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Go/No-Go task engagement enhances population
representation of target stimuli in primary auditory
cortex
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Shihab Shamma2,3, Yves Boubenec 2 & Srdjan Ostojic 5

Primary sensory cortices are classically considered to extract and represent stimulus fea-

tures, while association and higher-order areas are thought to carry information about sti-

mulus meaning. Here we show that this information can in fact be found in the neuronal

population code of the primary auditory cortex (A1). A1 activity was recorded in awake ferrets

while they either passively listened or actively discriminated stimuli in a range of Go/No-Go

paradigms, with different sounds and reinforcements. Population-level dimensionality

reduction techniques reveal that task engagement induces a shift in stimulus encoding from a

sensory to a behaviorally driven representation that specifically enhances the target stimulus

in all paradigms. This shift partly relies on task-engagement-induced changes in spontaneous

activity. Altogether, we show that A1 population activity bears strong similarities to frontal

cortex responses. These findings indicate that primary sensory cortices implement a crucial

change in the structure of population activity to extract task-relevant information during

behavior.
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How and where in the brain are sensory representations
transformed into abstract percepts? Classical anatomical
and physiological studies have suggested that this trans-

formation occurs progressively along a cortical hierarchy. Pri-
mary sensory areas are commonly believed to process and extract
high-level physical properties of stimuli, such as orientations of
visual bars in the primary visual cortex or abstract sound features
in the primary auditory cortex1,2. These fundamental sensory
features are then integrated and interpreted as behaviorally
meaningful sensory objects, and relayed to higher cortical areas,
which extract increasingly task-relevant abstract information.
Prefrontal, parietal, and premotor areas lie at the apex of the
hierarchy3,4. They integrate inputs from different sensory mod-
alities, transform sensory information into categorical percepts
and decisions, and store them in working memory until the time
when the appropriate motor action needs to be executed5,6.

According to this classical feedforward picture, primary sen-
sory areas are often considered as playing a largely static role
in extracting and encoding high-level stimulus physical attri-
butes7–10. However, a number of recent studies in awake,
behaving animals have challenged this view and shown that the
information represented in primary areas in fact strongly depends
on the behavioral state of the animal. Motor activity, arousal,
learning, and task engagement have been found to strongly
modulate responses in primary visual, somatosensory, and audi-
tory cortices11–25. Effects of task engagement have been parti-
cularly investigated in the auditory cortex, where it was found
that receptive fields of primary auditory cortex neurons adapt
rapidly to behavioral demands when animals engage in various
types of auditory discrimination tasks26–30. These observations
have been interpreted as signatures of highly flexible sensory
representations in primary cortical areas, and they raise the
possibility that these areas may be performing computations
more complex than simple extraction and transmission of sti-
mulus features to higher-order regions.

An important limitation of many previous studies26–30 is that
they relied mostly on a single-cell description, which characterized
the selectivity of average individual neurons to sensory stimuli.
Here we show that simple population analyses reveal that task
engagement induces a shift in the primary auditory cortex from a
sensory-driven representation to a representation of the behavioral
meaning of stimuli, analogous to the one found in the frontal
cortex. We first analyzed the responses during a temporal auditory
discrimination task, in which ferrets had to distinguish between Go
(Reference) and No-Go (Target) stimuli corresponding to click
trains of different rates. The activity of the same neural population
was recorded when the animals were engaged in the task and when
they passively listened to the same stimuli. Both single-cell and
population analyses showed that task engagement decreased the
accuracy of encoding the physical attributes of stimuli. Population,
but not single-cell, analyses, however, revealed that task engage-
ment induced a shift toward an asymmetric representation of the
two stimuli that enhanced target-evoked activity in the subspace of
optimal decoding. This shift was in part enabled by a novel
mechanism based on the change in the pattern of spontaneous
activity during task engagement.

Performing identical analyses on independent datasets col-
lected in A1 during other behavioral discrimination tasks
demonstrated that our main finding can be well generalized,
independently of the type of stimuli, behavioral paradigm, or
reward contingencies. Finally, a comparison between popula-
tion activity in A1 and single-cell recordings in the frontal
cortex revealed strong similarities. Altogether, our results sug-
gest that task-relevant, abstracted information is present in
primary sensory cortices and can be read out by neurons in
higher-order cortices.

Results
Task engagement impairs A1 encoding of stimulus features.
We recorded the activity of 370 units in the primary auditory
cortex (A1) of two awake ferrets in response to periodic click
trains. The animals were trained using a conditioned avoidance
paradigm26 to lick water from a spout during the presentation of
a class of reference stimuli and to stop licking following a target
stimulus (Animal 1: 83% hit +/−3% SEM; Animal 2: 69% hit
+/−5% SEM) (Fig. 1a; see Methods). Target stimuli thus required
a change in the ongoing behavioral output while reference stimuli
did not. Each animal was trained to discriminate low vs high click
rates, but the precise rates of reference and target click trains
changed in every session. The category choice was opposite in the
two animals to avoid confounding effects of stimulus rates (low/
high) and behavioral category (reference/target). Thus the target
for one ferret was high click train rates, and the target for the
other ferret was low click train rates. In each session, the activity
of the same set of single units was recorded during active behavior
(task-engaged condition) and during passive presentations of the
same set of auditory stimuli before and after behavior (passive
conditions).

We first examined how auditory cortex responses and stimulus
encoding depended on the behavioral state of the animal. In
agreement with previous studies14,19, spontaneous activity often
increased in the task-engaged condition, while stimulus-evoked
activity was often suppressed (Fig. 1b). To quantify the changes in
activity over the population, we used a modulation index of mean
firing rates between passive and task-engaged conditions,
estimated in different epochs (Fig. 1c; see Methods). Spontaneous
activity before stimulus presentation increased in the engaged
condition (n= 370 units, p < 0.0001), while baseline-corrected
stimulus-evoked activity did not change overall (n= 370 units, p
= 0.94). These changes in average activity suggested that the
signal-to-noise ratio between stimulus-evoked and spontaneous
activity paradoxically decreased when the animals engaged in the
task.

To quantify in a more refined manner the timing of neural
responses with respect to click times, we computed the vector
strengths (VSs) of individual unit responses, a standard measure
of phase-locked activity evoked by click trains12,31. VSs quantify
the amount of entrainment of the neural response to the clicks
and range from 1 for responses fully locked to clicks to 0 for
responses independent of click timing. A vast majority of neurons
(Passive Ref/Targ: 80%, 81% and Engaged Ref/Targ: 84%, 81%)
displayed statistically significant VSs in both conditions. How-
ever, VS decreased in the engaged condition compared to the
passive condition (Fig. 1c; n= 574 (287 units, 2 sounds), p <
0.0001), independently of the rate of the click train and the
identity of the stimuli (Supplementary Fig. 1). This reduction in
stimulus entrainment further suggested that task engagement
degraded the encoding of click times in A1.

The change in activity between passive and task-engaged
conditions was heterogeneous across the neural population.
While stimulus entrainment was on average reduced in the
engaged condition, a minority of neurons increased their
responses. One possibility is that such changes reflect an
increased sparseness of the neural code. Under this hypothesis,
the stimuli are represented by smaller pools of neurons in the
task-engaged condition but in a more reliable manner. To address
this possibility, we built optimal decoders that reconstructed click
timings from the activity of all simultaneously recorded neurons,
in a trial-by-trial manner (Fig. 1d, Methods). We found that the
reconstruction accuracy decreased in the task-engaged condition
compared to the passive condition (Fig. 1e–g), confirming that
encoding of click times decreased during behavior.
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In summary, the fine physical features of the behaviorally
relevant stimuli became less faithfully represented by A1 activity
when the animals were engaged in this discrimination task.

State-independent discrimination of stimulus category. In the
task-engaged condition, the animals were required to determine
whether the rate of each presented click train was high or low.
They needed to make a categorical decision about the stimuli and
correctly associate them with the required actions, before using
that information to drive behavior. We therefore asked to what

extent the two classes of stimuli could be discriminated based on
population responses in A1 in the task-engaged and in the passive
conditions.

We first compared the mean firing rates evoked by target and
reference click trains. While some units elevated their activity for
the target stimulus (Fig. 2a, left), others preferred the reference
(Fig. 2a, right). Over the whole population, mean firing rates were
not significantly different for target vs reference stimuli (Fig. 2b)
or for low vs high rate click trains (Supplementary Fig. 2a). This
observation held in both passive and task-engaged conditions.
Discriminating between the stimuli was thus not possible on the
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Fig. 1 Task structure and neural encoding of click times in A1. a Structure of the click-train discrimination task and average behavior of the two animals.
Each sound sequence is composed of 0.4 s silence then a 1.25 s long white noise burst followed by a 0.8 s click train and a 0.8 s silence. On each block, the
ferret is presented with a random number (1–7) of reference stimuli (top) followed by a target stimulus (bottom), except on catch trials with no target
presentations. On blocks including a target, the animal had to refrain from licking during the final 0.4 s of the trial, the no-go period, to avoid a mild tail
shock (error bars are +/− SEM). b PSTH of two example units during reference sequences in the passive and engaged state. Note that, in the task-
engaged state, the units show enhanced firing during the initial silent period of spontaneous activity and reduced phase locking to the stimulus. c
Modulation index of each unit for spontaneous firing rate, spontaneous-corrected click-evoked firing rate, and vector strength showing higher spontaneous
firing rates and lower vector strength in the task-engaged state. The vector strength was only calculated for units firing above 1 Hz and values for both
reference and target are shown. SEM error bars are not shown because not visible at this scale: 0.017, 0.037, and 0.013, respectively (one-sample two-
sided Wilcoxon signed-rank test with mean 0, n= 370, 574, 370, zval=−8.99, p= 2.57e-19; zval=−0.07, p= 0.94; zval=−8.82, p= 1.16e-18;
***p < 0.001). d Schematic of stimulus reconstruction algorithm. Using PSTHs from half of the trials, a time-lagged filter is fitted to allow optimal
reconstruction of the stimulus for each individual unit. Individual reconstructions are summed to obtain a population reconstruction (far right). e Stimulus
reconstruction from an example session showing degraded reconstruction in the task-engaged state. f Mean click reconstruction in passive and engaged
states. gModulation index of each session for stimulus reconstruction error. SEM error bar is not shown because it is not visible at this scale: 0.0014 (one-
sample two-sided Wilcoxon signed-rank test with mean 0, n= 36; zval=−3.4092, p= 6.51e-4; ***p < 0.001)
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basis of population-averaged firing rates (see Supplementary
Fig. 2b).

To take into account the heterogeneity of neural responses and
quantify the ability of the whole population to discriminate
between target and reference stimuli on an individual trial basis,
we adopted a population-decoding approach. We used a simple,
binary linear classifier that mimics a downstream readout neuron.
The classifier takes as inputs the spike counts of all the units in
the recorded population, multiplies each input by a weight, and
compares the sum to a threshold to determine whether a trial was
a reference or a target. The weight of each unit was set based on
the difference between the average spike counts evoked by the two
stimuli (Supplementary Fig. 3 and Methods). This weight was
therefore positive or negative depending on whether it preferred
the target or reference stimulus. Different decoder weights were
determined at every time-bin in the trial. The width of the time-
bins (100 ms) was larger than the interclick intervals (Methods).
Shorter time-bins increase the amount of noise but do not affect
our main findings (Supplementary Fig. 8A). Training and testing
the classifier on separate trials allowed us to determine the cross-
validated performance of the classifier and therefore the ability to
discriminate between the two stimulus classes based on single-
trial activity in A1.

During stimulus presentation, the linear readout could
discriminate target and reference stimuli with high accuracy in

both passive and task-engaged conditions (Fig. 2d, e). Because the
classifier performed at saturation during the sound epoch, it
could be that differences between passive and engaged classifiers
were masked by the substantial number of neurons provided to
the classifiers. Decoders performing with lower numbers of
neurons did not reveal any difference between the two behavioral
states (Supplementary Fig. 4a). Moreover, this discrimination
capability did not appear to be layer-dependent (Supplementary
Fig. 4b, c). The primary auditory cortex therefore appeared to
robustly represent information about the stimulus class, inde-
pendently of the decrease in the encoding of precise stimulus
properties that occurs during task engagement.

We next examined the discrimination performance during the
silence immediately after stimulus offset. This silent period
consisted of a 400 ms interval followed by a response window,
during which the animal learned to stop licking if the preceding
stimulus was a target. As during the sound period, mean firing
rates were not significantly different for the two types of stimuli
during post-stimulus silence (Fig. 2c). Nevertheless, we found that
discrimination performance between target and reference trials
remained remarkably high throughout the post-stimulus silence
in the task-engaged condition. In the passive condition, the
decoding performance decayed during post-stimulus silence but
remained above chance level (Fig. 2d, e and Supplementary
Fig. 5b). The information about the stimulus class was thus
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maintained during the silent period in the neural activity in A1
but more strongly when the animal was actively engaged in the
task. Moreover, a comparison between the decoders determined
during the sound and after stimulus presentation showed that the
encoding of information changed strongly between the two
epochs of the trial (Supplementary Fig. 6 and Supplementary
Methods).

Shift to target-driven stimulus representation during behavior.
We next examined in more detail the neural activity that
underlies the classification performance in the two conditions.
Target and reference stimuli play highly asymmetric roles in the
Go/No-Go task design studied here as their behavioral meaning is
totally different. As shown in Fig. 1a, animals continuously licked
throughout the task and only target stimuli elicited a change from
this ongoing behavioral output, whereas reference stimuli did not.
We therefore sought to determine whether target- and reference-
induced neural responses play similar or different roles in the
discrimination between target and reference stimuli.

We first used dimensionality-reduction techniques to visualize
the trajectories of the population activity in three dimensions
(Fig. 3a, see Methods for details). The three principal dimensions
were determined jointly for the passive and engaged data. This
allowed us to visually inspect the difference in population dynamics
and decoding axes between the two behavioral conditions. The
average neural trajectories on reference and target trials strongly
differ in the two behavioral conditions. In the passive condition,
reference and target stimuli led to approximately symmetric
trajectories around baseline spontaneous activity, suggesting that
reference and target stimuli played essentially equivalent roles
during the sound (Fig. 3a, c, d). In contrast, in the task-engaged
condition, the activity evoked by reference and target stimuli
became strongly asymmetric with respect to the decoding axes and
the spontaneous activity (Fig. 3b, e, f).

To further characterize the change in information representa-
tion between the two conditions, we examined the average inputs
from target and reference stimuli to a hypothetical readout
neuron corresponding to a previously determined linear classifier.
This is equivalent to projecting the trial-averaged population
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activity onto the axis determined by the linear classifier, trained at
a given time point in the trial. This procedure sums the neuronal
responses after applying an optimal set of weights. It effectively
reduces the population dynamics from N= 370 dimensions
(where each dimension represents the activity of an individual
neuron) to a single, information-bearing dimension. The
discrimination performance of the classifier is directly related to
the distance between reference and target activity after projection,

so that the projection allows us to visualize how the classifier
extracts the stimulus category from the neuronal responses to the
two respective stimuli. Projecting the spontaneous activity along
the same axis provides, moreover, a baseline for comparing the
changes in activity induced by the target and reference stimuli
along the discrimination axis. As the encoding changes strongly
between stimulus presentation and the subsequent silence
(Supplementary Fig. 6 and Supplementary Note 1), we examined
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two projections corresponding to the decoders determined during
stimulus and during silence.

As suggested by the three-dimensional visualization, the
projections on the decoding axes demonstrated a clear change
in the nature of the encoding between the two behavioral
conditions. In the passive condition, reference and target stimuli
led to approximately symmetric changes around baseline
spontaneous activity (Fig. 3c, d). In contrast, in the task-
engaged condition, the activity evoked by reference and target
stimuli became strongly asymmetric (Fig. 3e, f). In particular, the
projection of reference-evoked activity remained remarkably close
to spontaneous activity throughout the stimulus presentation and
the subsequent silence in the task-engaged condition. The strong
asymmetry in the engaged condition and the alignment of
reference-evoked activity were found irrespective of whether the
projection was performed on decoders determined during
stimulus (Fig. 3e, f, top) or during silence (Fig. 3e, f, bottom).
The time courses of the two projections were however different,
with target-evoked responses rising very rapidly (Fig. 3e, f, top)
when projected along the first axis but much more gradually
when projected along the second axis (Fig. 3e, f, bottom). In both
cases, however, our analysis showed that in the engaged condition
the discrimination performance relies on an enhanced detection
of the target.

The strong similarity between the projection of reference-
evoked activity and the baseline formed by the projection of
spontaneous activity is not due to the lack of responses to
reference stimuli in the engaged condition. Reference stimuli do
evoke strong responses above spontaneous activity in both passive
and task-engaged conditions. However, in the task-engaged but
not in the passive condition, the population response pattern of
the reference stimuli appears to become orthogonal to the axis of
the readout unit during behavior. The strong asymmetry between
reference- and target-evoked responses is therefore seen only
along the decoding axis, but not if the responses are simply
averaged over the population, or averaged after sign correction
for the preference between target and reference (Supplementary
Fig. 7). We verified that these results are robust across a range of
time bins (10–200 ms), allowing us to cover timescales both on
the order of the click rate and much longer. Both the increase in
post-sound decoding accuracy in the engaged state and the
increased asymmetry of target/reference representation were
observed at all timescales (Supplementary Fig. 8a, b).

Target representation in A1 is independent of motor activity.
One simple explanation of the asymmetry between target- and

reference-evoked responses could potentially be the motor-
evoked neuronal discharge. Indeed, during task engagement, the
animals’ motor activity was different following target and refer-
ence stimuli as the animals refrained from licking before the No-
Go window following the target stimulus but not the reference
stimulus (Fig. 1a). As neural activity in A1 can be strongly
modulated by motor activity17, such effects could potentially
account for the observed differences between target- and
reference-evoked population activity.

To assess the role played by motor activity in our findings, we
first identified units with lick-related activity. To this end, we used
decoding techniques to reconstruct lick timings from the
population activity and determined the units that significantly
contributed to this reconstruction by progressively removing
units until licking events could not anymore be detected from the
population activity. We excluded a sufficient number of neurons
(10%) such that a binary classifier using the remaining units
could no longer classify lick and no-lick time points as compared
with random data (p > 0.4; Fig. 4a, b, see Methods). We then
repeated the previous analyses after removing all of these units.
The discrimination performance between target and reference
trials remained high and significantly different between the
passive and the task-engaged conditions during the post-stimulus
silence (Fig. 4c, d), while projection of target- and reference-
elicited activity on the updated decoders still showed a strong
asymmetry in favor of the target (Fig. 4e, f). This indicated that
the information about the behavioral meaning of stimuli was
represented independently of any overt motor-related activity. In
all subsequent analyses, we excluded all lick-responsive neurons.

Although the information present in A1 during the post-
stimulus silent period could not be explained by motor activity, it
appeared to be directly related to the behavioral performance of
the animal. To show this, we classified population activity on
error trials, in which the animal incorrectly licked on target
stimuli, using classifiers trained on correct trials. Error trials
showed only a slight impairment of accuracy during the sound
presentation, but strikingly, the discrimination accuracy of the
classifier during the post-stimulus silence on these trials dropped
down to the performance level measured during passive sessions
(Fig. 4c, e). This analysis therefore demonstrated a clear
correlation between the behavioral performance and the informa-
tion on stimulus category present during the silent period in A1.

Mechanisms underlying task-dependent target representation.
The previous analyses of population activity have shown that task
engagement induces an asymmetric encoding, in which the

Fig. 4 Relation between A1, motor activity, and behavioral outcome a Schematic of the approach used to identify lick-responsive units. First, we
reconstructed licks using optimal filters as for click reconstruction (Fig. 1). The filter is applied during licks and also during randomly selected time points
with no licks (top left). We evaluated the accuracy of classifying lick and no-lick time events using a linear decoder (black distribution, middle panel). In
both cases, the significance was tested using randomized data (top right and purple distribution, middle panel). We iteratively removed the best
classification units (bottom plot) until the p value was >0.4 and the two distributions were indistinguishable. b Results of reconstruction of lick events and
removal of lick units. Left: heatmap of average lick reconstruction for all neurons ordered by classification weight. Right: average reconstruction of lick and
no-lick events using units retained for population analysis (non-lick responsive) and units excluded from the population analysis (lick responsive). c
Accuracy of stimulus classification in passive and engaged states using only non-lick-responsive units. Note that, after removal of lick-responsive units, the
discrimination during post-stimulus silence is still enhanced in the task-engaged state on correct trials but is low during error trials. Error bars represent
1 std calculated over 400 cross-validations. d Comparison of mean accuracy on passive, task-engaged correct and task-engaged error trials, during sound
(left) and post-stimulus silence periods (right). Error bars represent 95% confidence intervals. (n= 400 cross-validations; sound: pass/eng
p= 0.22, eng/err: p= 0.87; silence: pass/eng p < 0.0025, eng/err: p= 0.012; *p < 0.05, **p < 0.01) e Projection onto the decoding axis of baseline-
subtracted population vectors during the engaged condition constructed using activity of non-lick-responsive units only for the reference and target stimuli.
Projections are shown onto the decoding axes obtained on early sound (top) and silence periods (bottom) (shaded epochs). The origin corresponds to the
projection of spontaneous activity (shown by black line). Error bars represent 1 std (cross-validation n= 400). f Distance of reference and target
projections from baseline in the engaged condition during sound and silence periods. Error bars represent 95% confidence intervals (n= 400 cross-
validations; p < 0.0025 and p < 0.0025; **p < 0.01)
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activity elicited by reference stimuli becomes similar to sponta-
neous background activity when seen through the decoder. Two
different mechanisms can potentially contribute to this shift
between passive and engaged conditions: (i) the spontaneous
activity changes between the two behavioral states such that its
projection on the decoding axis becomes more similar to
reference-evoked activity; (ii) stimulus-evoked activity changes
between the states, inducing a change in the decoding axis and in
the projections. In general, both mechanisms can be expected to
contribute and their effects can be separated during different
epochs of the trial.

To disentangle the effects of the two mechanisms, we chose a
fixed decoding axis and projected on the same axis the stimulus-
evoked activity from both passive and engaged conditions. We
then compared the resulting projections with projections of both
passive and engaged spontaneous activity. We performed this
procedure separately for decoding axes determined during sound
and silence epochs.

Figure 5a (top) illustrates the projections along the decoding
axis determined during the sound epoch in the engaged
condition. Comparing the passive responses with the passive
and engaged spontaneous activity revealed that the projection of
passive reference-evoked activity was aligned during sound
presentation with the projection of engaged but not passive
spontaneous activity (Fig. 5a, top left). A similar observation held
for the engaged responses throughout the sound presentation
epoch (Fig. 5a, top right). These projections remained similar
regardless of whether the decoding axes were determined during
the passive or the engaged conditions, as these two axes largely
share the same orientation (Supplementary Fig. 6e). Altogether,

these results indicate that the change in spontaneous baseline
activity during task engagement is sufficient to explain the
strongly asymmetric, target-driven response observed early in the
trial during sound presentation (Fig. 5b, top).

However, we reached a different conclusion when we examined
the activity during the post-stimulus silence (Fig. 5a, bottom).
Repeating the same procedure as above but projecting on the
decoding axis determined during the post-stimulus silence
revealed that the shift in spontaneous activity alone was not able
to account for the asymmetry of the projected responses during
the post-stimulus silence (Fig. 5b, bottom). The target-driven,
asymmetrical projections observed during this trial epoch there-
fore relied in part on a change in stimulus-evoked responses.

All together, we found that the changes in baseline sponta-
neous activity induced by the task engagement are key in
explaining the enhancement of the target-driven, asymmetric
encoding during sound presentation. As described above, the
encoding axis during sound presentation is not drastically
affected by task engagement. Instead, it is the population
spontaneous activity that aligns with the reference-elicited activity
with respect to the decoding axis. This observation in particular
provides an additional argument against the possibility that the
appearance of an asymmetrical representation is due to the
asymmetrical motor responses to the two stimuli. Rather, the
asymmetry is geometrically explained by baseline changes that
precede stimulus presentation and reflects the behavioral state of
the animal.

Frontal cortex responses parallel population encoding in A1.
The pattern of activity resulting from projecting reference- and
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target-elicited A1 activity on the linear readout is strikingly
similar to previously published activity recorded in the dorso-
lateral frontal cortex (dlFC) of behaving ferrets performing
similar Go/No-Go tasks (tone-detect and two-tone discrimination
in ref. 32). We therefore compared in more detail A1 activity with
activity recorded in dlFC during the same click-rate discrimina-
tion task. When the animal was engaged in the task, single units
in dlFC encoded the behavioral meaning of the stimuli by
responding only to target stimuli but remaining silent for refer-
ence stimuli (Fig. 6a, bottom panel). Target-induced responses
were moreover observed well after the end of the stimulus pre-
sentation, allowing for a maintained representation of stimulus
category. The strong asymmetry of single-unit responses in dlFC
clearly resembles the activity extracted from the A1 population by
the linear decoder (Figs. 3 and 4). This suggests that the target-
selective responses in the dlFC that reflect the cognitive decision
process could in part be thought of as a simple readout of
information already present in the population code of A1.

To further examine the relationship between dlFC single-unit
responses and population activity in A1, we next compared the
time course of the projected target-elicited data in A1 (Fig. 3e)
and the population-averaged target-elicited neuronal activity in
dlFC (Fig. 6a, bottom panel) during engaged sessions. As
mentioned above, the optimal decoding axes for A1 activity
changes between the stimulus presentation epoch and the silence
that follows (Supplementary Fig. 6). The time course of the
projected A1 activity depends strongly on the axis used for the
projection. When projecting on the axis determined during
stimulus presentation, the target-elicited response in A1 was
extremely fast (0.08 s+ /− 0.009 std) compared to the much
longer response latency in the population-averaged response of
dlFC neurons (0.48 s+ /− 0.12 std) (Fig. 6b). In contrast, when
projecting on the axis determined during post-stimulus silence,
the target-elicited response in A1 was slower (0.21 s+ /−
0.03 std) and closer to the population-averaged response in the
dlFC (note that a fraction of individual units in dlFC display very
fast responses not reflected in the population average, see Fritz
et al.32). Our analyses therefore identified two contributions to
target-driven population dynamics in A1, a fast component
absent in population-averaged dlFC activity and a slower
component similar to population-averaged activity in dlFC, thus

pointing to a possible contribution of an A1–FC loop that could
be engaged during auditory behavior.

Target representation in A1 is a general feature of Go/No-Go
tasks. To determine whether the task-related increase in asym-
metry between target and reference was a more general feature of
primary auditory cortex responses during auditory discrimina-
tion, we applied our population analysis to other datasets col-
lected during different tasks. All of these tasks used Go/No-Go
paradigms (see Supplementary Fig. 9a, e, I and Methods), in
which the animals were presented with a random number of
references followed by a target stimulus. In these different data-
sets, animals were required to discriminate noise bursts vs pure
tones (tone-detect tasks) or categorize pure tones drawn from
low-, medium-, or high-frequency ranges (frequency range dis-
crimination task). Contrasting datasets were obtained from two
groups of ferrets that were separately trained on approach and
avoidance versions of the same tone-detect task. These two
behavioral paradigms used exactly the same stimuli under two
opposite reinforcement conditions30, requiring nearly opposite
motor responses (Supplementary Fig. 9a, e). A crucial feature
shared by all these tasks lies in the fact that the behavioral
response to the target stimulus always required a behavioral
change relative to sustained baseline activity. More specifically,
the target was the No-Go stimulus in negative reinforcement
tasks and required animals to cease ongoing licking, whereas the
target was the Go stimulus in the positive reinforcement task and
required animals to begin licking in a non-lick context. In all of
the analyses, lick-related neurons were removed using the
approach outlined earlier.

Performing the same analyses on all tasks showed that
projections of target- and reference-evoked activities in passive
conditions contained a variable degree of asymmetry in the sound
and silence epochs. However, in all tasks we found that task
engagement leads an enhancement of target-driven encoding
during sound (Fig. 7a, b; e, f; i, j; m, n). As previously described
for the rate discrimination task (Figs. 3 and 4e), target projections
more strongly deviated from baseline than projections of
reference stimuli in the engaged condition. Moreover, for three
of the four tasks we examined, enhancement of target
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representations was not observed at the level of population-
averaged responses but only in the direction determined by the
decoder (Fig. 7b, f, j, n). During the post-sound silence, decoding
accuracy quickly decayed in both passive and engaged states but
remained above chance (Supplementary Fig. 9c, g, k). As in the
click-train detection task, decoding accuracy relied on a different
encoding strategy than the sound period (Supplementary Fig. 9d,
h, l), and the asymmetry during the post-sound silence was high
both in passive and engaged conditions (Supplementary Fig. 10).

Comparison of appetitive and aversive versions of the same
task is particularly revealing as to which type of stimulus was
associated with enhanced representation in the engaged state. In

the appetitive version of the tone-detect task, ferrets needed to
refrain from licking on the reference sounds (No-Go) and started
licking the water spout shortly after the target onset (Go)
(Supplementary Fig. 9e), whereas in the aversive (conditioned
avoidance) paradigm they had to stop licking after the target
sound (No-Go) to avoid a shock (Supplementary Fig. 9a). It is
important to note that, although the physical stimuli presented to
the behaving animals were identical in both tone-detect tasks, the
associated motor behaviors of the animals are nearly opposite.
Projection of task-engaged A1 population activity reveals a target-
driven encoding (compare right panels of Fig. 7f, j with Fig. 7I, j),
irrespective of whether the animal needed to refrain from or to
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start licking to the target stimulus. This shows that the common
feature of stimuli that are enhanced after projection onto the
decoding axis is that they are associated with a change of ongoing
baseline behavior.

This range of behavioral paradigms provides additional
arguments against the described changes in activity being solely
due to correlates of licking activity. First, we observed enhanced
target-driven encoding in both the appetitive and aversive tone-
detect paradigms, even though the licking profiles were
diametrically opposite to each other. Second, comparing the
projections of the population activity in the approach tone-detect
task with the click-rate discrimination task reveals a strong
similarity in the temporal pattern of asymmetry observed during
task engagement. In <100 ms, projection of target-elicited activity
reached its peak in both paradigms (Fig. 7a, i), although the
direction and time course of the licking responses were reversed,
with a fast decline in lick frequency for the click-rate
discrimination task (Fig. 1a), vs a slow increase for the tone
detect (Supplementary Fig. 9e, left panel). Last, although the
results are more variable partly due to low decoding performance,
we observed target-driven encoding during the post-stimulus
silence in the passive state (Supplementary Fig. 10) although
ferrets were not licking during this epoch. The points listed here
are again in agreement with a representation of the stimulus’
behavioral consequences, independent of the animal motor
response.

As pointed out in the case of the click-rate discrimination task,
the enhancement of target representation in the engaged
condition can rely on two different mechanisms, a shift in the
spontaneous activity or a shift in stimulus-evoked activity. We
therefore set out to tease apart the respective contributions of the
two mechanisms in this novel set of tasks. As in Fig. 5, we
compared the distance of target and reference passive and
engaged projections to either engaged or passive baseline
activities. Out of the three additional datasets, we observed an
increase in spontaneous firing rates only in the aversive tone-
detect task (Fig. 7g, similar to Fig. 7c). In this latter paradigm,
task-induced modulations of spontaneous activity patterns
explained the change in asymmetry during sound presentation,
similar to what was observed in the click-rate discrimination task
(compare Fig. 7d, h). The other two tasks showed no global
change of spontaneous firing rate (Fig. 7k, o), and consequently,
during the task engagement, the enhancement of the target
representation was solely due to the second mechanism, the
changes in the target-evoked responses themselves (Fig. 7l, p).
During the silence, we observed as previously for the click-rate

discrimination that the increase in asymmetry relied only on the
second mechanism (Supplementary Fig. 9).

Taken all together, population analysis on four different Go/
No-Go tasks revealed an increase of the encoding in favor of the
target stimulus as a general consequence of task engagement on
A1 neural activity. Viewing activity changes in this light allowed
us to interpret the previously observed changes in spontaneous
activity as one of two possible mechanisms underlying this task-
induced change of stimulus representation in A1 population
activity.

Discussion
In this study, we examined population responses in the ferret
primary auditory cortex during auditory Go/No-Go discrimina-
tion tasks. Comparing responses between sessions in which ani-
mals passively listened and sessions in which animals actively
discriminated between stimuli, we found that task engagement
induced a shift from a sensory driven to an asymmetric, target
enhanced, representation of the stimuli, highly similar to the type
of activity observed in dlFC during engagement in the same task.
This enhanced representation of target stimuli was found in a
variety of discrimination tasks that shared the same basic Go/No-
Go structure but used a variety of auditory stimuli and reinfor-
cement paradigms.

In the click-rate discrimination task that we analyzed first, the
sustained asymmetric stimulus representation in A1 was only
observed in the engaged state (Fig. 3). One possible explanation is
that this encoding scheme relied on corollary neuronal discharges
related to licking activity. However, there are several factors that
argue against this interpretation. Firstly we adopted a stringent
criterion for the exclusion from the analysis of all units whose
activity was correlated with lick events (Fig. 4). After removing
lick-responsive units, the results remained unchanged, indicating
the absence of a direct link between licking and the observed
asymmetry in the encoding. Furthermore, the large differences in
the lick profiles between the different tasks were not in line with
the remarkably conserved target-driven projections of population
activity across tasks and reinforcement types, supporting a non-
motor nature of the stimulus encoding in A1 (Fig. 7b, f, j, n).
Finally, the role of baseline shifts due to the change in sponta-
neous activity in two more tasks further argues against a purely
motor explanation of the observed asymmetry (Figs. 5 and 7a)
since the spontaneous activity occurs during epochs that preceded
stimulus presentation and behavioral changes. Altogether, while
the different lines of evidence exposed above make an

Fig. 7 Enhanced representation of target stimuli in a range of auditory Go/No-Go tasks. Each line of four panels represent the same analysis for all four
tasks; statistics are given in order of appearance in the figure. a, e, i, m Projection onto the decoding axis determined during the sound period of trial-
averaged reference (blue) and target (ref) activity during the passive (dark colors) and the engaged (light colors) sessions. A baseline value computed
from spontaneous activity was subtracted for each neuron, so that the origin corresponds to the projection of spontaneous activity (shown by black line).
Note that the target-driven activity is further from the baseline in the engaged state and the reference-driven activity is closer. The periods used to
construct the decoding axis are shaded in gray. Error bars represent 1 std (cross-validation n= 400). b, f, j, n Index of target enhancement induced by task
engagement based on projections using the decoding axis determined during the sound. In green, same index computed instead by giving the same weight
to all units. The difference between the green and black curved indicates that the change in asymmetry induced by task engagement cannot be detected
using the population averaged firing rate alone. Error bars represent 1 std (cross-validation n= 400). c, g, k, o Modulation index of each unit for
spontaneous firing rate after exclusion of lick-related units. Error bars are 95% CI (one-sample two-sided Wilcoxon signed-rank test with mean 0, n= 277,
zval= 6.35, p= 2.1e-10; n= 161, zval= 7.22, p= 5.4e-13; n= 99, zval= 1.01, p= 0.30; n= 520, zval=−0.78, p= 0.47; ***p < 0.001). d, h, l, p Comparison
of reference/target asymmetry for evoked responses in different states relative to different baselines given by passive or engaged spontaneous activity.
Reference/target asymmetry is the difference of the distance of target and reference projected data to a given baseline. We examine three cases: (i)
passive evoked responses, distances calculated relative to engaged spontaneous activity; (ii) engaged evoked responses, distances calculated relative to
passive spontaneous activity; (iii) engaged evoked responses, distances calculated relative to engaged spontaneous activity. In all three cases, the engaged
decoding axis was used for projections. Error bars represent 95% confidence intervals (n= 400 cross-validations; p(col1,col3)= 0.29 and
p(col2,col3) < 0.0025; p(col1,col3)= 0.38 and p(col2,col3) < 0.0025; p(col1,col3) < 0.0025 and p(col2,col3)= 0.16; p(col1,col3) < 0.0025 and
p(col2,col3)= 0.92; **p < 0.01)
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interpretation in terms of motor activation unlikely, ultimately a
different type of behavioral report, such as the one using similar
responses, would help fully rule out this possibility.

Our analyses show that the target-driven representation
scheme during task engagement is neither purely sensory nor
purely motor but instead argue for a more abstract, cognitive
representation of the stimulus behavioral meaning in A1 during
task engagement. As the target stimulus was associated with an
absence of licking in the tasks under aversive conditioning, one
possibility could have been that the A1 encoding scheme was
contrasting the only stimulus associated with an absence of
licking (No-Go) against all other stimuli (Go). This lick/no-lick
encoding was, however, not consistent with the tone-detect task
under appetitive reinforcement, in which the target stimulus was
a Go signal for the animal. We thus suggest that A1 encodes the
behavioral meaning of the stimulus by emphasizing the stimulus
requiring the animal to change its behavioral response, i.e., the
target stimuli in the different tasks we examined.

Our results critically rely on population-level analyses33–36,
and in particular, on linear decoding of population activity. This
is a simple, biologically plausible operation that can be easily
implemented by a neuron-like readout unit that performs a
weighted sum of its inputs. The summed inputs to this hypo-
thetical readout unit showed that Go and No-Go stimuli elicited
inputs symmetrically distributed around spontaneous activity in
the passive state. In contrast, in the task-engaged state, only target
stimuli, which required an explicit change in ongoing behavior,
led to an output different from spontaneous activity, once passed
through the readout unit. This switch from a more symmetric,
sensory-driven to an increasingly asymmetric, target-driven
representation was not clearly apparent if single-neuron respon-
ses were simply averaged or normalized (Supplementary Fig. 7,
Fig. 7b, f, j, n) but instead relied on a population analysis in which
different units were assigned different weights by projecting
population activity on the decoding axis. Note that the weights
were not optimized to maximize the asymmetry between Go and
No-Go stimuli but rather the discrimination between them. The
shift toward a more asymmetric representation of the behavioral
meaning of stimuli is therefore an unexpected but important by-
product of the analysis.

Recordings performed in dlFC in the ferret during tone
detection32 showed that, when the animal is engaged in the task,
dlFC single units encode the abstract behavioral meaning of the
stimuli by responding only to the target stimuli (that require a
change in the ongoing behavioral output) but remain silent for
the reference stimuli. Remarkably, projections of reference- and
target-elicited A1 activity on the linear readout showed the same
type of target-specific patterns of activity. Several possible
mechanisms could account for these similarities of representa-
tions in A1 and dlFC. Here we propose that, during task
engagement, sound-evoked activity in A1 triggers activity in dlFC,
which then subsequently feeds back top–down inputs to A1 that
may underlie the sustained activity pattern found during post-
stimulus silence.

Our analysis suggests a novel population readout mechanism
for extracting behaviorally relevant information from A1 while
suppressing other, irrelevant sensory information: in the task-
engaged state, irrelevant sensory inputs (reference stimuli) elicit
changes of activity that are orthogonal to the readout axis and
therefore cannot be distinguished from spontaneous activity. This
mechanism is reminiscent of the mechanism proposed for
movement preparation in motor cortex37, where preparatory
neural activity lies in the null space of the motor readout, i.e., the
space orthogonal to the readout of the motor command, and
therefore does not generate movements. In our case, the readout
is task dependent, as it presumably depends on the performed

discrimination task. We showed that the A1 activity in the
engaged condition rearranges so that the difference between
spontaneous activity and reference-elicited activity lies in the null
space of the readout, which is therefore only activated by the
target stimuli. This rearrangement can be implemented either by
a change of reference-elicited activity or by a change of sponta-
neous activity. In two of the examined tasks, click discrimination
and aversive tone detection, we found that the rearrangement of
population activity relied mostly on the change in population
spontaneous activity in the engaged condition. Strikingly, these
two tasks were performed by the same ferrets, which were trained
to switch between the two tasks in the same session. In the two
other tasks, reference-elicited activity in the passive condition
were already aligned with the passive spontaneous activity when
projected on the engaged decoder, suggesting that learning these
behavioral tasks may have profoundly reshaped the relation
between spontaneous and stimulus-evoked activity. Changes in
spontaneous activity have previously been shown to contribute to
stimulus responses33,34,38–40 and task-driven changes have been
reported in multiple previous studies14 but, to our knowledge,
have never been given a functional role in stimulus representa-
tion35. Here we propose that population-level modulations of
spontaneous activity act as a mechanism supporting the asym-
metric representation of reference and stimuli target in the
engaged state.

The simple linear readout mechanism suggested here cannot,
however, fully account for the whole set of responses observed in
frontal areas as the projections of reference-elicited activity (in
A1) during engagement on an aversive task still give rise to a non-
null, albeit reduced, output contrary to what is observed in dlFC
area recordings. An additional non-linear gating mechanism
likely operates between primary auditory cortex and frontal areas,
further reducing responses to any stimulus in the passive state
and to reference sounds in the engaged state. In particular,
neurons in higher-order auditory areas could refine the popula-
tion-wide, abstracted representation originating in A1 through
the proper combinations of synaptic weights. Such a mechanism
could also explain why individual single units recorded in belt
areas of the ferret auditory cortex show a gradual increase in their
selectivity to target stimuli36.

In summary, we found that task engagement induces a shift
from sensory-driven to abstract, behavior-driven representations
in the primary auditory cortex. These abstract representations are
encoded at a population, but not at a single-neuron level, and
strikingly resemble abstract representations observed in higher-
level cortices. These results suggest that the role of primary
sensory cortices is not limited to encoding sensory features.
Instead, primary cortices appear to play an active role in the task-
driven transformation of stimuli into their behavioral meaning
and the translation of that meaning into task-appropriate motor
actions.

Methods
Behavioral training. All experimental procedures conformed to standards speci-
fied by the National Institutes of Health and the University of Maryland Institu-
tional Animal Care and Use Committee. Adult female ferrets, housed in pairs in
normal light cycle vivarium, were trained during the light period on a variety of
different behavioral paradigms in a freely moving training arena. After headpost
implantation, the ferrets were retrained while restrained in a head-fixed holder
until they reached performance criterion again. Most of the animals in these studies
were trained on multiple tasks, including the two ferrets trained both on the click-
rate discrimination and the tone-detect tasks. Three out of the four tasks shared the
same basic structure of Go/No-Go avoidance paradigms41, in which ferrets were
trained in a conditioned avoidance paradigm to lick water from a spout during the
presentation of a class of reference stimuli and to cease licking after the pre-
sentation of a different class of target stimuli to avoid a mild shock. The positive
reinforcement task is detailed below (see “Tone-detect task—aversive
conditioning”).
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Recordings began once the animals had relearned the task in the holder. Each
recording session included epochs of passive sounds presentation without any
behavioral response or reinforcement, followed by an active behavioral epoch
where the animals could lick. A postpassive epoch was then recorded. This
sequence of epochs could be repeated multiple times during a recording session.
Table 1 below summarizes the animals and recordings for each task.

Click-rate discrimination task. Two adult female ferrets were trained to dis-
criminate low from high rate click trains in a Go/No-Go avoidance task. A block of
trials consisted of a sequence of a random number of reference click train trials
followed by a target click train trial (except on catch blocks in which seven
reference stimuli were presented with no target). On each trial, the click train was
preceded by a 1.25 s neutral noise stimulus (Fig. 1a). Ferrets licked water from a
spout throughout trials containing reference click trains until they heard the target
sound. They learned to stop licking the spout either during the stimulus or after the
target click train ended, in the following 0.4-s time silent response window, in order
to avoid a mild shock to the tongue in a subsequent 0.4 s shock window (Fig. 1a).
Any lick during this shock window was punished. The ferrets were first trained
while freely moving daily in a sound-attenuated test box. Animals were implanted
with a headpost when they reached criterion, defined with a discrimination ratio
(DR) >= 0.64 where DR=HR×(1−FA) [hit rate, HR= 0.8 and false alarm, FA=
0.2]. They were then retrained head fixed with the shocks delivered to the tail. The
decision rule was reversed in the two animals, as low rates were Go stimuli for one
animal and No-Go for the second one. During each session, rates were kept
identical but were changed from day to day.

Tone-detect task—aversive conditioning. The same two ferrets were trained on a
tone-detect task previously described26. Briefly, a trial consisted of a sequence of
1–6 reference white noise bursts followed by a tonal target (except on catch trials in
which 7 reference stimuli were presented with no target). The frequency of the
target pure tone was changed every day. The animals learned not to lick the spout
in a 0.4 s response window starting 0.4 s after the end of the target. The ferrets were
trained until they reached criterion, defined as consistent performance on the
detection task for any tonal target for two sessions with >80% hit rate accuracy and
>80% safe rate for a DR of >0.65.

Tone-detect task—appetitive conditioning. Four ferrets were on an appetitive
version of the tone-detect task previously described30. On each trial, the number of
references presented before the target varied randomly from one to four. Animals
were rewarded with water for licking a water spout in a response window 0.1–1.0 s
after target onset. False alarms were punished with a timeout when ferrets licked
earlier in the trial before the target window. The average DR during experiments
was 0.76. This dataset contained sessions with different trial durations, therefore we
analyzed separately data from the first 200 ms after stimulus onset and 200 ms
before stimulus offset. For this task, the passive data was not structured in the
format of successive reference and target trials as in the engaged session but instead
the animal was presented with a block of reference-only trials followed by a block
of target-only trials separately. This slight change in the structure of the sound
presentation did not affect our results that were highly similar to other tasks but
may explain the slightly higher accuracy of decoding during the initial silence in the
passive data. Indeed, reference and target trials were systematically preceded by
other reference and target trials, possibly allowing the decoder to discriminate
using remnant activity from the previous trial.

Frequency range discrimination task. One ferret was trained on a three-
frequency-zone discrimination task with a Go/No-Go paradigm. The three fre-
quency zones were defined once and for all and the animal had to learn the
corresponding frequency boundaries (Low–Medium: ~500 Hz/Medium–High:
~3400 Hz). Each trial consisted of the presentation of a single pure tone (0.75-s
duration) with a frequency in one of the three zones. A trial began when the water
pump was turned on and the animal licked a spout for water. The ferret learned to
stop licking when it heard a tone falling in the Middle frequency range in order to
avoid punishment (mild shock) but to continue licking if the tone frequency fell in

either the Low or High range. The shock window started 100 ms after tone offset
and lasted 400 ms. The pump was turned off 2 s after the end of the shock window.
The learning criterion was defined as DR > 40% in three consecutive sessions of
>100 trials.

Acoustic stimuli. All sounds were synthesized using a 44 kHz sampling rate and
presented through a free-field speaker that was equalized to achieve a flat gain.
Behavior and stimulus presentation were controlled by custom software written in
Matlab (MathWorks).

Click-rate discrimination task. Target and reference stimuli were preceded by an
initial silence lasting 0.4 s followed by a 1.25 s-long broadband-modulated noise
bursts (temporal orthogonal ripple combinations (TORC)42) acting as a neutral
stimulus, without any behavioral meaning (Fig. 1a). Click trains all had the same
duration (0.75 s, 0.8 s interstimulus interval of which the last 0.4 s consisted of the
response window) and sound level (70 dB sound pressure level (SPL)). Rates used
were comprised between 6 and 36 Hz (ferret A: references [6 7 8 15] Hz, targets [24
26 28 30 32 33 36] Hz/ferret L: references [26 28 30 32 36] Hz, targets [6 8 9 16]
Hz).

Tone-detect task. Reference sounds were TORC instances. Targets were com-
prised of pure tone with frequencies ranging from 125 to 8000 Hz. Target and
reference stimuli were preceded by an initial silence lasting 0.4 s. Target and
reference stimuli all had the same duration (2 s, 0.8 s interstimulus interval whose
last 0.4 s consisted of the response window for the aversive tone-detect task) and
sound level (70 dB SPL). In the appetitive version of this paradigm, target and
reference duration varied between sessions (0.5–1.0 s, 0.4–0.5-s interstimulus
interval).

Frequency range discrimination task. The target frequency region was the
Medium range (tone frequencies: 686, 1303, and 2476 Hz) while the reference
regions were the Low and High frequency ranges (100, 190, and 361 Hz; 4705,
8939, and 16,884 Hz). Thus the set of tones included 9 frequencies with 90%
increment (~0.9 octave) and spanned a ~7.4 octave range. Target and reference
stimuli (duration: 0.75 s; level: 70 dB SPL) were preceded by an initial silence
lasting 1.5 s and followed by a 2.4 s silence comprising the shock window (400 ms
starting 100 ms after the tone offset).

Neurophysiological recordings. To secure stability for electrophysiological
recording, a stainless steel headpost was surgically implanted on the skull26.
Experiments were conducted in a double-walled sound attenuation chamber. Small
craniotomies (1–2 mm diameter) were made over primary auditory cortex prior to
recording sessions, each of which lasted 6–8 h. The A1 and frontal cortex (dor-
solateral FC and rostral anterior sigmoid gyrus) regions were initially located with
approximate stereotaxic coordinates and then further identified physiologically.
Recordings were verified as being in A1 according to the presence of characteristic
physiological features (short latency, localized tuning) and to the position of the
neural recording relative to the cortical tonotopic map in A143. Data acquisition
was controlled using the MATLAB software MANTA44. Neural activity was
recorded using a 24 channel Plexon U-Probe (electrode impedance: ~275 kΩ at 1
kHz, 75-μm interelectrode spacing) during the click discrimination task and the
aversive version of the tone-detect task. Recordings during the other tasks (fre-
quency range discrimination and appetitive tone-detect task) were done with high-
impedance (2–10MΩ) tungsten electrodes (Alpha-Omega and FHC), using mul-
tiple independently moveable electrode drives (Alpha-Omega) to independently
direct up to four electrodes. The electrodes were configured in a square pattern
with ~800 μm between electrodes. The probes and the electrodes were inserted
through the dura, orthogonal to the brain’s surface, until the majority of channels
displayed spontaneous spiking.

Spike sorting. To measure single-unit spiking activity, we digitized and bandpass
filtered the continuous electrophysiological signal between 300 and 6000 Hz. The

Table 1 Data summary across behavioral tasks

Task Click-rate discrimination Tone detect Frequency range discrimination

Structure dlFC A1 A1 A1 A1
Animals 2 ferrets 2 ferrets 2 ferrets 4 ferrets 1 ferret
Conditioning Aversive Aversive Aversive Appetitive Aversive
Recorded sessions —Prepassive

—Engaged
—Postpassive

—Prepassive
—Engaged
—Postpassive

—Prepassive
—Engaged
—Postpassive

—Passive
—Engaged

—Prepassive
—Engaged
—Postpassive

Session num. 25 (17 and 8) 18 (9 and 9) 13 (7 and 6) 56 (8, 37, 2, 9) 149
Recorded units 102 (66 and 36) 370 (188 and 182) 202 (129 and 73) 100 (17, 72, 2, 9) 758
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tail shock for incorrect responses introduced a strong electrical artifact and signals
recorded during this period were discarded before processing.

Recordings performed with 24 channel Plextrodes (U-probes) (click
discrimination and the tone-detect tasks) were spike sorted using an automatic
clustering algorithm (KlustaKwik,45), followed by a manual adjustment of the
clusters. Clustering quality was assessed with the isolation distance, a metrics
developed by Harris et al., 2001, which quantifies the increase in cluster size needed
for doubling the number of samples. All clusters showing isolation distance >20
were considered as single units46,47. A total of 82 single units and 288 multi-units
were isolated. All analyses were reproduced on both pools of units and qualitatively
similar results were obtained (see Supplementary Methods). We thus combined all
clusters for the analysis. Spike sorting was performed on merged datasets from
prepassive, engaged, and postpassive sessions.

For recordings performed with high-impedance tungsten electrodes (frequency
range discrimination and relative pitch tasks), single units were classified using
principal components analysis (PCA) and k-means clustering followed by manual
adjustment26.

Each penetration of the linear electrode array produced a laminar profile of
auditory responses in A1 across a 1.8 mm depth. Supragranular and infragranular
layers were determined with local field potential responses to 100 ms tones
recorded during the passive condition. The border between superficial and
middle–deep layer was defined as the inversion point in correlation coefficients
between the electrode displaying the shortest response latency and all the other
electrodes in the same penetration48,49.

Click reconstruction from neural data. Optimal prior reconstruction method50

was used to reconstruct stimulus waveform from click-elicited neural activity. Units
with spontaneous firing rate >2 spikes/s in at least one condition were considered
for this analysis. Neuronal activity was binned at 10 ms in time with a 1-ms time
step. For each trial, we defined SkðtÞ the stimulus waveform of trial k (t∈ [1,T]) and
rki ðtÞ the binned firing rate of each neuron i∈ [1,N] where t∈ [1,T+ τ] with τ the
considered delay in the neuronal response. A linear mapping was assumed between
the neuronal responses and the stimulus:

Sk tð Þ ¼
XN

i¼1

Xτ

δ¼0

gi δð Þrki t þ δð Þ ð1Þ

for unknown coefficients. Equation (1) was rewritten as:

Sk ¼ GRk ð2Þ
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Before the inversion in the previous formula, a single value decomposition was
used to eliminate the noisy components of the auto-correlation matrix. The
maximal number of components retained was empirically set to 70. Once the

values Ĝ were fitted on all the trials but one, the reconstructed stimulus Ŝ
k
was

defined as Ŝ
k ¼ ĜR

k
with the neuronal response R of the remaining run. Each trial

was left out in turn. Reconstruction error was quantified with the mean-squared
error of the reconstructed stimulus. One passive and engaged reconstruction filters
were fitted for each type of stimulus (reference and target) in every session.

Modulation index. To evaluate changes in a given parameter X (firing rate, VS) at
the level of the individual unit, we define the modulation index to compare

situations 1 and 2 as for each neuron as:

MI ¼ X1 � X2

X1 þ X2
:

As a measure of the enhancement of target projection relative to reference
projection in the task-engaged state, we used the following index (referred to target
enhancement index in the text):

MI ¼ d Targeng

� �
� d Targpass

� �� �
� d Ref eng

� �
� d Refpass
� �� �

where d is the distance from baseline.
When simply measuring the asymmetry between reference and target in

condition X, we used the following index (Figs. 5b, 7d, h, l, and p):

Index ¼ d TargX
� �� d RefXð Þ

Vector strength. VS allows to measure how tightly spiking activity is locked to one
phase of a stimulus51. If all spikes are at exactly the same phase, VS is 1, whereas if
firing is uniformly distributed over phases VS is 0. It is defined in Goldberg and
Brown (1969) as:

Significance was assessed using Rayleigh’s statistic, p= enr2, where r is the VS
and used p < 0.001 as the criterion for significant phase locking consistent with
previous work52.

Linear discriminant classifier performance. To evaluate the accuracy with which
single-trial population responses could be classified according to the presented
stimulus (reference or target), we trained and tested a linear discriminant
classifier53,54 using cross-validation (Supplementary Fig. 3).

Trial-by-trial pseudo-population firing rate vectors were constructed for each
100 ms time bin using units from all sessions and both animals. Training and
testing sets were constructed by randomly selecting equal numbers (15) of
reference and target trials for each unit. All contribution of noise correlations
among neurons are therefore destroyed by this procedure as the pseudo-population
vector contains activity of units recorded on different days and on different trials.
The classifier was trained for each time bin using the average pseudo-population
vectors cR,t and cT,t calculated from a random selection of an equal number of
reference and target trials. These vectors define at time bin t the decoding vector wt

given by

wt ¼ cT;t � cR;t

and the bias bt given by

bt ¼
� cR;t ´wt þ cT;t ´wt

� �

2

The decoding vector and and the bias bt define the decision rule for any
population activity vector x:

y xð Þ ¼ wT
t ´ x þ bt

y xð Þ>0; x is classifiedas a target
y xð Þ<0; x is classifiedas a reference

This rule was applied to an equal number of reference and target testing trials
drawn from the remaining trials that were not used to train the classifier. The
proportion of correctly classified trials gave the accuracy of the classifier. Cross-
validation was performed 400 times by randomly picking training and testing data
to estimate the average and variance of accuracy. This allowed comparing the
performance of classification in two behavioral states by constructing confidence
intervals from the cross-validation. Note that this limits p value estimate to a
minimum of 1/400= 0.0025.

Random performance. To evaluate whether the classifier performance is higher
than chance, the classifier was trained and tested on surrogate datasets constructed

Table 2 Summary of time periods used for decoding across behavioral tasks

Click-rate discrimination Aversive tone detect Appetitive tone detect Frequency range discrimination

Sound 1.7–2 s 0.4–0.8 s 0–0.1 after stim. onset 1.5–1.9 s
Silence 2.5–2.8 s 2.5–2.9 s 0–0.1 after stim. offset 2.4–2.8 s
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by shuffling the labels (“reference” and “target”) of trials. For each of the 100 label
permutations, cross-validation was performed 100 times. This allows comparing
the performance of classification with chance levels by constructing confidence
intervals from the cross-validation and from the random shuffled permutations.

Classifier evolution. When studying the evolution of population encoding
(Supplementary Fig. 6), we defined early sound, late sound, and silence periods as
1700–1900, 2200–2400, and 2700–2900 ms (equal duration for comparison) rela-
tive to trial onset. The classifier was trained on randomly chosen trials from one
time period and then tested on trials at all other 100 ms time bins. We also
constructed matrices showing the accuracy of the classifier trained and tested at all
100 ms time bins and evaluated whether these values are higher than chance using
surrogate datasets by shuffling labels as described above.

When comparing the classifier during sound and silence periods across tasks
(Fig. 7), the time periods summarized in Table 2 were used.

Projection onto decoding vectors. To study the contribution of reference and
target trials to classifier performance, we projected population firing vectors at each
time bin onto decoding vectors calculated during the sound and silence periods as
defined above. Before projection, the mean spontaneous activity of each unit was
subtracted from its firing rate throughout the whole trial. Deviations from 0 of the
projection show activity deviating from spontaneous activity along the decoding axis.

Controlling for lick-responsive neurons. In order to control for the contribution
of units directly linked with task-related motor activity to our results, we combined
reconstruction and decoding methods to identify and remove lick-responsive
neurons so that linear classification no longer yielded any licking-related infor-
mation. The approach comprised the following steps:

● Optimal prior reconstruction (described in “Click reconstruction from neural
data”) was used to reconstruct lick-activity separately for each unit.

● Reconstruction values for each unit were then sampled at the time of licks and
at randomly selected times without licking. These values were used to
construct population vectors of lick and non-lick activity.

● A linear classifier (described in “Linear discriminant classifier performance”) was
trained and tested using cross-validation to distinguish lick from non-lick events.

● Reconstruction values and classification was also performed on random data
obtained by reconstructing the licking activity of a session with the neural
activity of a subsequent session. This made it possible to establish the
distribution of accuracy for randomized data.

● The accuracy of classification was compared between the true data and the
randomized datasets and a p value was calculated by counting the number of
permutations showing better accuracy for the randomized data than the true
data.

● We progressively removed units, starting with those with highest classifier
weights, which reduced the accuracy of classification, until the p value of
population classification rose >0.4. This indicated that the remaining units
contained no more information about lick events than randomized data.

● Only the units remaining after this procedure were used to re-analyze the data
and verify that reliable classification and difference in projections of reference
and tone trials did not rely on the difference in licking activity between the two
trials.

For the click-rate discrimination task, only a subset of sessions (15/18) had
reliable recordings of all lick events, so the analysis was done on 308 units (not
370), and 277 units were identified as non-lick related. For the appetitive tone task,
99/100 units, for the aversive tone task 161/202 and for the frequency range
discrimination 520/758.

Gaussian-process factor analysis. To visualize neural trajectories of the large
population of units recorded in A1, we used Gaussian-process factor analysis as
described in ref. 55. This method has the advantage over more traditional methods
of dimensionality reduction such as PCA of jointly performing both the binning/
smoothing steps and the dimensionality reduction.

Statistics. Statistics on classifier performance relied on p value estimation using
cross-validation. For each statistical analysis provided in the manuscript,
Kolmogorov–Smirnov normality test was first performed on the data. As the data
failed to meet the normality criterion, statistics relied on non-parametric tests.
When performing systematic multiple tests, the Bonferroni correction was applied.
Data analyses were performed in MATLAB (Mathworks, Natick, MA, USA).

Code availability. Code used in the article can be supplied upon request by writing
to the corresponding author.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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