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Abstract

Transport-based techniques for signal and data analysis have received increased attention recently. 

Given their ability to provide accurate generative models for signal intensities and other data 

distributions, they have been used in a variety of applications including content-based retrieval, 

cancer detection, image super-resolution, and statistical machine learning, to name a few, and 

shown to produce state of the art results in several applications. Moreover, the geometric 

characteristics of transport-related metrics have inspired new kinds of algorithms for interpreting 

the meaning of data distributions. Here we provide a practical overview of the mathematical 

underpinnings of mass transport-related methods, including numerical implementation, as well as 

a review, with demonstrations, of several applications. Software accompanying this tutorial is 

available at [43].

I. Introduction

A. Motivation and goals

Numerous applications in science and technology depend on effective modeling and 

information extraction from signal and image data. Examples include being able to 

distinguish between benign and malignant tumors from medical images, learning models 

(e.g. dictionaries) for solving inverse problems, identifying people from images of faces, 

voice profiles, or fingerprints, and many others. Techniques based on the mathematics of 

optimal mass transport, also known as Earth Mover’s distance in engineering-related fields, 

have received significant attention recently given their ability to incorporate spatial (in 

addition to intensity) information when comparing signals, images, and other data sources, 

thus giving rise to different geometric interpretations of data distributions. These techniques 

have been used to simplify and augment the accuracy of numerous pattern recognition-

related problems. Some examples covered in this tutorial include image retrieval [32, 44], 

signal and image representation [25, 27, 40, 50], inverse problems [30], cancer detection [4, 

39], texture and color modeling [18, 41], shape and image registration [22, 29], and machine 

learning [12, 17, 19, 28, 36, 42], to name a few. This tutorial is meant to serve as an 

introductory guide to those wishing to familiarize themselves with these emerging 

techniques. Specifically we

• provide a brief overview of key mathematical concepts related to optimal mass 

transport

• describe recent advances in transport related methodology and theory
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• provide a practical overview of their applications in modern signal analysis, 

modeling, and learning problems.

Software accompanying this tutorial is available at [43].

B. Why transport?

In recent years numerous techniques for signal and image analysis have been developed to 

address important learning and estimation problems. Researchers working to find solutions 

to these problems have found it necessary to develop techniques to compare signal 

intensities across different signal/image coordinates. A common problem in medical 

imaging, for example, is the analysis of magnetic resonance images with the goal of learning 

brain morphology differences between healthy and diseased populations. Decades of 

research in this area have culminated with techniques such as voxel and deformation-based 

morphology which make use of nonlinear registration methods to understand differences in 

tissue density and locations. Likewise, the development of dynamic time warping techniques 

was necessary to enable the comparison of time series data more meaningfully, without 

confounds from commonly encountered variations in time. Finally, researchers desiring to 

create realistic models of facial appearance have long understood that appearance models for 

eyes, lips, nose, etc. are significantly different and must thus be dependent on position 

relative to a fixed anatomy. The pervasive success of these, as well as other techniques such 

as optical flow, level-set methods, deep neural networks, for example, have thus taught us 

that 1) nonlinearity and 2) modeling the location of pixel intensities are essential concepts to 

keep in mind when solving modern regression problems related to estimation and 

classification.

The methodology mentioned above for modeling appearance and learning morphology, time 

series analysis and predictive modeling, deep neural networks for classification of sensor 

data, etc., is algorithmic in nature. The transport-related techniques reviewed below are 

nonlinear methods that, unlike linear methods such as Fourier, wavelets, and dictionary 

models, for example, explicitly model jointly signal intensities as well as their locations. 

Furthermore, they are often based on the theory of optimal mass transport from which 

fundamental principles can be put to use. Thus they hold the promise to ultimately play a 

significant role in the development of a theoretical foundation for certain subclasses of 

modern learning and estimation problems.

C. Overview and outline

As detailed below in section II, the optimal mass transport problem first arose due to Monge 

[35]. It was later expanded by Kantorovich [23] and found applications in operations 

research and economics. Section III provides an overview of the mathematical principles and 

formulation of optimal transport-related metrics, their geometric interpretation, and related 

embedding methods and signal transforms. We also explain Brenier’s theorem [9], which 

helped pave the way for several practical numerical implementation algorithms, which are 

then explained in detail in section IV. Finally, in section V we review and demonstrate the 

application of transport-based techniques to numerous problems including: image retrieval, 

registration and morphing, color and texture analysis, image denoising and restoration, 
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morphometry, super resolution, and machine learning. As mentioned above, software 

implementing the examples shown can be downloaded from [43].

II. A brief historical note

The optimal mass transport problem seeks the most efficient way of transforming one 

distribution of mass to another, relative to a given cost function. The problem was initially 

studied by the French mathematician Gaspard Monge in his seminal work “Mémoire sur la 

théorie des déblais et des remblais” [35] in 1781. In 1942, Leonid V. Kantorovich, who at 

that time was unaware of Monge’s work, proposed a general formulation of the problem by 

considering optimal mass transport plans, which as opposed to Monge’s formulation allows 

for mass splitting [23]. Kantorovich shared the 1975 Nobel Prize in Economic Sciences with 

Tjalling Koopmans for his work in the optimal allocation of scarce resources. Kantorovich’s 

contribution is considered as “the birth of the modern formulation of optimal transport” [49] 

and it made the optimal mass transport problem an active field of research in the following 

years.

A significant portion of the theory of the optimal mass transport problem was developed in 

the Nineties. Starting with Brenier’s seminal work on characterization, existence, and 

uniqueness of optimal transport maps [9], followed by Caffarelli’s work on regularity 

conditions of such mappings [10] and Gangbo and McCann’s work on geometric 

interpretation of the problem [20].

A more thorough history and background on the optimal mass transport problem can be 

found in Villani’s book “Optimal Transport: Old and New” [49] and Santambrogio’s book 

“Optimal transport for applied mathematicians” [45].

The significant contributions in mathematical foundations of the optimal transport problem 

together with recent advancements in numerical methods [6, 14, 31, 37] have spurred the 

recent development of numerous data analysis techniques for modern estimation and 

detection (e.g. classification) problems.

III. Formulation of the problem and methodology

In this section we first review both the continuous and ‘discrete’ formulations of the optimal 

transport problem (i.e. Monge’s and Kantorovich’s formulations). Next, we review the 

geometrical characteristics of the problem, and finally review the transport based signal/

image embeddings. In the sections below we’ve elected to avoid measure-theoretic notation, 

and other detailed mathematical language, in lieu of a more informal and intuitive 

description of the problem. It is important to know, however, that certain mathematical 

precision is required to best understand the differences between Monge’s and Kantorivich’s 

formulation, their geometric interpretations, and so on. The interested reader may find useful 

to consult [24] for a more complete and mathematical description of the concepts explained 

below.
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A. Optimal Transport: Formulation

Over the past century or so, the theory of optimal transport (earth mover’s distance) has 

developed two main formulations, one utilizing a continuous map (Monge’s formulation) 

and one utilizing what is called a transport plan (Kantarovich’s formulation) for assigning 

the spatial correspondence necessary for the related transport problem. While Monge’s 

continuous formulation is helpful in problems where a point-to-point assignment is desired, 

Kantarovich’s formulation is more general, and also covers the case of discrete (Dirac) 

masses (in our case signal intensities). These differ not only in mathematical formulation, 

but also has consequences with regards to their respective numerical solutions, as well as 

applications.

1) Monge’s continuous formulation—The Monge optimal mass transportation 

problem is formulated as follows. Consider two signals or images I0 and I1 defined over 

their respective domains Ω0 and Ω1. Here Ω0 and Ω1 are typically subsets of ℝd, and often 

can be taken as the unit square (or cube in 3D). While a detailed measure-theoretic 

formulation is typically required (see [24]) we bypass rigorous formulation here and simply 

assume that I0(x) and I1(y) correspond to signal intensities at positions x ∈ Ω0 and y ∈ Ω1. 

For digital signals, an interpolating model can be used to construct these functions defined 

over continuous domains from sampled discrete data. Except for extensions which are 

described below, the signals are required to be nonnegative. That is, I0(x) ≥ 0 ∀x ∈ Ω0 and 

I1(y) ≥ 0 ∀y ∈ Ω1. In addition, the total amount of signal (or mass) for both signals should 

be equal to the same constant (which is generally chosen to be 1): 

∫Ω0
I0 x dx = ∫Ω1

I1 y dy = 1. In other words, I0 and I1 are assumed to be probability density 

functions (PDFs).

Monge’s optimal transportation problem is to find a function f : Ω0 → Ω1 that ‘pushes’ I0 

onto I1 and minimizes the following objective function,

M I0, I1 = inf
f ∈ MP

∫
Ω0

c x, f x I0 x dx (1)

where c : Ω0 × Ω1 → ℝ+ is the cost of moving pixel intensity I0(x) from x to f (x) (Monge 

considered the Euclidean distance as the cost function in his original formulation, c(x, f (x)) 

= |x − f (x)|), and MP stands for a measure preserving map that moves all the signal intensity 

from I0 to I1. That is, for a subset B ⊂ Ω1 the MP requirement is that

∫
x: f x ∈ B

I0 x dx = ∫
B

I1 y dy . (2)

If f is one-to-one this just means that for A ⊂ Ω0
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∫A
I0 x dx = ∫f A

I1 y dy .

Such maps f ∈ MP are sometimes called ‘transport maps’ or ‘mass preserving maps’. 

Simply put, the Monge formulation of the problem seeks to rearrange signal I0 into signal I1 

while minimizing a specific cost function. In cases when f is smooth and one to one, then the 

requirement (2) can be written in a differential form as

det D f x I1 f x = I0 x (3)

almost everywhere, where D f is the Jacobian of f (see Figure 1, top panel). Note that both 

the objective function and the constraint in Equation (1) are nonlinear with respect to f (x). 

Hence, for over a century the answers to questions regarding existence and characterization 

of the Monge’s problem remained unknown.

It should be mentioned that, for certain measures the Monge’s formulation of the optimal 

transport problem is ill-posed; in the sense that there is no transport map to rearrange one 

PDF to another. For instance, consider the case where I0 is a Dirac mass while I1 is not. 

Kantorovich’s formulation alleviates this problem by finding the optimal transport plan as 

opposed to the transport map.

2) Kantorovich’s formulation—Kantorovich formulated the transportation problem by 

optimizing over transportation plans, which we denote as γ. One can think of γ as the joint 

distribution of I0 and I1 describing how much ‘mass’ is being moved to different 

coordinates. That is let A be a subset of Ω0 and similarly B ⊆ Ω1. For notational simplicity 

we will not make a distinction between a probability distribution and its density. More 

precisely to a signal I0 we associate a probability distribution by I0(A) =∫A I0(x)dx.

The quantity γ(A × B) tells us how much ‘mass’ in set A is being moved to set B. Here the 

MP constraint can be expressed as γ(Ω0×B) = I1(B), and γ(A×Ω1) = I0(A). Kantorovich’s 

formulation for the optimal transport problem can then be written as,

K I0, I1 = min
γ ∈ MP ∫

Ω0 × Ω1
c x, y dγ x, y . (4)

Note that the measure theoretic notation above (the integration over dγ(x, y) above) is meant 

to represent the fact that this integral is more general than the routine Riemman-type integral 

commonly used in signal processing, and can cover ‘integration’ over domains which are 

more general. The minimizer of the optimization problem above, γ∗, is called the optimal 

transport plan. Note that unlike the Monge problem, in Kantorovich’s formulation the 

objective function and the constraints are linear with respect to γ(x, y). Moreover, 

Kantorovich’s formulation is in the form of a convex optimization problem. We also note 

that the Monge problem is more restrictive than the Kantorovich problem. That is, in 
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Monge’s version, mass from a single location in Ω0 is being sent to a single location in Ω1. 

Kantorovich’s formulation, however, considers transport plans which can deal with arbitrary 

measurable sets and has the ability to distribute mass from the one location in one density to 

multiple locations in another (see Figure 1, bottom panel). For any transport map f : Ω0 → 
Ω1 there is an associated transport plan, determined by

γ A × B = ∫
x ∈ A : f x ∈ B

I0 x dx . (5)

Furthermore when an optimal transport map f∗ exists, it can be shown that the transport plan 

γ∗ derived from Equation 5 is an optimal transportation plan [49].

The Kantorovich problem is especially interesting in a discrete setting, that is for PDFs of 

the form I0 = ∑i = 1
M piδ x − xi  and I1 = ∑ j = 1

N q jδ(y − y j), where δ(x) is the Dirac delta 

function. We note that for such PDFs in general there does not exist a transport map that 

‘pushes’ I0 into I1. Namely the splitting of masses, which Kantorovich formulation allows, is 

necessary (see bottom panel of Figure 1). The Kantorovich problem can be written as,

K I0, I1 = min
γ ∑

i
∑

j
c(xi, y j)γij s . t . ∑

j
γij = pi, ∑

i
γij = q j

γij ≥ 0, i = 1, …, M, j = 1, …, N

(6)

where γij identifies how much of the mass particle mi at xi needs to be moved to yj (see 

Figure 1, bottom panel). Note that the optimization above has a linear objective function and 

linear constraints, therefore it is a linear programming problem. This problem is convex 

(which in practice translates to a relatively easier process of finding a global minimum), but 

not strictly so, and the constraint provides a polyhedral set of M × N matrices.

In practice, a non-discrete measure is often approximated by a discrete measure and the 

Kantorovich problem is solved through the linear programming optimization expressed in 

Equation (6).

3) Basic properties—Consider a transportation cost c(x, y) which is continuous and 

bounded from below. Given two signals I0 and I1 as above there always exists a 

transportation plan minimizing (4). This holds for both when signals I0 and I1 are functions 

and when they are discrete probability distributions [49].

A further important question is regarding the existence of an optimal transport map instead 

of a plan. Brenier [9] addressed this problem for the special case where c(x, y) = |x − y|2. 

Bernier’s results was later relaxed to more general cases by Gangbo and McCann [20], 

which led to the following theorem:

Theorem: Let I0 and I1 be nonnegative functions of same total mass and with bounded 

support. When c(x, y) = h(x − y) for some strictly convex function h then there exists a 
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unique optimal transportation map f∗ minimizing (1). In addition, the optimal transport plan 

is unique, and given by (5). Moreover if c(x, y) = |x − y|2 then there exists a (unique up to 

adding a constant) convex function ϕ such that f∗ = ∇ϕ. A proof is available in [20, 49].

B. Optimal Mass Transport: Geometric properties

1) Wasserstein metric—Let Ω be a bounded subset of ℝd on which the signals are 

defined. For signals (d = 1) or images (d = 2), this can simply be the space [0, 1]d, for 

example. Let P(Ω) be the set of probability densities supported on Ω. The p-Wasserstein 

metric, Wp, for p ≥ 1 on P(Ω) is then defined as using the optimal transportation problem (4) 

with the cost function c(x, y) = |x − y|p. For I0 and I1 in P(Ω),

W p I0, I1 = inf
γ ∈ M P

∫Ω × Ω
x − y pdγ x, y

1
p .

For any p ≥ 1, Wp is a metric on P(Ω). The metric space (P(Ω), Wp) is referred to as the p-

Wasserstein space. To understand the nature of the optimal transportation distances it is 

useful to note that for any p ≥ 1, the convergence with respect to Wp is equivalent to the 

weak convergence of measures. That is Wp(In, I) → 0 as n → ∞ if and only if for every 

bounded and continuous function f : Ω → ℝ

∫Ω
f x In x dx ∫Ω

f x I x dx .

For the specific case of p = 1 the p-Wasserstein metric is also known as the Monge–

Rubinstein [49] metric, or the earth mover distance [44]. The p-Wasserstein metric in one-

dimension has a simple characterization. For one-dimensional signals I0 and I1 the optimal 

transport map has a closed form solution. Let Fi be the cumulative distribution function of Ii 

for i = 0, 1. That is

Fi x = ∫inf Ω
x

Ii x dx for i = 0, 1.

Note that this is a nondecreasing function going from 0 to 1. We define the pseudoinverse of 

F0 as follows: for z ∈ (0, 1), F−1(z) is the smallest x for which F0(x) ≥ z, that is

F0
−1 z = inf x ∈ Ω:F0 x ≥ z

If I0 > 0 then F0 is continuous and increasing (and thus invertible) and the inverse of the 

function F0 is equal to the pseudoinverse we just defined. In other words the pseudoinverse 

is a generalization of the notion of the inverse of a function. The pseudoinverse (i.e. the 

inverse if I0 > 0 and I1 > 0) provides a closed form solution for the p-Wasserstein distance:
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W p I0, I1 = ∫
0

1
|F0

−1 z − F1
−1 z |pdz

1
p . (7)

The closed-form solution of the p-Wasserstein distance in one dimension is an attractive 

property, as it alleviates the need for optimization. This property was employed in the Sliced 

Wasserstein metrics as defined below.

2) Sliced-Wasserstein Metric—The idea behind the Sliced Wasserstein metric is to first 

obtain a set of one-dimensional representations for a higher-dimensional probability 

distribution through projections (slicing the measure), and then calculate the distance 

between two input distributions as a functional on the Wasserstein distance of their one-

dimensional representations. In this sense, the distance is obtained by solving several one-

dimensional optimal transport problems, which have closed-form solutions.

Projection of high-dimensional PDFs is closely related to the well known Radon transform 

in the imaging and image processing community [8, 25]. The d-dimensional Radon 

transform ℛ maps a function I ∈ L1 (ℝd) where L1(ℝd) : = {I :ℝd ℝ|∫ℝd |I(x)|dx ≤ ∞} into 

the of its integrals over the hyperplanes of ℝd and is defined as,

ℛI t, θ : = ∫ℝ
I(tθ + sθ⊥)ds, ∀t ∈ ℝ, ∀θ ∈ 𝕊d − 1

here θ⊥ is the subspace orthogonal to θ, and 𝕊d − 1 is the unit sphere in ℝd. Note that 

L1(ℝd) L1(ℝ × 𝕊d − 1). In other words, Radon transform projects a PDF, I ∈ P(ℝd), where d 

> 1, into an infinite set of one-dimensional PDFs ℛI(., θ). The Sliced Wasserstein metric for 

PDFs I0 and I1 on ℝd is then defined as,

SW p I0, I1 = ∫𝕊d − 1W p
p ℛI0 . , θ , ℛI1 . , θ dθ

1
p

where p ≥ 1, and Wp is the p-Wasserstein metric, which for one dimensional PDFs ℛI0(., θ) 

and ℛI1(., θ) has a closed form solution (see Equation (7)). For more details and definitions 

of the Sliced Wasserstein metric we refer the reader to [8, 25, 29].

3) Wasserstein spaces, geodesics, and Riemannian structure—In this section we 

assume that Ω is convex. Here we highlight that the p-Wasserstein space (P(Ω), Wp) is not 

just a metric space, but has additional geometric structure. In particular for any p ≥ 1 and any 

I0, I1 ∈ P(Ω) there exists a continuous path (interpolation) between I0 and I1 whose length is 

the distance between I0 and I1.

Furthermore the space with p = 2 is special as it possesses a structure of a formal, infinite 

dimensional, Riemannian manifold. That structure was first noted by Otto [38] who 
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developed the formal calculations for using this structure. Let us mention that the precise 

description of the manifold of probability measures endowed with Wasserstein metric can be 

found in Ambrosio, Gigli and Savaré [1].

Here we review the two main notions, which have a wide use. Namely we characterize the 

geodesics in (P(Ω), Wp) and in the case p = 2 describe what is the local, Riemannian metric 

of (P(Ω), W2). Finally we state the seminal result of Benamou and Brenier [5] who provided 

a characterization of geodesics via action minimization which is useful in computations and 

also gives an intuitive explanation of the Wasserstein metric.

We first recall the definition of the length of a curve in a metric space. Let (X, d) be a metric 

space and I : [a, b] → X. Then the length of I, denoted by L(I) is

L I = sup
m ∈ ℕ, a = t0 < t1 < ⋯ < tm = b

∑
i = 1

m
d I ti − 1 , I ti .

A metric space (X, d) is a geodesic space if for any I0 and I1 there exists a curve I : [0, 1] → 
X such that I(0) = I0, I(1) = I1 and for all 0 ≤ s < t ≤ 1, d(I(s), I(t)) = L(I|[s,t]). In particular the 

length of I is equal to the distance from I0 to I1. Such a curve I is called a geodesic. The 

existence of geodesics is useful as it allows one to define the average of I0 and I1 as the 

midpoint of the geodesic connection them.

An important property of (P(Ω), Wp) is that it is a geodesic space and that geodesics are easy 

to characterize. Namely they are given by the displacement interpolation (a.k.a. McCann 

interpolation). When there exists a unique transportation map f* from I0 to I1 which min 

minimizes (1) for c(x; y) = |x − y|p, the geodesic is obtained by moving the mass at constant 

speed from x to f*(x). More precisely, for t ∈ [0; 1] and x ∈ Ω let

f t
∗ x = 1 − t x + t f ∗ x

be the position at time t of the mass initially at x. Note that f 0
∗ is identity mapping and 

f 1
∗ = f ∗. Pushing forward the mass by f t

∗ which by (3) has the form

It( f t
∗(x)) =

I0(x)

det(D f t
∗(x))

if f∗ is smooth, provides the desired geodesic from I0 to I1. We remark that the velocity of 

each particle ∂t f t
∗ = f ∗ x − x is the displacement of the optimal transportation map. Figure 

2 conceptualizes the geodesic between two PDFs in P(Ω), and visualizes it for three different 

pairs of PDFs.

An important fact regarding the 2-Wasserstein space is Otto’s presentation of a formal 

Riemannian metric for this space [38]. It involves shifting to Lagrangian point of view. To 
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explain, consider the path I(x, t) in P(Ω) with I(x, t) smooth. Then s x, t = ∂I
∂t x, t  can be 

thought as a tangent vector to the manifold, or a density perturbation. Instead of thinking of 

increasing/decreasing the density this perturbation can be viewed as resulting from moving 

the mass by a vector field. In other words consider vector fields v(x, t) such that

s = − ∇ ⋅ Iv . (8)

There are many such vector fields. Otto defined the size of s(·, t) as the square root of the 

minimal kinetic energy of the vector field that produces the perturbation to density s. That is

s, s = min
v satisfied 8 ∫ v 2I dx (9)

Utilizing the Riemmanian manifold structure of P(Ω) together with the inner product 

presented in Equation (9) the 2-Wasserstein metric can be reformulated into finding the 

minimizer of the following action among all curves in P(Ω) connecting I0 and I1 [5],

W2
2 I0, I1 = infI, v∫0

1∫Ω
I x, t v x, t 2dxdt

such that ∂tI + ∇ · (Iv) = 0

I ⋅ , 0 = I0 ⋅ , I ⋅ , 1 = I1 ⋅

where the first constraint is the well-known continuity equation.

C. Optimal Transport: Embeddings and Transforms

The optimal transport problem and specifically the 2-Wasserstein metric and the Sliced 2-

Wasserstein metric have been recently used to define nonlinear transforms for signals and 

images [25, 27, 40, 50]. In contrast to commonly used linear signal transformation 

frameworks (e.g. Fourier and Wavelet transforms) which only employ signal intensities at 

fixed coordinate points, thus adopting an ‘Eulerian’ point of view, the idea behind the 

transport-based transforms is to consider the intensity variations together with the locations 

of the intensity variations in the signal. Therefore, such transforms adopt a ‘Lagrangian’ 

point of view for analyzing signals. That is, they are able to ‘move’ signal (pixel) intensities 

around. Moreover, the transforms can be viewed as Euclidean embeddings for the data, 

under the transport-related metric space structure described above. The benefit of such an 

Euclidean embedding is that they facilitate the application of many standard data analysis 

algorithms (e.g. learning). Here we briefly describe these transforms and some of their 

prominent properties.

1) The linear optimal transportation framework—The linear optimal transportation 

(LOT) framework was proposed by Wang et al. [50]. The framework was used in [4, 39] for 
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pattern recognition in biomedical images and specifically histopathology and cytology 

images. Later, it was extended in [27] as a generic framework for pattern recognition and 

was used in [26] for single-frame super-resolution reconstruction of face images. The LOT 

framework provides an invertible Lagrangian transform for images. It was initially proposed 

as a method to simultaneously amend the computationally expensive requirement of 

calculating pairwise 2-Wasserstein distance between N signals for pattern recognition 

purposes, and to allow for the construction of generative models for images involving 

textures and shapes. For a given set of images Ii ∈ P2(Ω), for i = 1, …, N, and a fixed 

template I0, all non-negative and normalized to have the same sum, the transform projects 

the images to the tangent space at I0. The projections are acquired by finding the optimal 

velocity fields corresponding to the optimal transport plans between I0 and each image in the 

set.

The framework provides a linear embedding for P2(Ω) with respect to a fixed signal I0 ∈ 
P2(Ω). Meaning that the Euclidean distance between an embedded signal, denoted as I∼i, and 

the fixed reference, I0, is equal to W2(I0, Ii) and the Euclidean distance between two 

embedded normalized signals is, generally speaking, an approximation of their 2-

Wasserstein distance. The geometric interpretation of the LOT framework is presented in 

Figure 3. The linear embedding then facilitates the application of linear techniques such as 

principal component analysis (PCA) and linear discriminant analysis (LDA) to probability 

measures.

2) The cumulative distribution transform—Park et al. [40] considered the LOT 

framework for one-dimensional PDFs (positive signals normalized to integrate to 1), and 

since in dimension one the transport maps are explicit, they were able to characterize the 

properties of the transformed densities. Here we briefly review their results. Similar to the 

LOT framework, let Ii for i = 1, …, N, and I0 be signals (PDFs) defined on ℝ. The 

framework first calculates the optimal transport maps between Ii and I0 using 

f i x = Fi
−1 ∘ F0 x  for all i = 1, …, N. Then the forward and inverse transport-based 

transform, denoted as the cumulative distribution transform (CDT) by Park et al. [40], for 

these density functions with respect to the fixed template I0 is defined as,

I∼i = f i − Id I0 Analysis

Ii = f i
−1 ′ I0 ∘ f i

−1 Synthesis

where (I0 ∘ f i
−1)(x) = I0( f i

−1(x)). Note that the L2-norm (Euclidean distance) of the 

transformed signals, I∼i corresponds to the 2-Wasserstein distance between I0 and Ii. In 

contrast to the higher-dimensional LOT, the Euclidean distance between two transformed 

(embedded) signals I∼i and I∼ j, however, is the exact 2-Wasserstein distance between Ii and Ij 

(see [40] for a proof) and not just an approximation. Hence, the transformation is isometric 

(preserves) with respect to the 2-Wasserstein metric. This isometric nature of the CDT was 

utilized in [28] to provide positive definite kernels for machine learning of n-dimensional 

signals.
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From a signal processing point of view, the CDT is a nonlinear signal transformation that 

captures certain nonlinear variations in signals including translation and scaling. 

Specifically, it gives rise to the transformation pairs presented in Table I. From Table I one 

can observe that although I(t − τ) is nonlinear in τ (when I(.) is not a linear function), its 

CDT representation I∼ t + τ I0 t  becomes affine in τ (similar effect is observed for scaling). 

In effect, the Lagrangian transformations (compositions) in original signal space are 

rendered into Eulerian perturbations in transform space, borrowing from the PDE parlance. 

Furthermore, Park et al. [40] demonstrated that the CDT facilitates certain pattern 

recognition problems. More precisely, the transformation turns certain not linearly separable 

and disjoint classes of signals into linearly separable ones. Formally, let C be a set of 1D 

maps and let P, Q ⊂ P2(Ω) be sets of positive PDFs born from two positive PDFs p0, q0 ∈ 
P2(Ω) (which we denote as mother density functions or signals) as follows,

P = {p | p = h′(p0 ∘ h), ∀h ∈ C}, Q = {q |q = h′(q0 ∘ h), ∀h ∈ C} .

If there exists no h ∈ C for which p0 = h′(q0 ◦ h) then the sets P and Q are disjoint but not 

necessarily linearly separable in the signal space. A main result of [40] states that the signal 

classes P and Q are guaranteed to be linearly separable in the transform space (regardless of 

the choice of the reference signal I0) if C satisfies the following conditions,

i. h ∈ C ⇔ h−1 ∈ C

ii. h1, h2 ∈ C ⇒ ρh1 + (1 − ρ)h2 ∈ C, ∀ρ ∈ [0, 1]

iii. h1, h2 ∈ C ⇒ h1(h2), h2(h1) ∈ C

iv. h′(p0 ◦ h) ≠ q0, ∀h ∈ C

The set of translations C = {f | f (x) = x +τ, τ ∈ ℝ}, and scaling C = {f | f (x) = ax, a ∈ ℝ+}, 

for instance, satisfy the above conditions. We refer the reader to [40] for further reading. The 

top panel in Figure 4 demonstrates the linear separation property of the CDT. The signal 

classes P and Q are chosen to be the set of all translations of a single Gaussian and a 

Gaussian mixture including two Gaussian functions with a fixed mean difference, 

respectively. The discriminant subspace is calculated for these classes and it is shown that 

while the signal classes are not linearly separable in the signal domain, they become linearly 

separable in the transform domain.

3) The Radon cumulative distribution transform—The CDT framework was 

extended to 2 dimensional density functions (images) through the sliced-Wasserstein 

distance in [25], and was denoted as the Radon-CDT. It is shown in [25] that similar 

characteristics of the CDT, including the linear separation property, also hold for the Radon-

CDT. Figure 4 clarifies the linear separation property of the Radon-CDT and demonstrate 

the capability of such transformations. Particularly, Figure 4 shows a facial expression 

dataset with two classes (i.e. neutral and smiling expressions) and its corresponding 

representations in the LDA discriminant subspace calculated from the images (bottom left 

panel), the Radon-CDT of the dataset and the corresponding representation of the 

transformed data in the LDA discriminant subspace (bottom right panel). It is clear that the 
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image classes become more linearly separable in the transform space. In addition, the 

cumulative percentage variation of the dataset in the image space, the Radon transform 

space, the Ridgelet transform space, and the Radon-CDT space are shown in Figure 5. It can 

be seen that the variations in the dataset could be explained with fewer components in the 

Radon-CDT space.

IV. Numerical methods

The development of robust and efficient numerical methods for computing transport-related 

maps, plans, metrics, and geodesics, is crucial for the development of algorithms that can be 

used in practical applications. Below we present several notable approaches for finding 

transportation maps and plans. Table II provides a high-level overview of these methods.

A. Linear programming

The linear programming problem, is an optimization problem with a linear objective 

function and linear equality and inequality constraints. Several numerical methods exist for 

solving linear programming problems, among which are the simplex method and its 

variations and the interior-point methods. The computational complexity of the mentioned 

numerical methods, however, scales at best cubically in the size of the domain. Hence, 

assuming the measures considered have N particles the number of unknowns γijs is N2 and 

the computational complexities of the solvers are at best 𝒪(N3logN) [14, 44]. The 

computational complexity of the linear programming methods is a very important limiting 

factor for the applications of the Kantorovich problem.

We note that, in the special case where I0 and I1 both have N equidistributed particles, the 

optimal transport problem simplifies to a one to one assignment problem that can be solved 

in 𝒪(N2logN). In addition, several multiscale approaches and sparse approximation 

approaches have recently been introduced to improve the computational performance of the 

linear programming solvers [37, 46].

B. Entropy regularized solution

Cuturi’s work [14] provides a fast and easy to implement variation of the Kantorovich 

problem by considering the transportation problem from a maximum-entropy perspective. 

The idea is to regularize the Wasserstein metric by the entropy of the transport plan. This 

modification simplifies the problem and enables much faster numerical schemes with 

complexity 𝒪(N2) [14] or 𝒪(Nlog N  using the convolutional Wasserstein distance presented 

in [47] (compared to 𝒪(N3) of the linear programming methods), where N is the number of 

delta masses in each of the measures. The price one pays is that it is difficult to obtain high 

accuracy approximations of the optimal transport plan. The entropy regularized p-

Wasserstein distance, otherwise known as the Sinkhorn distance, between PDFs I0 and I1 

defined on the metric space (Ω, d) is defined as,

W p, λ
p I0, I1 = infγ ∈ MP∫Ω × Ω

dp x, y γ x, y dxdy + λ∫
Ω × Ω

γ x, y ln γ x, y dxdy (10)

Kolouri et al. Page 13

IEEE Signal Process Mag. Author manuscript; available in PMC 2018 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where the regularizer is the negative entropy of the plan. We note that this is not a true 

metric since W p, λ
p I0, I1 > 0. Since the entropy term is strictly concave, the overall 

optimization in (10) becomes strictly convex. It is shown in [14] that the entropy regularized 

p-Wasserstein distance in Equation (10) can be reformulated as,

W p, λ
p I0, I1 = λ inf

γ ∈ M P
KL γ 𝒦λ

where 𝒦λ(x, y) = exp(− dp(x, y)
λ ) and KL γ |𝒦λ  is the Kullback-Leibler (KL) divergence 

between γ and 𝒦λ. In short, the regularizer enforces the plan to be within 1
λ  radius in the 

KL-divergence sense from the transport plan γ∞
∗ x, y = I0 x I1 y .

Cuturi shows that the optimal transport plan γ in Equation 10 is of the form Dv𝒦λDw where 

Dv and Dw are diagonal matrices with diagonal entries v, w ∈ ℝN [14], therefore the number 

of unknowns in the regularized formulation reduces from N2 to 2N. The new problem can 

then be solved through computationally efficient algorithms like the iterative proportional 

fitting procedure (IPFP), otherwise known as the RAS algorithm, or alternatively through the 

Sinkhorn-Knopp algorithm.

C. Flow minimization (AHT)

Angenent, Haker, and Tannenbaum (AHT) [2] proposed a flow minimization scheme to 

obtain the optimal transport map from the Monge problem. The method was used in several 

image registration applications [22], pattern recognition [27, 50], and computer vision [26]. 

A brief review of the method is provided here.

Let I0 : X → ℝ+ and I1 : Y → ℝ+ be continuous probability densities defined on convex 

domains X, Y ⊆ ℝd. In order to find the optimal transport map, f∗, AHT starts with an initial 

transport map, f0 : X → Y calculated from the Knothe-Rosenblatt coupling [49]. Then it 

updates f0 to minimize the transport cost while constraining it to remain a transport map 

from I0 to I1. The update equation for finding the optimal transport map in AHT is 

calculated to be,

f k + 1(x) = f k(x) + ε 1
I0

D f k( f k − ∇(Δ−1div( f k)))

where ε is the step size, D fk is the Jacobian matrix, and Δ−1 is the Poisson solver with 

Neumann boundary conditions. AHT show that for infinitesimal step size, ε, fk(x) converges 

to the optimal transport map. For a detailed derivation of the equation above see [2, 24].

The AHT method is in essence a gradient descent method on the Monge formulation of the 

optimal transport problem. Chartrand, Wohlberg, Vixie, and Bollt (CWVB) [11] proposed an 

alternative gradient descent method based on Kantorovich’s dual formulation of the 

transport problem that updates the optimal potential transport field, η(x), where f (x) = 
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∇η(x). Figure 6 visualizes the iterations of the CWVB method for two face images taken 

from YaleB face database.

D. Monge-Ampere equation

The Monge-Ampére partial differential equation (PDE) is defined as,

det(Hϕ) = h(x, ϕ, Dϕ)

for some functional h, and where Hϕ is the Hessian matrix of ϕ. The Monge-Ampére PDE is 

closely related to the Monge problem for the quadratic cost function. According to Bernier’s 

theorem (discussed in Section III-A3) when I0 and I1 are absolutely continuous PDFs 

defined on sets X, Y ⊂ ℝN, the optimal transport map that minimizes the 2-Wasserstein 

metric is uniquely characterized as the gradient of a convex function ϕ : X → Y. Moreover, 

we showed that the mass preserving constraint of the Monge problem can be written as 

det(D f)I1(f) = I0. Combining these results one can write,

det(D(∇ϕ(x))) =
I0(x)

I1(∇ϕ)) (11)

where D∇ϕ = Hϕ, and therefore the equation shown above is in the form of the Monge-

Ampére PDE. Now if ϕ is a convex function on X satisfying ∇ϕ(X) = Y and solving the 

Equation (11) then f∗ = ∇ϕ is the optimal transportation map from I0 to I1. The geometrical 

constraint on this problem is rather unusual in PDEs and is often referred to as the optimal 

transport boundary conditions. Several authors have proposed numerical methods to obtain 

the optimal transport map through solving the Monge-Ampére PDE in Equation (11) [7, 33]. 

In particular the scheme in [7] is monotone, has compexity O(N) (up to logarithms) and is 

provably convergent. We conclude by remarking that several regularity results on the 

optimal transport maps were established through the Monge-Ampére equation (see [24] for 

references).

E. Semi-discrete approximation

Several works [31, 34] have considered the problem in which one PDF, I0, has a continuous 

form while the other, I1 is discrete, I1(y) = Σqiδ(y − yi). It turns out that there exists weights 

wi such that the optimal transport map f : X → Y can be described via a power diagram. 

More precisely the set of x mapping to yi is the following cell of the power diagram:

PDw(yi) = {x: |x − yi|
2 − wi ≤ |x − y j|

2 − w j, ∀ j}

The main observation is that the weights wi are minimizers of the following unconstrained 

convex functional
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∑
i

qiwi − ∫
PDw(yi)

(‖x − yi‖
2 − wi)I0(x)dx .

Works by Mérigot [34], and Levy [31] use Newton based schemes and multiscale 

approaches to minimize the functional. The need to integrate over the power diagram makes 

the implementation somewhat geometrically delicate. Nevertheless recent implementation 

by Levy [31] gives impressive results in terms of speed. We also note that this approach 

provides the transportation mapping (not just the approximation of a plan).

V. Applications

In this section we review some recent applications of the optimal transport problem in signal 

and image processing, computer vision, and machine learning.

A. Image retrieval

One of the earliest applications of the optimal transport problem was in image retrieval. 

Rubner, Tomasi, and Guibas [44] employed the discrete Wasserstein metric, which they 

denoted as the Earth Mover’s Distance (EMD), to measure the dissimilarity between image 

signatures. In image retrieval applications, it is common practice to first extract features (i.e. 

color features, texture feature, shape features, etc.) and then generate high dimensional 

histograms or signatures (histograms with dynamic/adaptive binning), to represent images. 

The retrieval task then simplifies to finding images with similar representations (i.e. small 

distance between their histograms/signatures). The Wasserstein metric is specifically 

suitable for such applications as it can compare histograms/signatures of different sizes 

(histograms with different binning). This unique capability turns the Wasserstein metric into 

an attractive candidate in image retrieval applications [32, 44]. In [44], the Wasserstein 

metric was compared with common metrics such as the Jeffrey’s divergence, the χ2 

statistics, the L1 distance, and the L2 distance in an image retrieval task; and it was shown 

that the Wasserstein metric achieves the highest precision/recall performance amongst all.

Speed of computation is an important practical consideration in image retrieval applications. 

For almost a decade, the high computational cost of the optimal transport problem 

overshadowed its practicality in large scale image retrieval applications. Recent 

advancements in numerical methods including the work of Merigot [34], and Cuturi [14], 

among many others, have reinvigorated optimal transport-based distances as a feasible and 

appealing candidate for large scale image retrieval problems.

B. Registration and Morphing

Image registration deals with finding a common geometric reference frame between two or 

more images and it plays an important role in analyzing images obtained at different times 

or using different imaging modalities. Image registration and more specifically biomedical 

image registration is an active research area. Registration methods find a transformation f 
that maximizes the similarity between two or more image representations (e.g. image 
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intensities, image features, etc.). Among the plethora of registration methods, nonrigid 

registration methods are especially important given their numerous applications in 

biomedical problems. They can be used to quantify the morphology of different organs, 

correct for physiological motion, and allow for comparison of image intensities in a fixed 

coordinate space (atlas). Generally speaking, nonrigid registration is a non-convex and non-

symmetric problem, with no guarantee on existence of a globally optimal transformation.

Various work in the literature, deploy the Monge problem for image warping and elastic 

registration. Utilizing the Monge problem in an image warping/registration setting has a 

number of advantages. First, the existence and uniqueness of the global transformation (the 

optimal transport map) is known. Second, the problem is symmetric, meaning that the 

optimal transport map for warping I0 to I1 is the inverse of the optimal transport map for 

warping I1 to I0. Lastly, it provides a landmark-free and parameter-free registration scheme 

with a built-in mass preservation constraint. These advantages motivated several follow-up 

work to investigate the application of the Monge problem in image registration and warping 

[21, 22].

In addition to images, the optimal mass transport problem has also been used in point cloud 

and mesh registration [29] (see [24] for more references), which have various applications in 

shape analysis and graphics. In these applications, shape images (2D or 3D binary images) 

are first represented using either sets of weighted points (i.e. point clouds), using clustering 

techniques such as K-means or Fuzzy C-means, or with meshes. Then, a regularized 

variation of the optimal transport problem is solved to match such representations. The 

regularization on the transportation problem is often imposed to enforce the neighboring 

points (or vertices) to remain near to each other after the transformation.

C. Color transfer and texture synthesis

Texture mixing and color transfer are appealing applications of the optimal transport 

framework in image analysis, graphics, and computer vision. Here we briefly discuss these 

applications.

1) Color transfer—The purpose of color transfer is to change the color palette of an image 

to impose the feel and look of another image. Color transfer is generally performed through 

finding a map, which morphs the color distribution of the first image into the second one. 

For grayscale images, the color transfer problem simplifies to a histogram matching 

problem, which is solved through the one-dimensional optimal transport formulation [16]. In 

fact, the classic problem of histogram equalization is indeed a one-dimensional transport 

problem [16]. The color transfer problem, on the other hand, is concerned with pushing the 

three-dimensional color distribution of the first image into the second one. This problem can 

also be formulated as an optimal transport problem as demonstrated in [41] (see [24] for 

more references.).

A complication that occurs in the color transfer on real images, however, is that a perfect 

match between color distributions of the images is often not satisfying. This is due to the 

fact that a color transfer map may not transfer the colors of neighboring pixels in a coherent 

manner, and may introduce artifacts in the color transferred image. Therefore, the color 
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transfer map is often regularized to make the transfer map spatially coherent [41]. Figure 7 

shows a simple example of grayvalue and color transfer via optimal transport framework. It 

can be seen that the cumulative distribution of the grayvalue and color transferred images are 

similar to that of the input image.

2) Texture synthesis and mixing—Texture synthesis is the problem of synthesizing a 

texture image that is visually similar to an exemplar input texture image, and has various 

applications in computer graphics and image processing. Many methods have been proposed 

for texture synthesis, among which are synthesis by recopy and synthesis by statistical 
modeling. Texture mixing, on the other hand, considers the problem of synthesizing a 

texture image from a collection of input texture images in a way that the synthesized texture 

provides a meaningful integration of the colors and textures of the input texture images. 

Metamorphosis is one of the successful approaches in texture mixing, which performs the 

mixing via identifying correspondences between elementary features (i.e. textons) among 

input textures and progressively morphing between the shapes of elements. In other 

approaches, texture images are first parametrized through a tight frame (often steerable 

wavelets) and statistical modeling is performed on the parameters.

Other successful approaches include the random phase and spot noise texture modeling [18], 

which model textures as stationary Gaussian random fields. Briefly, these methods are based 

on the assumption that the visual texture perception is based on the spectral magnitude of the 

texture image. Therefore, utilizing the spectral magnitude of an input image and 

randomizing its phase will lead to a new synthetic texture image which is visually similar to 

the input image. Ferradans et al. [18] utilized this assumption together with the Wasserstein 

geodesics to interpolate between spectral magnitude of texture images, and provide synthetic 

mixed texture images. Figure 8 shows an example of texture missing via the Wasserstein 

geodesic between the spectral magnitudes of the input texture images. The in-between 

images are synthetically generated using the random phase technique.

D. Image denoising and restoration

The optimal transport problem has also been used in several image denoising and restoration 

problems [30]. The goal in these applications is to restore or reconstruct an image from 

noisy or incomplete observation. Lellmann et al. [30] utilized the Kantorovich-Rubinsten 

discrepancy term together with a Total Variation term in the context of image denoising. 

They called their method Kantorovich-Rubinstein-TV (KR-TV) denoising. It should be 

noted that, the Kantorovich-Rubinstein metric is closely related to the 1-Wasserstein metric 

(for one dimensional signals they are equivalent). The KR term in their proposed functional 

provides a fidelity term for denoising while the TV term enforces a piecewise constant 

reconstruction.

E. Transport based morphometry

Given their suitability for comparing mass distributions, transport-based approaches for 

performing pattern recognition of morphometry encoded in image intensity values have also 

recently emerged. Recently described approaches for transport-based morphometry (TBM) 

[4, 27, 50] work by computing transport maps or plans between a set of images and a 
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reference or template image. The transport plans/maps are then utilized as an invertible 

feature/transform onto which pattern recognition algorithms such as principal component 

analysis (PCA) or linear discriminant analysis (LDA) can be applied. In effect, it utilizes the 

LOT framework described earlier in Section III-C1. These techniques has been recently 

employed to decode differences in cell and nuclear morphology for drug screening [4], and 

cancer detection histopathology [39] and cytology images amongst other applications 

including the analysis of galaxy morphologies [27], for example.

Deformation-based methods have long been used in analyzing biomedical images. TBM, 

however, is different from those deformation-based methods in that it has numerically exact, 

uniquely defined solutions for the transport plans or maps used. That is, images can be 

matched with little perceptible error. The same is not true in methods that rely on 

registration via the computation of deformations, given the significant topology differences 

commonly found in medical images. Moreover, TBM allows for comparison of the entire 

intensity information present in the images (shapes and textures), while deformation-based 

methods are usually employed to deal with shape differences. Figure 9 shows a schematic of 

the TBM steps applied to a cell nuclei dataset. It can be seen that the TBM is capable of 

modeling the variation in the dataset. In addition, it enables one to visualize the classifier, 

which discriminates between image classes (in this case malignant versus benign).

F. Super-Resolution

Super-resolution is the process of reconstructing a high-resolution image from one or several 

corresponding low-resolution images. Super-resolution algorithms can be broadly 

categorized into two major classes namely “multi-frame” super resolution and “single-

frame” super resolution, based on the number of low-resolution images they require to 

reconstruct the corresponding high-resolution image. The transport-based morphometry 

approach was used for single frame super resolution in [26] to reconstruct high-resolution 

faces from very low resolution input face images. The authors utilized the transport-based 

morphometry in combination with subspace learning techniques to learn a nonlinear model 

for the high-resolution face images in the training set.

In short, the method consists of a training and a testing phase. In the training phase, it uses 

high resolution face images and morphs them to a template high-resolution face through 

optimal transport maps. Next, it learns a subspace for the calculated optimal transport maps. 

A transport map in this subspace can then be applied to the template image to synthesize a 

high-resolution face image. In the testing phase, the goal is to reconstruct a high-resolution 

image from the low-resolution input image. The method searches for a synthetic high-

resolution face image (generated from the transport subspace) that provides a corresponding 

low-resolution image which is similar to the input low-resolution image. Figure 10 shows 

the steps used in this method and demonstrates reconstruction results.

G. Machine-Learning and Statistics

The optimal transport framework has recently attracted ample attention from the machine 

learning and statistics communities [12, 19, 25, 28, 36]. Some applications of the optimal 

transport in these arenas include various transport-based learning methods [19, 28, 36, 48], 
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domain adaptation, Bayesian inference [12, 13], and hypothesis testing [15, 42] among 

others. Here we provide a brief overview of the recent developments of transport-based 

methods in machine learning and statistics.

1) Learning—Transport-based distances have been recently used in several works as a loss 

function for regression, classification, etc. Montavon, Müller, and Cuturi [36] for instance 

utilized the dual formulation of the entropy regularized Wasserstein distance to train 

restricted Boltzmann machines (RBMs). Boltzmann machines are probabilistic graphical 

models (Markov random fields) that can be categorized as stochastic neural networks and 

are capable of extracting hierarchical features at multiple scales. RBMs are bipartite graphs 

which are special cases of Boltzmann machines, which define parameterized probability 

distributions over a set of d-binary input variables (observations) whose states are 

represented by h binary output variables (hidden variables). RBMs’ parameters are often 

learned through information theoretic divergences such as KL-Divergence. Montavon et al. 

[36] proposed an alternative approach through a scalable entropy regularized Wasserstein 

distance estimator for RBMs, and showed the practical advantages of this distance over the 

commonly used information divergence-based loss functions.

In another approach, Frogner et al. [19] used the entropy regularized Wasserstein loss for 

multi-label classification. They proposed a relaxation of the transport problem to deal with 

unnormalized measures by replacing the equality constraints in Equation (6) with soft 

penalties with respect to KL-divergence. In addition, Frogner et al. [19] provided statistical 

bounds on the expected semantic distance between the prediction and the groundtruth. In yet 

another approach, Kolouri et al. [28] utilized the sliced Wasserstein metric and provided a 

family of positive definite kernels, denoted as Sliced-Wasserstein Kernels, and showed the 

advantages of learning with such kernels. The Sliced-Wasserstein Kernels were shown to be 

effective in various machine learning tasks including classification, clustering, and 

regression.

Solomon et al. [48] considered the problem of graph-based semi-supervised learning, in 

which graph nodes are partially labeled and the task is to propagate the labels throughout the 

nodes. Specifically, they considered a problem in which the labels are histograms. This 

problem arises for example in traffic density prediction, in which the traffic density is 

observed for a few stop lights over 24 hours in a city and the city is interested in predicting 

the traffic density in the un-observed stop lights. They pose the problem as an optimization 

of a Dirichlet energy for distribution-valued maps based on the 2-Wasserstein distance, and 

present a Wasserstein propagation scheme for semi-supervised distribution propagation 

along graphs.

More recently, Arjovskly et al. [3] compared various distances, namely total variation, KL 

divergence, Jenson-Shannon divergence, and the Wasserstein distance in training generative 

adversarial networks (GAN). They demonstrated (theoretically and numerically) that the 

Wasserstein distance leads to a superior performance compared to the later dissimilarity 

measures. They specifically showed that, their proposed Wasserstein GAN does not suffer 

from common issues in such networks, including instability and mode collapse.
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2) Domain adaptation—Domain adaptation is one of the fundamental problems in 

machine learning which has gained proper attention from the machine learning research 

community in the past decade. Domain adaptation is the task of transfer ring knowledge 

from classifiers trained on available labeled data to unlabeled test domains with data 

distributions that differ from that of the training data. The optimal transport framework is 

recently presented as a potential major player in domain adaptation problems [12, 13]. 

Courty, Flamary, and Davis [12], for instance, assumed that there exists a non-rigid 

transformation between the source and target distributions and find this transformation using 

an entropy regularized optimal transport problem. They also proposed a label-aware version 

of the problem in which the transport plan is regularized so a given target point (testing 

exemplar) is only associated with source points (training exemplars) belonging to the same 

class. Courty et al. [12] showed that domain adaptation via regularized optimal transport 

outperform the state-of-the-art results in several challenging domain adaptation problems.

3) Bayesian inference—Another interesting and emerging application of the optimal 

transport problem is in Bayesian inference [17]. In Bayesian inference, one critical step is 

the evaluation of expectations with respect to a posterior probability function, which leads to 

complex multidimensional integrals. These integrals are commonly solved through the 

Monte Carlo numerical integration, which requires independent sampling from the posterior 

distribution. In practice, sampling from a general posterior distribution might be difficult, 

therefore the sampling is performed via a Markov Chain which converges to the posterior 

probability after a certain number of steps. This leads to the celebrated Markov Chain Monte 

Carlo (MCMC) method. The downside of MCMC is that the samples are not independent 

and hence the convergence of the empirical expectation is slow. El Moselhy and Marzouk 

[17] proposed a transport-based method that evades the need for Markov chain simulation by 

allowing direct sampling from the posterior distribution. The core idea in their work is to 

find a transport map (via a regularized Monge formulation), which pushes forward the prior 

measure to the posterior measure. Then, sampling the prior distribution and applying the 

transport map to the samples, will lead to a sampling scheme from the posterior distribution. 

Figure 11 shows the basic idea behind these methods.

4) Hypothesis testing—Wasserstein distance is used for goodness of fit testing in [15] 

and for two sample testing in [42]. Ramdas et al. [42] presented connections between the 

entropy regularized Wasserstein distance, multivariate Energy distance, and the kernel 

maximum mean discrepancy (MMD), and provided a “distribution free” univariate 

Wasserstein test statistic. These and other applications of transport-related concepts show the 

promise of the mathematical modeling technique in the design of statistical data analysis 

methods to tackle modern learning problems.

Finally, we note that in the interest of brevity, a number of other important applications of 

transport-related techniques were not discussed above, but are certainly interesting on their 

own right. For a more detailed discussion and more references please refer to [24].
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VI. Summary and Conclusions

Transport-related methods and applications have come a long way. While earlier 

applications focused primarily in civil engineering and economics problems, they have 

recently begun to be employed in a wide variety of problems related to signal and image 

analysis, and pattern recognition. In this tutorial, seven main areas of application were 

reviewed: image retrieval V-A, registration and morphing V-B, color transfer and texture 

analysis V-C, image restoration V-D, transport-based morphometry V-E, image super-

resolution V-F, and machine learning and statistics V-G. Transport and related techniques 

have received increased attention in recent years. Overall, researchers have found that the 

application of transport-related concepts can be helpful to solve problems in diverse 

applications. Given recent trends, it seems safe to expect that the number of different 

application areas will continue to grow.

In its most general form, the transport-related techniques reviewed in this tutorial can be 

thought as mathematical models for signals, images, and in general data distributions. 

Transport-related metrics involve calculating differences not only of pixel or distribution 

intensities, but also “where” they are located in the corresponding coordinate space (a pixel 

coordinate in an image, or a particular axis in some arbitrary feature space). As such, the 

geometry (e.g. geodesics) induced by such metrics can give rise to dramatically different 

algorithms and data interpretation results. The interesting performance improvements 

recently obtained could motivate the search for a more rigorous mathematical understanding 

of transport-related metrics and applications.

We note that the emergence of numerically precise and efficient ways of computing 

transport-related metrics and geodesics, presented in section IV also serves as an enabling 

mechanism. Coupled with the fact that several mathematical properties of transport-based 

metrics have been extensively studied, we believe that the ground is set for their increased 

use as foundational tools or building blocks based on which complex computational systems 

can be built. The confluence of these emerging ideas may spur a significant amount of 

innovation in a world where sensor and other data is becoming abundant, and computational 

intelligence to analyze these is in high demand. We believe transport-based models while 

become an important component of the ever expanding tool set available to modern signal 

processing and data science experts.
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Fig. 1. 
Monge transport map (top panel) and Kantorovich’s transport plan (bottom panel).
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Fig. 2. 
Geodesics in the 2-Wasserstein space (left panel), and in the Euclidean space (right panel) 

between various one and two-dimensional PDFs. Note that the geodesic in the 2-Wasserstein 

space captures the nonlinear structure of the signals and images and provides a natural 

morphing.
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Fig. 3. 
Graphical representation of the LOT framework. The framework embeds the PDFs (i.e. 

signals or images) Ii in the tangent space (i.e. the set of all tangent vectors) of P(Ω) with 

respect to a fixed PDF I0. As a consequence, the Euclidean distance between the embedded 

functions I∼1 and I∼2 provides an approximation for the 2-Wasserstein distance, W2(I1, I2).
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Fig. 4. 
Examples for the linear separability characteristic of the CDT and the Radon-CDT. The 

discriminant subspace for each case is calculated using the penalized-linear discriminant 

analysis (p-LDA). It can be seen that the nonlinear structure of the data is well captured in 

the transform spaces.
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Fig. 5. 
The cumulative percentage of the face dataset in Figure 4 in the image space, the Radon 

transform space, the Ridgelet transform space, and the Radon-CDT transform space.
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Fig. 6. 
Visualization of the iterative update of the transport potential and correspondingly the 

transport displacement map through CWVP iterations.
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Fig. 7. 
Grayvalue and color transfer via optimal transportation.
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Fig. 8. 
An example of texture mixing via optimal transport using the method presented in Ferradans 

et al. [18]
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Fig. 9. 
The schematic of the TBM framework. The optimal transport maps between input images I1, 

…, IN and a template image I0 is calculated. Next, linear statistical modeling such as 

principal component analysis (PCA), linear discriminant analysis (LDA), and canonical 

correlation analysis (CCA) is performed on the optimal transport maps. The resulting 

transport maps obtained from the statistical modeling step are then applied to the template 

image to visualize the results of the analysis in the image space.
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Fig. 10. 
In the training phase, optimal transport maps that morph the template image to high-

resolution training face images are calculated (i). Principal component analysis (PCA) is 

used to learn a linear subspace for transport maps for which a linear combination of obtained 

eigenmaps can be applied to the template image to obtain synthetic face images (ii). A 

geometric interpretation of the problem is depicted in panel (iii), and reconstruction results 

are shown in panel (iv).
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Fig. 11. 
Left panel shows the prior distribution p and the posterior distribution q and the 

corresponding transport map f that pushes p into q. One million samples, xi, were generated 

from distribution p and the top-right panel shows the empirical distribution of these samples 

denoted as p. The bottom-right panel shows the empirical distribution of transformed 

samples, yi = f (xi), denoted as q.
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TABLE I

Cumulative Distribution Transform pairs. Note that the composition holds for all strictly monotonically 

increasing functions g.

Cumulative Distribution Transform pairs

Property Signal domain CDT domain

I (x)
I∼(x)

Translation I (x − τ)
I∼(x) + τ I0(x)

Scaling aI (ax)
I∼(x)

a − x (a − 1)
a I0(x)

Composition g′ (x)I (g(x))

(g−1( I∼(x)
I0(x) + x) − x) I0(x)
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TABLE II

The key properties of various numerical approaches.

Comparison of Numerical Approaches

Method Remark

linear programming Applicable to general costs. Good approach if the PDFs are supported at very few sites

multi-scale linear programming Applicable to general costs. Fast and robust method, though truncation involved can lead to imprecise 
distances.

Auction algorithm Applicable only when the number of particles in the source and the target is equal and all of their 
masses are the same.

Entropy regularized linear programing Applicable to general costs. Simple and performs very well in practice for moderately large problems. 
Difficult to obtain high accuracy.

Fluid mechanics This approach can be adapted to generalizations of the quadratic cost, based on action along paths.

AHT minimization Quadratic cost. Requires some smoothness and positivity of densities. Convergence is only guaranteed 
for infinitesimal stepsize.

Gradient descent on the dual problem Quadratic cost. Convergence depends on the smoothness of the densities, hence a multi-scale 
approach is needed for non-smooth densities (i.e. normalized images).

Monge–Ampere solver Quadratic cost. One in [7] is proved to be convergent. Accuracy is an issue due to wide stencil used.

Semi-discrete approximation Efficient way to find map between a continuous and discrete signal [31].
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