modeling and optogenetic stimulus experiments, we found that liquid-like 

protein droplets exhibit a form of long-term spatial memory. A cluster-dissociating stimulus 

that is delivered on one side of a cell can drive asymmetric patterns of protein localization in 

minutes, and these patterns persist for hours after the stimulus is removed. These results hold 

even in cases where droplets are highly dynamic and exchange substituents with the 

surrounding diffuse phase. We find that this spatial memory is robust, occurring in all three 

subcellular compartments tested (cytosol, nucleus, and plasma membrane) and with both 

optogenetic systems we employ. Finally, we show that this spatial memory can have 

functional implications using light-controllable FGF receptors whose phase separation 

drives a cytoskeletal response. Our results demonstrate that the biophysical phenomenon of 

protein clustering can function as a sensitive intracellular ‘memory foam’, amplifying 

transient, shallow gradients into sharp and persistent responses.

Results

A minimal model to dissect the role of clustering in spatial patterning

To gain some initial intuition about how phase separation might influence spatial patterning, 

we constructed a simple computational model of protein diffusion and clustering in two 

dimensions (Figure S1A; STAR Methods) (Freeman Rosenzweig et al., 2017; Landau and 

Binder, 2014). Our model consists of a 50 × 100 unit grid where each square can be 

occupied by a single ‘monomer’ that is free to diffuse to adjacent unoccupied positions or 

exchange positions with a monomer in a neighboring occupied square. To model protein 

phase separation and aggregation, monomers occupying adjacent squares exhibit affinity for 

one another, leading to a decreased probability of movement to squares that require bond 

breakage. We used a temperature-like stimulus parameter θ to control the strength of 

binding; θ can be raised or lowered at any spatial position on the grid and at any time. 

Simulating the model for different values of θ revealed that it could reproduce classic 

properties of phase separation, including a single diffuse phase at high θ, coexistence of 

dynamic, liquid-like droplets and a diffuse phase at intermediate values of θ, and arrested 

dynamics for low θ (Movie S1; Figure S1B–D). Local stimulation could also drive local 

phase separation: decreasing θ on one half of the grid induced the appearance of local 

clusters that were quickly reversed when θ was returned to its initial value (Figure S1E–H).

Even this simple model could generate complex behavior when subjected to certain classes 

of spatial stimuli. One illustrative example is the converse of the local stimulus experiment 

described above: starting from an initial state where droplets appear throughout the grid, we 

locally increased θ to induce droplet disassembly in a stimulated region (Figure 1B,C; 

Movie S2). This local stimulation led to the rapid dissolution of droplets in the stimulated 

area and nucleation/growth of droplets in the unstimulated region. However, after stimulus 

removal, the system did not return to its initial state but instead retained an asymmetric 

spatial distribution of clusters. This persistent asymmetry could also be quantitatively 
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captured in both the distribution of the total number of particles and the mean cluster sizes in 

the stimulated and unstimulated regions (Figure 1D,E). Persistent asymmetry still arose even 

under liquid-like conditions where clusters are dynamic. Performing a computational FRAP 

experiment after a transient, local stimulus revealed that monomers were exchanged rapidly 

between the clusters and the diffuse phase, even as the overall asymmetric spatial 

distribution of clusters was unchanged (Figure 1F; STAR Methods).

Our simple model thus suggests that in the case of stimulus-induced dissociation of protein 

clusters, long-term spatial patterns can persist long after stimulus removal. This 

phenomenon arises from the well-characterized physics of droplet phase behavior (Doi, 

2013; Lifshitz and Slyozov, 1961; Wagner, 1961). When droplets are dissolved by a local 

stimulus the concentration of monomers in that region rises, leading to a diffusive flux 

toward the unstimulated region, condensation into droplets there, and a return of the free 

monomer concentration to near its pre-stimulus level. Upon stimulus removal, however, 

there is no driving force for the asymmetrically-distributed droplets to shrink and small ones 

to grow in the formerly-stimulated region. Rather, large droplets are more stable than small 

ones; over infinite time, Ostwald ripening and droplet coalescence are expected to lead to a 

single large droplet, properties that are captured in long-timescale simulations of our model 

(Movie S3; STAR Methods).

What parameters govern the timescale with which a spatial pattern persists? In our 

simulations, patterns were effectively permanent after stimulus removal. However, our 

model does not for the movement of entire droplets by diffusion, intracellular flow, or active 

transport. Each of these processes may be expected to blur spatial patterns over time but 

their relative magnitudes are difficult to predict from first principles and may vary between 

cellular contexts. Nevertheless, the behavior we observe could have profound implications 

for a cell: a transient, locally-applied stimulus could result in a long-term asymmetry in the 

spatial distribution of protein/RNA droplets, even when individual monomers are able to 

exchange rapidly in and out of the concentrated phase to interact with other cellular factors 

(Figure 1G).

PixELLs: optogenetic control over dissociation of liquid-like protein droplets

Our model suggests that stimulus-dissociated clusters can exhibit long-term spatial memory, 

but how relevant is this phenomenon at the length- and time-scales of the cell? To address 

this question, we sought to develop an experimental system to match our modeled scenario: 

namely, where local stimulation could be used to induce dissociation of protein droplets that 

assemble spontaneously in the dark. Optogenetic control is ideal for such a study because 

precise spatial light stimuli can be readily applied and removed. Also, we recently 

demonstrated that protein phase separation is amenable to optogenetic control by fusing an 

intrinsically disordered protein region (IDR) to the Cry2 photolyase homology region (PHR) 

to create OptoDroplets (Shin et al., 2017). In response to light, Cry2 oligomerization 

nucleates IDR-containing clusters that, over seconds—minutes, grow into micron-scale, 

liquid-like droplets.

As a starting point for developing an inverse system that confers optogenetic control over 

droplet dissociation, we turned to two proteins, PixD and PixE, from Synechocystis sp. 
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PCC6803 (Masuda et al., 2004; Yuan and Bauer, 2008). PixD and PixE associate in the dark 

into large multi-subunit complexes (thought to exhibit 10:4 or 10:5 PixD:PixE 

stoichiometry) that dissociate into dimers of PixD and monomers of PixE within seconds 

upon blue light stimulation. Upon a shift back to darkness, PixD cycles back to its binding-

competent state within seconds to re-form complexes. We reasoned that fusing PixD and 

PixE to intrinsically disordered protein regions (IDRs) might enable the nucleation of phase-

separated droplets in the dark, and that light stimulation might induce the rapid dissociation 

of these complexes (Figure 2A,B; Figure S2).

Indeed, we found that expressing fluorescent FUSN-FusionRed-PixD and FUSN-Citrine-

PixE proteins in NIH3T3 cells led to the formation of micrometer-sized spherical clusters in 

the dark which dissociated in seconds after blue light stimulation (Figure 2C). Light-

controlled clustering was also fully reversible across multiple cycles of photostimulation 

(Figure 2D; Movie S4). PixD/PixE clusters exhibited hallmarks of phase separation into 

liquid-like droplets, including droplet fusion, shape relaxation, and recovery after 

photobleaching within minutes, similar to other liquid-like droplets (Shin et al., 2017) 

(Figure 2E,F; Movie S5). We termed these light-dissociable clusters PixELLs (Pix 

Evaporates from Liquid-like droplets in Light). In addition to defining the emergent 

spatiotemporal features of protein phase separation in cells, we expect the PixELL system 

could serve as a useful optogenetic tool for long-term concentration of proteins into 

synthetic membraneless organelles (Nakamura et al., 2017; Taslimi et al., 2014) or to 

sequester and release proteins of interest from subcellular compartments (Figure S3).

PixELLs exhibit spatial memory and convert shallow gradients into sharp boundaries

To test if the spatial distribution of PixELLs could encode long-term memory of transient 

stimuli, we applied and removed a blue light stimulus to subcellular regions of PixELL-

expressing cells (Figure 3A; Movie S6). Light exposure induced seconds-timescale 

dissociation of droplets within the stimulated region, followed by droplet nucleation and 

growth in unstimulated regions within 10 minutes. Consistent with our model, cells 

maintained an asymmetric distribution of PixELLs after light stimulus removal, with a sharp 

boundary between the previously-stimulated and unstimulated cytosolic regions. This 

persistent asymmetry was evident in both the overall PixELL protein concentration and in 

the fluorescence intensity of individual droplets (Figure 3B–C). We hypothesized that spatial 

patterns might be even more striking in subcellular regions where droplet diffusion is slower, 

such as within the nucleus (Kuhn et al., 2011; Bosse et al., 2015). Indeed, illuminating the 

entirety of the cell except for a protected nuclear region enabled us to “draw” precise spatial 

patterns of droplets in the nucleus that remained for hours after the shift back to darkness, 

even as the nucleus rotated and moved within the cell (Figure 3D, Movie S6). For both 

nuclear and cytosolic clusters, asymmetric protein distributions are established within 5–10 

min and persist for at least 100 min after the stimulus is removed (Figure S4).

We reasoned that PixELLs would also be ideal to test for a second form of spatial 

information processing: the amplification of a shallow stimulus gradient into a sharp 

boundary of protein droplets. As is familiar from the of water crossing its freezing point to 

form ice, phase separation is an inherently all-or-none phenomenon, with the potential to 
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exhibit dramatic physical responses to a small change in an external stimulus (e.g. 

temperature). Prior theoretical results suggest that this all-or-none effect could also be 

observed for spatial patterns of intracellular phase separation, where a shallow gradient of a 

droplet-dissociating stimulus might be converted into a sharp spatial boundary (Lee et al., 

2013). Such a scenario is thought to describe P granule dynamics in C. elegans embryos 

(Brangwynne et al., 2009). To test this prediction, we applied a linear gradient of 450 nm 

light intensity to individual PixELL-expressing cells. Indeed, this light gradient induced a 

sharp boundary of intracellular droplets, converting a shallow stimulus into a switch-like 

response (Figure 4A–C; Movie S7). This spatial pattern was also retained after stimulus 

removal, demonstrating both gradient amplification and long-term spatial memory in a 

single experimental context (Figure 4B). Our results thus demonstrate that phase separation 

is a powerful and versatile way to convert transient, weak biochemical signals into long-

lasting spatial patterns in cells.

Membrane-localized optoDroplets also exhibit spatial memory

Our work thus far leaves two important questions unanswered. First, how robust are these 

phenomena –are they highly dependent on a specific optogenetic tool or cellular context? 

Second, can the asymmetries in droplet distributions be transmitted to downstream signaling 

processes to regulate localized cell responses? To address these questions, we set out to 

probe spatial memory in a distinct and biologically-important context: the membrane-

localized signaling clusters formed by activated receptor tyrosine kinases (RTKs). RTKs 

have been shown to undergo large-scale clustering upon stimulation (van Lengerich et al., 

2017) and are often used by cells to drive localized, subcellular responses to external cues 

(Friedl and Gilmour, 2009). Moreover, optogenetic variants of FGFR1 have been previously 

shown to drive Erk signaling, cytoskeletal rearrangement and directed migration (Grusch et 

al., 2014; Kim et al., 2014).

We first sought to adapt our optoDroplets or PixELL system to the plasma membrane to 

enable control over receptor activity. We found that PixELLs failed to cluster after fusion to 

an N-terminal myristoylation tag, yet Myr-optoDroplets exhibited robust, light-dependent 

membrane clustering with a high degree of spatial control (Figure 5A). Local light 

stimulation of Myr-optoDroplet-expressing cells drove membrane protein clustering only 

within the illuminated region, and which disassembled within minutes in the dark, consistent 

with the minutes-timescale half-life of the Cry2 photoactivated state (Figure 5B–C; Movie 

S8). We noticed that some Myr-optoDroplets exhibited fast, directional motion within the 

membrane, suggesting active transport along some cytoskeletal components. This directional 

movement was abolished by treatment with nocodazole but not latrunculin A or a carrier 

control, suggesting that it is microtubule-dependent (Movie S9). Nevertheless, despite this 

active transport, the majority of optoDroplets remain localized to the illuminated region over 

time.

We next sought to test if membrane clustering might also exhibit the hallmarks of long-term 

biophysical memory. However, unlike PixELLs, optoDroplet clustering is induced rather 

than dissociated by light. We have shown that spatial memory requires a cluster-dissociating 

stimulus, necessitating the use of a new stimulus protocol to test for memory. We reasoned 
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that light-induced clustering could trigger memory formation if an initially local stimulus 

were then expanded to a global stimulus, a scenario where the unilluminated region is thus 

treated as the localized cluster-dissociating stimulus that is removed upon the shift to global 

illumination. Such a “local-to-global” stimulus protocol resembles the transition of a 

migrating cell from a chemoattractant gradient to a high uniform source; in this scenario it 

may well be advantageous for the cell to preserve memory of the most recent spatial 

gradient it encountered (Prentice-Mott et al., 2016).

Indeed, we found that this local-to-global stimulus protocol was able to maintain a local 

pattern of membrane Myr-optoDroplets for at least 1 h after a shift to global illumination 

(Figure 5D,E; Movie S8). Local illumination induced clustering within 5–10 min, 

decreasing the membrane optoDroplet concentration at un-illuminated positions and 

preventing cluster formation at these positions after the shift to global illumination. Taken 

together, our data demonstrates that spatial memory is robust, operating with similar kinetics 

in three distinct subcellular compartments (the cytosol, the nucleus and the plasma 

membrane) and with two optogenetic systems (PixD/PixE-based PixELLs and Cry2-based 

Myr-optoDroplets).

FGFR1 droplets can harness spatial memory to drive asymmetric cytoskeletal responses

We finally set out to probe whether the long-term memory encoded in spatial distribution of 

clusters could be functionally coupled to cell behavior. We first adapted our Myr-

optoDroplet construct by fusing it to the cytoplasmic domain of the FGFR1 receptor to 

create the FGFR1-optoDroplet system (Figure 6A). We observed weaker but qualitatively-

similar clustering in FGFR1-optoDroplet cells as compared to Myr-optoDroplets. The 

smaller size of FGFR1-optoDroplet clusters might be a result of FGFR1 phosphorylation of 

FUSN or Cry2, thereby altering these domains’ intrinsic capacity for oligomerization, or 

from recruitment of additional proteins that weaken optoDroplet association.

We validated that FGFR1-optoDroplets were functional and able to drive potent, light-

switchable signaling responses. Illumination led to potent and reversible Erk activation 

within minutes, as measured by the Erk activity biosensor, ErkKTR, which leaves the 

nucleus in response to Erk phosphorylation (Figure S5) (Regot et al., 2014). Illuminating 

FGFR1-optoDroplet cells also elicited a pronounced cytoskeletal response: global 

“cringing” of entire cells in response to uniform illumination that persisted as long as light 

was present and was quickly reversed in the dark (Figure 6B,C; Movie S10).

Spatial patterning and long-term memory were also evident in the subcellular distribution of 

FGFR1-optoDroplets and cytoskeletal activity. Local light stimulation also induced local cell 

contraction, leading to reorientation of cells to avoid blue light illumination (Figure 6D; 

Movie S11). In cells subjected to our local-to-global stimulus protocol, FGFR1-

optoDroplets induced immediate retraction of the plasma membrane within the stimulated 

region that also persisted upon a subsequent switch to global illumination. Just as observed 

in the case of Myr-optoDroplets, FGFR1-optoDroplets were concentrated at the initial site of 

local activation and depleted elsewhere, thereby preventing additional receptor clustering 

after the shift to global illumination (Figure 6E,F; Movie S12). Notably, the region of the 

plasma membrane with FGFR1-optoDroplet clusters moved with the retracting protrusion, 
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but a “corset” of contractility was retained on the cell at the same position as these clusters 

throughout this process. Our results thus show that the spatial memory encoded by protein 

clusters can be functionally coupled to receptor activation on the plasma membrane, an 

important spatially-localized cellular response.

Discussion

Our computational and experimental findings demonstrate that a simple biophysical system 

– liquid droplets whose interaction strength is controlled by a spatial stimulus – is sufficient 

to maintain asymmetric, polarized protein distributions in live cells. We also demonstrate 

that protein phase separation is sufficient to amplify weak spatial stimuli into all-or-none 

responses, a phenomenon that was previously predicted based on in vivo observations of P 

granule condensation. When considered together, these properties suggest a model where 

protein condensation plays the role of a sensitive ‘memory foam’. Even a weak, transient 

stimulus – or shallow stimulus gradient – can drive sharp boundaries of protein droplets that 

persist for an order of magnitude longer than they take to establish. The formation and 

dissociation of intracellular phase-separated structures thus constitutes a simple and 

universal mechanism for spatially regulating biological processes.

Although the underlying physics that governs phase separation is well understood, the 

scenario in living cells is complicated by additional physical processes (e.g. cytoplasmic 

flow; cytoskeletal assembly/disassembly) as well as potential biological regulation (e.g. 

directed transport or regulated assembly/disassembly of droplets). Indeed, we find that 

PixELLs are more mobile in the cytosol than the nucleus, suggesting differences in 

diffusion/flow between these compartments, whereas membrane optoDroplets are actively 

transported in a microtubule-dependent fashion. Nevertheless, the phenomenon of spatial 

memory is quite robust, operating within cells on 2-dimensional surfaces and in 3-

dimensional subcellular compartments; it also operates similarly for light-sensitive 

structures that are generated by distinct photosensitive and oligomerization domains. Future 

studies should test whether spatial memories encoded by protein clusters might play similar 

roles in diverse cell types, organisms and developmental stages.

Our results are reminiscent of the hysteresis observed in classic bi-stable biological systems 

(Xiong and Ferrell, 2003) but arise through a distinct mechanism. They do not represent a 

stable steady state formed by the action of positive/negative biochemical feedback loops, as 

in the case of the spatial patterns that emerge spontaneously from a Turing reaction-diffusion 

system. Instead, they are rooted in a kinetically-trapped biophysical process: an asymmetric 

distribution of protein clusters that is unable to mix quickly by diffusion or proceed to the 

equilibrium of a single connected droplet. Nevertheless, sources of positive and negative 

feedback are intrinsic to phase separation: as clusters grow, they become more stable and 

grow still faster (a form of local positive feedback), leading to the depletion of free 

monomers from solution (a form of long-range negative feedback). It is tempting to 

speculate that protein phase separation might provide a simple and universal way to store 

spatial information in biological systems, providing a substrate on which to layer more 

complex biochemical circuits for establishing and maintaining spatial patterns.
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STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Jared Toettcher, (toettcher@princeton.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture—NIH 3T3 mouse embryonic fibroblasts and Lenti-X 293T cells were grown 

in DMEM supplemented with 10% FBS, 1% L-Glutamine, and Pen/Strep. Cells were 

maintained on Thermo Scientific Nunc Cell Culture Treated Flasks with Filter Caps and 

grown at 37 C with 5% CO2.

METHOD DETAILS

Plasmid Construction—All plasmids were constructed using inFusion cloning 

(Clontech) to ligate in a PCR product to a pHR vector that was opened using either 

backbone PCR or restriction digest. Plasmids were then transformed into Stellar Competent 

Cells for amplification and storage.

Lentivirus production and transduction—Lentivirus was produced as per the protocol 

we described previously (Toettcher et al., 2013). Briefly, Lenti-X 293T cells were plated in a 

6-well plate at 40% confluency and co-transfected with the appropriate pHR expression 

plasmid and lentiviral packaging plasmids (pMD2.G and p8.91 – gifts from the Trono lab) 

using Fugene HD transfection reagent. Viral supernatants were collected 2 days after 

transfection and passed through a 0.45 mm filter.

NIH 3T3 cells to be infected with lentivirus were plated in a 6 well dish at 20%–40% 

confluency. After adherence to the plate, 500 μl of filtered virus were added to the cells as 

was 50 μl of 1M HEPES. 24 h post-infection, viral media was replaced with normal growth 

media and cells were imaged at least 48 h after infection to allow time for integration and 

expression.

Cell preparation for imaging—For all imaging experiments cells were plated on black-

walled, 0.17 mm glass-bottomed 96 well plates (In Vitro Scientific). Prior to cell plating, 

glass was pretreated with a solution of 10 μg/mL fibronectin in phosphate buffer saline 

(PBS) for 20 min. NIH-3T3 cells were given at least 2 hours to adhere onto the glass-

bottomed plates in our supplemented DMEM. Just prior to imaging 50 μL of mineral oil was 

added to the top of each well to stop evaporation (Toettcher et al., 2011).

Time-lapse microscopy—Cells were maintained at 37C with 5% CO2 for the duration 

of all imaging experiments. Confocal microscopy was performed on a Nikon Eclipse Ti 

microscope with a Prior linear motorized stage, a Yokogawa CSU-X1 spinning disk, an 

Agilent laser line module containing 405, 488, 561 and 650 nm lasers, an iXon DU897 

EMCCD camera, and a 60X oil immersion objective lens.
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Optogenetic stimulation hardware—For microscopy experiments, cells were imaged 

with the 561 nm laser to image FUSN-FusionRed-PixD in PixELL cell lines, and Myr-

FUSN-FusionRed-Cry2 in the optoDroplet cell lines. A 450 nm LED light source (XCite 

XLED1) was used for all spatial blue light stimulation experiments of both the PixELL and 

optoDroplet systems, and either the same 450 nm LED light source or 488 nm laser 

illumination was used for all global experiments. Light from the XLED1 system was 

delivered through a Polygon400 digital micromirror device (DMD; Mightex Systems) to 

control the temporal dynamics of light inputs. We applied specific spatial patterns to an 

image by drawing ROIs within the Nikon Elements software package. To attenuate 450 nm 

light to appropriate levels, we dithered the DMD mirrors to apply light 10% of the time, and 

set our 450 nm LED to 5% of its maximum intensity.

For the long term stimulation of PixELLs shown in Figure S4 and for the Erk-KTR 

experiments shown in Figure S5, we stimulated multiple cell positions in the same 

acquisition, unlike in the earlier experiments, where single positions received constant blue 

light. Therefore, we had to increase the DMD and LED intensity so that cells received more 

intense light for a shorter period of time. To do so, we set the DMD mirrors set to a 50% 

duty cycle and LED power at 50% of maximum intensity.

For the gradient stimulation experiment in Figure 4, we used a “gradient ROI” in NIS-

Elements that allowed a gradient of 0–10% of the light to pass through from top to bottom.

Finally, for the Myr- and FGFR1-optoDroplet experiments in Figure 5 and Figure 6, where 

light moved from a local to global pattern, we began the experiment using an ROI to 

illuminate the region of interest. After the spatial pattern of activation was established, we 

quickly paused the experiment to resize the ROI so that it would cover the whole field of 

view, thus switching to global stimulation for the remainder of the experiment.

FRAP experiments—FRAP experiments were performed in the Nikon Microscopy Core 

imaging facility at Princeton University on a point-scanning confocal (A1R-Si on a Nikon 

Ti-E microscope chassis). Bleaching was performed by applying 7.5% of the maximum 

power from our 561nm laser on a single cluster. We found that this light was powerful 

enough to photobleach FusionRed fluorescence but not sufficiently intense to induce 

optogenetic stimulation and PixELL dissociation. Images were captured pre- and post-

bleach using confocal imaging with the 561 nm laser at 0.4% power.

Drug Additions—For cytoskeletal perturbation experiments, all drugs were reconstituted 

to 1 mg/ml concentrations in DMSO. For the experiments shown in Movie S8, DMSO was 

diluted to 0.5% in full media (representing the maximum final DMSO concentration used in 

any drug treatment), while Latrunculin A was diluted to 5μg/ml in full media and 

Nocodazole to 2.5μg/ml. 20μl of each solution were added to NIH-3T3 cells in a 100μl of 

full media in 96 well glass bottom plate 16hrs before imaging.

QUANTIFICATION AND STATISTICAL ANALYSIS

Obtaining properties of cellular regions—All image analysis was performed in 

ImageJ. First, appropriate nuclear or cytoplasmic regions were tracked over time by hand 
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annotation. We then measured properties of each annotated region at each timepoint, 

including the mean and standard deviation of pixel intensities, the area of the region, and its 

integrated intensity (e.g. area * mean). For measuring overall protein redistribution we used 

the integrated intensity over large, equally-sized cytoplasmic areas inside and outside the 

stimulation region.

For measuring kinetics of droplet assembly/disassembly, we found that the signal to noise 

ratio (the inverse of the coefficient of variation) to be an excellent metric that spanned a 

reproducible range even for cells with different PixELL expression levels. The signal-to-

noise ratio is defined as SNR = μ/σ, where μ is the pixel-by-pixel mean intensity within the 

region and σ is the standard deviation. In particular, we found that the coefficient of 

variation CV = σ/μ took on large values that could vary substantially between cells with a 

high degree of droplet formation (or even between different regions of the same cell); by 

inverting these large numbers, the signal-to-noise ratio compressed their differences and led 

to reproducible measurements of the kinetics of droplet formation. We thus used the SNR to 

describe the kinetics of droplet formation in Figure 2.

For some analyses (e.g. FRAP photobleaching recovery; cluster size over time) we analyzed 

the intensity of individual droplets over the course of a timelapse acquisition. In these cases, 

we annotated an individual cluster by hand using the ImageJ ‘measure’ tool. From there we 

developed a Matlab script that (a) identifies the XY location of the peak intensity in the 

annotated region at each frame of the time series, (b) fits a 2-dimensional Gaussian to the 

region a · exp −
x − x0

2 + y − y0
2

2c2 + b, and (c) calculates the integrated area under the fit 

Gaussian as the burst intensity I = 2πac2.

Figure 6 shows measurements of the sizes of FGFR1-optoDroplet cells undergoing light-

induced contraction. To perform these analyses we took advantage of the fluorescence of the 

optoDroplet construct, which permitted us to segment cells from background by simply 

applying a threshold. Noisy bright pixels were excluded by a binary opening operation, any 

dark pixels in the interior of the image were filled in by a morphological hole-filling 

operation, and finally any remaining noisy regions were excluded by keeping only the 

biggest connected component at each time point. We then measured the total cell footprint 

area by measuring the number of pixels in the binary mask at each time point, and 

converting to units of μm2 using the pixel-to-distance calibration of our microscope. For 

some analyses we further subdivided and tracked the cell footprint area in both the 

illuminated and non-illuminated regions.

Computational model

Description of the model: Our computational model was intended to capture the basics of 

diffusion, association and dissociation of self-associating “proteins” in a simple and minimal 

context, where proteins were modeled as single elements on a 2 dimensional grid. In our 

model, proteins move randomly across the grid. Upon occupying grid spaces with 

neighboring spaces that are also occupied, proteins experience identical binding interactions 

with each neighbor that decreases the probability of movement away from that position. 
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Interactions are assumed to be maximally conservative: if a protein moves from one grid 

space to an adjoining one where some neighbors are shared, it is assumed that these binding 

interactions are not broken so they do not contribute to the penalty. For all simulations, we 

used a 50 × 100 grid with reflective boundary conditions that was populated by a random 

initial distribution of 700 proteins monomers.

We define a contiguous set of interacting proteins as a “cluster”. Such clusters may exhibit 

liquid-like or solid-like properties depending on the interaction strength and other system 

parameters.

Our system thus admits three kinds of processes with the following rates (also see Figure 

S1A):

• Diffusion, modeled as movement of a protein from its position on the lattice to a 

neighboring, unoccupied position. Without loss of generality, we take the rate of 

diffusive movement as the reference timescale for our simulations, setting the 

rate constant d = 1 in all cases.

• Exchange of proteins between two neighboring grid positions. This exchange 

reaction can also be thought of as diffusion within the clustered phase. We 

assume that exchange within the clustered phase is half as likely as diffusion to 

an empty position (i.e. e = 0.5). Because exchange involves movement of two 
proteins, halving this rate leads to a comparable timescale of overall protein 

movement within both phases.

• Unbinding, modeled as the breaking of neighboring interactions upon movement 

away from a grid location. We assume that each protein-protein interaction 

contributes an interaction energy ΔE, so an unbinding reaction proceeds 

according to the rate constant k = k0 exp −
ΔE · nlost
θ(x, y, t) , where nlost is the number of 

neighbors whose contacts are broken upon moving away from the prior grid 

position and θ(x, y, t) is a stimulus parameter that we can vary at each time point 

and grid position. The stimulus θ can be thought of as a temperature-like scaling 

factor on the interaction energy. For high values of θ, interactions are relatively 

weak and the system remains in a diffuse state. As θ is lowered, interaction 

energies become stronger and the system enters different forms of an aggregated 

state. The parameter k0 is a constant that is related to the off-rate for breaking a 

single interaction. For all simulations, we took ΔE = 1 (without loss of generality 

because the scale of θ(x, y, t) is set by our input) and k0 = 1 so that in the limit 

where no neighbors are lost, the rate of unbinding is identical to the rate of 

diffusion.

Simulating the model: We simulated random trajectories for this 2D diffusion/aggregation 

system using a rejection kinetic Monte Carlo approach (rKMC). rKMC is quite closely 

related to the Gillespie algorithm that is often used for stochastic chemical systems, and 

which provably achieves the same results (Serebrinsky, 2011). Rejection kinetic Monte 

Carlo is highly efficient and straightforward to implement for systems with many reactions 
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under conditions where there is a well-defined “fastest” reaction rate (in our case, that of 

diffusion), and where a large number of the possible reactions in each configuration proceed 

at or near this fastest rate (in our case, diffusion and exchange are highly likely be picked, as 

only the particles at the interface between two phases can undergo unbinding).

In brief, the algorithm proceeds as follows. We pick a random protein on the lattice and 

random direction for it to move. Such a movement in any direction corresponds to one of the 

three reactions as defined above (diffusion, exchange or unbinding). If a reaction rate is 

equal to 1 (which is our fastest rate, and that of diffusion to an empty square), it is 

automatically accepted. Otherwise, a random number r3 is rolled on the interval [0,1) and the 

reaction is accepted in proportion to its rate (e.g. if its rate is greater than r3). After each 

iteration, the time t is incremented, so that ti = ti−1 + τ, where τ = 1/Nrxns log (1/r4). In this 

formula Nrxns is the total number of possible reactions in the system and r4 is a fourth 

random number on the interval [0,1).

Note that Nrxns can easily be defined because all possible reactions are uniquely identified 

with movement from an occupied lattice position to any adjoining lattice position. Thus, the 

total number of reactions is equal to the sum of all neighboring lattice positions for each 

occupied lattice position (for the reflective boundary conditions we implement, all middle 

lattice positions have 8 neighbors; all edge positions have 5; each corner has 3).

Analyzing spatial properties from simulations: To compute parameters of individual 

clusters (e.g. their size or solidity), we first identified all connected components at each 

simulation timepoint using the standard MATLAB image processing function bwconncomp. 

From this list of all connected components in the image we then computed various 

properties, including the area and solidity of each connected component. Area is useful as a 

straightforward measure of cluster size. Solidity is defined as the area of a cluster divided by 

the convex area in which it can be enclosed; it provides a measure of whether clusters are 

filled, as expected if they are able to relax to a shape that minimizes surface area. 

Additionally, for each spatial stimulus simulation we measured the total number of proteins 

in the stimulated and unstimulated regions.

Performing computational FRAP experiments: FRAP analysis was performed in the 

model by saving the X-Y position of each monomer, and by tracking a single chosen 

“cluster” over time from an initial time t0 after clusters were established. Fluorescence 

“recovery” was then associated with the number of monomers within the cluster that had 

been exchanged for monomers not initially present.

We first identified all the monomers in a chosen cluster by selecting a particular connected 

component for analysis. For every subsequent timepoint we tracked the cluster’s position on 

the 2D lattice using morphological reconstruction (implemented by the MATLAB function 

imreconstruct), where the cluster at the prior timepoint was taken as a marker image.

We computed two quantities at each timepoint: ni, the number of monomers in the cluster at 

the ith timepoint, and oi, the intersection between the initial set of monomers in the cluster 

Dine et al. Page 13

Cell Syst. Author manuscript; available in PMC 2019 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the set of monomers at the ith timepoint. We then measured the percent recovery using 

the formula:

f i =
ni − oi

ni

N
N − n0

In this formula, the degree of recovery is captured in the first term; the second term is a 

normalization factor that accounts for the fraction of the total monomer pool that is 

“bleached” and would be expected to re-enter the cluster.

Model results

The model capture phase separation as a function of interaction strength: We first 

simulated our model for different values of the interaction temperature θ applied as a 

uniform global input, i.e. at all lattice positions and times (Figure S1b). We simulated 105 

reactions at each temperature (which corresponded to a total simulation time of T ≈ 18 

normalized time units at all temperatures). We found that over a narrow range of θ values, 

centered approximately at θ =1, the system became organized into a phase-separation-like 

state. At this state we observed a considerable fraction of subunits organized into aggregates, 

as well as subunits that persisted in the monomeric state. This state was characterized by fast 

recovery after photobleaching and substantial shape relaxation of the aggregates, both 

hallmarks of liquid-like behavior (Figure S1C,D). We thus used θ =1 to simulate the liquid-

like state in all subsequent spatial stimulus experiments.

At progressively lower values of θ the cluster size continued to increase until virtually all 

subunits were contained within the aggregated phase. After further decreases in θ we 

observed a transition to a state with arrested dynamics: cluster size decreased from its 

maximum size because dissociation from a cluster became highly unlikely, leading to a large 

number of small, spatially-separated clusters. In our simulation this state persisted for long 

times, although it is likely that a more complex simulation accounting for diffusive or 

convective transport of entire clusters would serve to induce further aggregation by 

coalescence.

A localized decrease in interaction strength leads to local, memoryless aggregation: We 

next used the model to probe how a localized stimulus would affect aggregation/ dissolution 

(Figure S1E; Figure 1B). To model a stimulus-induced local increase in aggregation, we 

initially evolved the system with θ = 2 at all positions, then transiently dropped the 

“temperature” to θ =1 on the right-half of the grid (i.e. for columns 51–100), leaving θ = 2 

on the left-half of the grid (columns 1–50) (Figure S1F). Each stimulation regime – initial 

equilibration, transient stimulation, and stimulus removal – was performed for 2×106 

simulation steps, corresponding to approximately 360 normalized time units (this total time 

varies slightly between simulations based on the stochastic nature of reactions in the kinetic 

Monte Carlo framework). We found that this stimulus protocol led to transient cluster 

formation and droplet growth, followed by quick reversal upon stimulus removal (Figure 

S1F–H). We also tested the converse experiment, meant to represent a stimulus-induced 

local decrease in association strength (Figure 1B). In this case, the system was evolved at the 
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stimulus strength θ = 1 everywhere until it was transiently increased to θ = 2 on the right-

half of the grid. This scenario, described in the main text, led to a persistent asymmetry of 

cluster formation (Figure 1B–E).

Long-term model simulations show Ostwald ripening and validate the stability of a 
single, connected droplet: For phase separating systems, it is expected that the 

thermodynamic steady state is the formation of a single, connected droplet, a familiar like 

the separation of oil and vinegar in salad dressing. Approach to this state can be driven by 

multiple processes, including collisions and fusion between distinct droplets and Ostwald 

ripening, where large droplets grow at the expense of smaller ones by exchanging monomers 

that diffuse between droplets. However, the rate of approach to this state can be slow, 

leading to the quasi-stable appearance of long-lived, large droplets.

We set out to test whether our model exhibits classic phase separation behaviors: Ostwald 

ripening, kinetically-trapped states with multiple large droplets, and an equilibrium state 

defined by a single large droplet. To do so we ran long simulations of at least 107 individual 

reactions, corresponding to ~2,000–3,000 time units (time units are comparable between all 

simulations). The results, presented in Movie S3, show that indeed Ostwald ripening can 

occur, where an initial distribution of ~15 droplets slowly ripens into 5 larger droplets over 

time, but these 5 droplets remain stable for at least 1,000 time units. In addition, we found 

that when the model is initialized with a single cluster, its shape relaxes to become 

approximately circular but no new droplets are formed over the entire course of the 

simulation. To perform this simulation we initialized the 50 × 100 grid with 700 molecules 

located in a single rectangle in the center of the grid.

These long-timescale observations compare favorably to those we find in cells using the 

PixELL and OptoDroplet systems, where multiple large droplets persist over long periods of 

time. Indeed, we never observe coalescence into a single intracellular droplet, suggesting 

that the final fusion events or Ostwald ripening occur extremely slowly, or that other active 

processes (e.g. the regulated disassembly of large droplets) prevent this equilibrium state 

from being attained.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank all members of the Toettcher lab for their comments and Orion Weiner, Doug Tischer and Lukasz Bugaj 
for a critical reading of the manuscript. We especially thank Dr. Peter Tonge (Stony Brook University) for sharing 
DNA constructs and expertise for the PixD and PixE proteins. E.D. was supported by NIH Training Grant 
T32GM007388 and G.U. was supported by a grant from the Doris Duke Charitable Foundation to the LA-HIP2.0 
program at the Saban Research Institute of Children’s Hospital, Los Angeles. This work was also supported by NIH 
grant DP2EB024247 (to J.E.T.) and U01DA040601 (to C.P.B.). We also thank Dr. Gary Laevsky and the Molecular 
Biology Microscopy Core, which is a Nikon Center of Excellence, for microscopy support.

Dine et al. Page 15

Cell Syst. Author manuscript; available in PMC 2019 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Altschuler SJ, Angenent SB, Wang Y, Wu LF. On the spontaneous emergence of cell polarity. Nature. 
2008; 454:886–889. [PubMed: 18704086] 

Banjade S, Rosen MK. Phase transitions of multivalent proteins can promote clustering of membrane 
receptors. eLife. 2014:3.

Bosse JB, Hogue IB, Feric M, Thiberge SY, Sodeik B, Brangwynne CP, Enquist LW. Remodeling 
nuclear architecture allows efficient transport of herpesvirus capsids by diffusion. Proc Natl Acad 
Sci USA. 2015; 112:E5725–33. [PubMed: 26438852] 

Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman 
AA. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. 
Science. 2009; 324:1729–1732. [PubMed: 19460965] 

Doi, M. Soft matter physics. Oxford University Press; 2013. 

Forrest KM, Gavis ER. Live imaging of endogenous RNA reveals a diffusion and entrapment 
mechanism for nanos mRNA localization in Drosophila. Current biology. 2003; 13:1159–1168. 
[PubMed: 12867026] 

Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M, Strauss M, 
Cartwright HN, Ronceray P, Plitzko JM, Forster F, et al. The Eukaryotic CO2-Concentrating 
Organelle Is Liquid-like and Exhibits Dynamic Reorganization. Cell. 2017; 171:148–162. e119. 
[PubMed: 28938114] 

Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nature 
reviews Molecular cell biology. 2009; 10:445–457. [PubMed: 19546857] 

Gierer A, Meinhardt H. A theory of biological pattern formation. Kybernetik. 1972; 12:30–39. 
[PubMed: 4663624] 

Goldstein B, Macara IG. The PAR proteins: fundamental players in animal cell polarization. 
Developmental cell. 2007; 13:609–622. [PubMed: 17981131] 

Grusch M, Schelch K, Riedler R, Reichhart E, Differ C, Berger W, Ingles-Prieto A, Janovjak H. 
Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. The EMBO 
journal. 2014; 33:1713–1726. [PubMed: 24986882] 

Kim N, Kim JM, Lee M, Kim CY, Chang KY, Heo WD. Spatiotemporal control of fibroblast growth 
factor receptor signals by blue light. Chemistry & biology. 2014; 21:903–912. [PubMed: 
24981772] 

Kloc M, Etkin LD. RNA localization mechanisms in oocytes. J Cell Sci. 2005; 118:269–282. 
[PubMed: 15654016] 

Kuhn T, Ihalainen TO, Hyvaluoma J, Dross N, Willman SF, Langowski J, Vihinen-Ranta M, Timonen 
J. Protein diffusion in mammalian cell cytoplasm. PloS one. 2011; 6:e22962. [PubMed: 21886771] 

Landau, DP., Binder, K. A guide to Monte Carlo simulations in statistical physics. Cambridge 
university press; 2014. 

Lee CF, Brangwynne CP, Gharakhani J, Hyman AA, Julicher F. Spatial organization of the cell 
cytoplasm by position-dependent phase separation. Physical review letters. 2013; 111:088101. 
[PubMed: 24010479] 

Lifshitz IM, Slyozov J. The kinetics of precipitation from supersaturated solid solutions. J Phys Chem 
Solids. 1961; 19:35.

Masuda S, Hasegawa K, Ishii A, Ono TA. Light-induced structural changes in a putative blue-light 
receptor with a novel FAD binding fold sensor of blue-light using FAD (BLUF); Slr1694 of 
synechocystis sp. PCC6803. Biochemistry. 2004; 43:5304–5313. [PubMed: 15122896] 

Nakamura H, Lee AA, Afshar AS, Watanabe S, Rho E, Razavi S, Suarez A, Lin YC, Tanigawa M, 
Huang B, et al. Intracellular production of hydrogels and synthetic RNA granules by multivalent 
molecular interactions. Nat Mater. 2017; 17:79. [PubMed: 29115293] 

O’Brien RJ, Lau LF, Huganir RL. Molecular mechanisms of glutamate receptor clustering at excitatory 
synapses. Curr Op Neurobio. 1998; 8:364–369.

Dine et al. Page 16

Cell Syst. Author manuscript; available in PMC 2019 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Prentice-Mott HV, Meroz Y, Carlson A, Levine MA, Davidson MW, Irimia D, Charras GT, Mahadevan 
L, Shah JV. Directional memory arises from long-lived cytoskeletal asymmetries in polarized 
chemotactic cells. Proc Natl Acad Sci USA. 2016; 113:1267–1272. [PubMed: 26764383] 

Regot S, Hughey JJ, Bajar BT, Carrasco S, Covert MW. High-sensitivity measurements of multiple 
kinase activities in live single cells. Cell. 2014; 157:1724–1734. [PubMed: 24949979] 

Sailer A, Anneken A, Li Y, Lee S, Munro E. Dynamic Opposition of Clustered Proteins Stabilizes 
Cortical Polarity in the C. elegans Zygote. Developmental cell. 2015; 35:131–142. [PubMed: 
26460948] 

Serebrinsky SA. Physical time scale in kinetic Monte Carlo simulations of continuous-time Markov 
chains. Physical review E, Statistical, nonlinear, and soft matter physics. 2011; 83:037701.

Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE, Brangwynne CP. Spatiotemporal Control of 
Intracellular Phase Transitions Using Light-Activated optoDroplets. Cell. 2017; 168:159–171. 
e114. [PubMed: 28041848] 

Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science. 2017:357.

Su X, Ditlev JA, Hui E, Xing W, Banjade S, Okrut J, King DS, Taunton J, Rosen MK, Vale RD. Phase 
separation of signaling molecules promotes T cell receptor signal transduction. Science. 2016; 
352:595–599. [PubMed: 27056844] 

Taslimi A, Vrana JD, Chen D, Borinskaya S, Mayer BJ, Kennedy MJ, Tucker CL. An optimized 
optogenetic clustering tool for probing protein interaction and function. Nat Commun. 2014; 
5:4925. [PubMed: 25233328] 

Toettcher JE, Gong D, Lim WA, Weiner OD. Light-based feedback for controlling intracellular 
signaling dynamics. Nature methods. 2011; 8:837–839. [PubMed: 21909100] 

Toettcher JE, Weiner OD, Lim WA. Using optogenetics to interrogate the dynamic control of signal 
transmission by the Ras/Erk module. Cell. 2013; 155:1422–1434. [PubMed: 24315106] 

Turing AM. The chemical basis of morphogenesis. Bulletin of mathematical biology. 1953; 52:153–
197. discussion 119–152. 

van Lengerich B, Agnew C, Puchner EM, Huang B, Jura N. EGF and NRG induce phosphorylation of 
HER3/ERBB3 by EGFR using distinct oligomeric mechanisms. Proc Natl Acad Sci USA. 2017; 
114:E2836–E2845. [PubMed: 28320942] 

Wagner C. Theory of precipitate change by redissolution. Z Elektrochem. 1961; 65:581–591.

Xiong W, Ferrell JE Jr. A positive-feedback-based bistable ‘memory module’ that governs a cell fate 
decision. Nature. 2003; 426:460–465. [PubMed: 14647386] 

Yuan H, Bauer CE. PixE promotes dark oligomerization of the BLUF photoreceptor PixD. Proc Natl 
Acad Sci USA. 2008; 105:11715–11719. [PubMed: 18695243] 

Dine et al. Page 17

Cell Syst. Author manuscript; available in PMC 2019 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

1. We introduce PixELLs, an optogenetic system for protein droplet 

disassembly.

2. Modeling and experiments demonstrate long-term memory of local droplet 

dissociation.

3. Droplets ‘remember’ spatial stimuli in nuclei, the cytosol and on cell 

membranes.

4. FGFR-optoDroplets convert transient local inputs to persistent cytoskeletal 

responses.
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Figure 1. A mathematical model predicts long-term spatial memory from phase separation
(a) Asymmetric protein clustering occurs as part of polarized intracellular processes. (b) 

Schematic of simulated experiment where clusters are locally dissolved by a transient 

stimulus. (c) Still frames from simulation demonstrating the response to the stimulus in b. 

(d,e) Quantification of the total number of particles (d) and mean cluster size (e) in the 

stimulated and unstimulated regions during all three stimulation time periods. Mean ± SEM 

are shown from five independent runs. (f) A simulated photobleaching experiment 

demonstrates rapid exchange of monomers in and out of clusters. Mean ± SEM for 10 

clusters is shown. (g) Modeling suggests that transient, local stimuli can drive persistent 

asymmetries of dynamic, liquid-like granules. See also Figure S1 and Movies S1–S3.
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Figure 2. Developing an optogenetic system for spatial control over liquid droplet disassembly
(a) Constructs used to create the PixELL optogenetic system and (b) schematic of blue light-

dissociable intracellular droplets. (c) Representative images of intracellular clusters before 

and after 450 nm light-induced dissociation. (d) Quantification of photoswitchable 

clustering during 5 cycles of dissociation and aggregation. Mean ± SEM are shown for 8 

representative cells. Images from c are shown as insets to relate intracellular droplet patterns 

to SNR quantification. (e) Visualization of two PixELL droplet fusion events. (f) Droplet 

intensity during FRAP experiments indicating photobleaching at t=0 and recovery over 10 

min. Mean ± SEM are shown for 5 cells, normalized to initial intensity. See also Figures S2–

S3 and Movies S4–S5.
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Figure 3. PixELLs exhibit long-term spatial memory of transient stimuli
(a) Schematic and images of spatially-restricted 450 nm light stimulation. Fluorescent 

images of FUSN-FusionRed-PixD are shown for cells before, during and after stimulation. 

(b) Cytoplasmic intensity in regions inside and outside the stimulation mask for 4 cells. 

Mean ± SEM are shown. (c) Mean cluster size for the cell in a, averaged across 5 clusters 

inside and outside the stimulation area. (d) Still images showing long-term memory of a 

nucleus-localized light stimulus. See also Figure S4 and Movie S6.
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Figure 4. PixELLs amplify shallow stimulus gradients into all-or-none spatial patterns of 
droplets
(a) Gradient stimulation of a PixELL-expressing NIH3T3 cell. Fluorescent images of FUSN-

FusionRed-PixD are shown for a representative cell stimulated with a linear gradient of light 

intensity. (b) Kymograph of maximum FUSN-FusionRed-PixD fluorescence within each row 

of the yellow box from a (right), and median blue light intensity measured within the yellow 

box from a (left). (c) Quantification of the kymograph in b at 35 min, after spatial light 

pattern is established. A gradual decrease in 450 nm intensity (top panel; blue curve) elicits 

a sharp, switch-like transition to form bright FUSN-FR-PixD droplets (bottom panel; red 

curve). See also Movie S7.
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Figure 5. Membrane-localized optoDroplets retain spatial memory of transient stimuli
(a) Schematic of Myr-optoDroplet construct and mode of activation. (b) Still images of Myr-

FUSN-FusionRed-Cry2 for a cell exposed to a transient, local 450 nm stimulus. (c) 

Quantification of total intensity for membrane regions inside and outside the stimulus mask, 

respectively. Mean ± SEM are shown for 3 cells. (d) Schematic and still images of Myr-

FUSN-FusionRed-Cry2 localization in the membrane plane for a cell exposed to a local 450 

nm stimulus (dashed blue box) followed by global 450 nm illumination. (e) Quantification 

of total intensity in membrane regions inside and outside the stimulus mask, respectively. 

Mean ± SEM are shown for 3 cells. See also Movies S8–S9.
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Figure 6. Liquid phase separation drives spatial memory in RTK signaling
(a) Schematic showing FGFR1-optoDroplets for inducing RTK clustering and downstream 

signaling. (b) FGFR1-optoDroplet cells reversibly “cringe” in response to global blue light 

stimulation. (c) Quantification of change in cell surface area for cell pictured in b. (d) 
FGFR1-optoDroplet cells retract in response to light, ‘avoiding’ a local light stimulus. (e) 

FGFR1-optoDroplet cells exhibit persistent local clustering and cytoskeletal contraction 

even after a switch to global illumination. (f) Quantification of cell surface area within the 

local-to-global illuminated region (blue box in e) and global-only illuminated region 

(remainder of cell in e) during local-to-global illumination. See also Figure S5 and Movies 

S10–S12.
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