Skip to main content
. 2016 May 13;7(9):5838–5845. doi: 10.1039/c6sc00901h

Table 3. Optimization of reaction conditions using terminal alkynes a .

Inline graphic
Entry Cat (mol%) Additive (equiv.) Solvent Temp (°C) Yield b (%)
1 c Pd(OAc)2 (5) AgOAc (3) DCE 90 N.R.
2 Pd(OAc)2 (5) AgOAc (3) DCE 90 30
3 Pd(OAc)2 (5) AgOAc (3) DCE 90 56 d
4 Pd(OAc)2 (5) AgOAc (3) DCE 90 75 d , e
5 Pd(OAc)2 (5) AgOAc (3) Toluene 90 78 d , e
6 Pd(OAc)2 (5) AgOAc (3) Toluene 80 86 d , e
7 Pd(OAc)2 (5) AgOAc (3) Toluene 70 Trace
8 Pd(OAc)2 (3) AgOAc (3) DCE 90 18
9 Pd(TFA)2 (5) AgOAc (3) DCE 90 26
10 Pd2(dba)3 (5) AgOAc (3) DCE 90 21
11 Pd(OAc)2 (5) Ag2CO3 (2) DCE 90 15
12 Pd(OAc)2 (5) Ag2O (2) DCE 90 12
13 Pd(OAc)2 (5) AgNO3 (3) DCE 90 Trace

aReactions were conducted on a 0.05 mmol scale of 1a in 0.5 mL of solvent in the presence of 2 equiv. of K2HPO4 in a closed flask for 10 h; DCE = 1,2-dichloroethane; TFA = trifluoroacetate; dba = dibenzylideneacetone.

bGC yields.

cWithout K2HPO4.

dTerminal alkyne was added dropwise by a syringe pump over a period of 10 h.

eTwo equiv. of terminal alkyne was added.