Table 1. Optimization of reaction conditions using alkynyl bromide a .
| |||||
Entry | Cat (mol%) | Additive (equiv.) | Solvent | Temp (°C) | Yield b (%) |
1 | Pd(OAc)2 (10) | AgOAc (1) | Toluene | 90 | N.R. |
2 | Pd(OAc)2 (10) | AgOAc (1) | DCE | 90 | 40 |
3 | Pd(OAc)2 (10) | AgOAc (2) | DCE | 90 | 67 |
4 | Pd(OAc)2 (10) | AgOAc (3) | DCE | 90 | 90 |
5 | Pd(OAc)2 (10) | AgOAc (3) | DCE | 80 | 70 |
6 | Pd(OAc)2 (10) | AgOAc (3) | DCE | 100 | 75 |
7 | Pd(OAc)2 (5) | AgOAc (3) | DCE | 90 | 89 |
8 | Pd(OAc)2 (2.5) | AgOAc (3) | DCE | 90 | 78 |
9 | Pd(TFA)2 (5) | AgOAc (3) | DCE | 90 | 82 |
10 | Pd(OAc)2 (5) | Ag2CO3 (2) | DCE | 90 | 75 |
11 | Pd(OAc)2 (5) | Ag2O (2) | DCE | 90 | 63 |
12 | Pd(OAc)2 (5) | AgNO3 (3) | DCE | 90 | 30 |
aReactions were conducted on a 0.05 mmol scale in 0.5 mL of solvent in a closed flask for 6 h; DCE = 1,2-dichloroethane; TFA = trifluoroacetate.
bGC yields.