Skip to main content
. 2016 May 13;7(9):5838–5845. doi: 10.1039/c6sc00901h

Table 1. Optimization of reaction conditions using alkynyl bromide a .

Inline graphic
Entry Cat (mol%) Additive (equiv.) Solvent Temp (°C) Yield b (%)
1 Pd(OAc)2 (10) AgOAc (1) Toluene 90 N.R.
2 Pd(OAc)2 (10) AgOAc (1) DCE 90 40
3 Pd(OAc)2 (10) AgOAc (2) DCE 90 67
4 Pd(OAc)2 (10) AgOAc (3) DCE 90 90
5 Pd(OAc)2 (10) AgOAc (3) DCE 80 70
6 Pd(OAc)2 (10) AgOAc (3) DCE 100 75
7 Pd(OAc)2 (5) AgOAc (3) DCE 90 89
8 Pd(OAc)2 (2.5) AgOAc (3) DCE 90 78
9 Pd(TFA)2 (5) AgOAc (3) DCE 90 82
10 Pd(OAc)2 (5) Ag2CO3 (2) DCE 90 75
11 Pd(OAc)2 (5) Ag2O (2) DCE 90 63
12 Pd(OAc)2 (5) AgNO3 (3) DCE 90 30

aReactions were conducted on a 0.05 mmol scale in 0.5 mL of solvent in a closed flask for 6 h; DCE = 1,2-dichloroethane; TFA = trifluoroacetate.

bGC yields.