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Abstract

Replication of the coronavirus genome requires continuous RNA synthesis, whereas transcription 

is a discontinuous process unique among RNA viruses. Transcription includes a template switch 

during the synthesis of subgenomic negative-strand RNAs to add a copy of the leader sequence. 

Coronavirus transcription is regulated by multiple factors, including the extent of base-pairing 

between transcription-regulating sequences of positive and negative polarity, viral and cell 

protein–RNA binding, and high-order RNA-RNA interactions. Coronavirus RNA synthesis is 

performed by a replication-transcription complex that includes viral and cell proteins that 

recognize cis-acting RNA elements mainly located in the highly structured 5′ and 3′ untranslated 

regions. In addition to many viral nonstructural proteins, the presence of cell nuclear proteins and 

the viral nucleocapsid protein increases virus amplification efficacy. Coronavirus RNA synthesis is 

connected with the formation of double-membrane vesicles and convoluted membranes. 

Coronaviruses encode proofreading machinery, unique in the RNA virus world, to ensure the 

maintenance of their large genome size.
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CORONAVIRUS REPLICATION AND TRANSCRIPTION

Coronaviruses are enveloped, positive-strand RNA viruses with genomes approximately 30 

kb in length that belong to the family Coronaviridae in the order Nidovirales (1). 

Coronaviruses infect a wide variety of mammalian and avian species, in most cases causing 

respiratory and intestinal tract disease. Human coronaviruses (HCoVs), such as HCoV-229E, 

HCoV-OC43, HCoV-NL63, and HKU1, have long been recognized as major causes of the 

common cold. Two recent HCoVs, severe acute respiratory syndrome coronavirus (SARS-

CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), emerged in 2002 

and 2012, respectively, causing life-threatening disease in humans (2). In addition, novel 

animal coronaviruses, such as the porcine deltacoronavirus (PDCoV) (3) and the porcine 
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epidemic diarrhea virus (PEDV) (4), have recently emerged, causing great economic loss in 

China and the United States.

The 5′-proximal two-thirds of the coronavirus genome encodes the replicase gene, which 

contains two open reading frames, ORF1a and ORF1b (Figure 1a). Translation of ORF1a 

yields polyprotein 1a (pp1a), and −1 ribosomal frameshifting allows translation of ORF1b to 

yield pp1ab (5, 6). Together, these polyproteins are co- and posttranslationally processed 

into 16 nonstructural proteins (nsps), most of them driving viral genome replication and 

subgenomic mRNA (sgmRNA) synthesis (Figure 1a). The 3′ third of the genome encodes 

the structural and accessory proteins, which vary in number among the different 

coronaviruses (Figure 1a) (1).

Coronavirus RNA-dependent RNA synthesis includes two differentiated processes: genome 

replication, yielding multiple copies of genomic RNA (gRNA), and transcription of a 

collection of sgmRNAs that encode the viral structural and accessory proteins (7, 8).

Like that of other positive-strand RNA viruses, coronavirus genome replication is a process 

of continuous synthesis that utilizes a full-length complementary negative-strand RNA as the 

template for the production of progeny virus genomes. The initiation of negative-strand 

synthesis involves access of the RNA-dependent RNA polymerase (RdRp) to the 3′ 
terminus of the genome, promoted by 3′- end RNA sequences and structures (5). There is 

evidence that both 5′- and 3′- end RNA elements are required for the production of progeny 

positive-strand RNA from the intermediate negative-strand RNA, suggesting that 

interactions between the 5′ and 3′ ends of the genome contribute to replication (9).

In contrast to replication, coronavirus transcription includes a discontinuous step during the 

production of sgmRNAs (10, 11). This process, unique among known RNA viruses, is a 

hallmark of the order Nidovirales and ultimately generates a nested set of sgmRNAs that are 

5′ and 3′ coterminal with the virus genome (Figure 1b). These sgmRNAs all include at 

their 5′ end a common leader sequence, whose length ranges from 65 to 98 nt in different 

coronaviruses (12). This common leader sequence is present only once at the very 5′ end of 

the genome, which implies that sgmRNAs are synthesized by the fusion of noncontiguous 

sequences, the leader and the 5′ end of each mRNA coding sequence, called the body (B). 

The transcription mechanism in coronaviruses is seemingly complicated as compared with 

the transcription mechanisms in other positive-strand RNA viruses, such as internal initiation 

and premature termination (13). In fact, in contrast to coronavirus and arterivirus sgmRNAs, 

subgenomic transcripts of other Nidovirales, such as toroviruses and roniviruses, do not have 

a common 5′ leader sequence (14). This observation raises the question of whether the 

presence of the leader sequence in coronavirus sgmRNAs provides any selective advantage 

to the virus. The presence of the 5′ leader sequence was shown to protect SARS-CoV 

mRNAs from nsp1-induced endonucleolytic cleavage of capped mRNAs, providing a 

strategy for the efficient accumulation of viral mRNAs and viral proteins during infection 

(15). Moreover, as noted below, the complement of the leader sequence supports initiation of 

positive-strand RNA synthesis, making the negative-strand subgenomic RNAs (sgRNAs) a 

template for further amplification of positive-strand sgmRNAs.
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RNA Sequences Regulating Transcription

The transcription process is controlled by transcription-regulating sequences (TRSs) located 

at the 3′ end of the leader sequence (TRS-L) and preceding each viral gene (TRS-B) (Figure 

1c). TRSs include a conserved core sequence (CS) 6–7 nt in length and variable 5′ and 3′ 
flanking sequences (the 5′ TRS and 3′ TRS, respectively) (16). Because the CS is identical 

for the genome leader (CS-L) and all mRNA coding sequences (CS-B), the CS-L could 

base-pair with the nascent negative strand complementary to each CS-B (cCS-B), allowing 

for leader-body joining (Figure 1c). By engineering the base-pairing between the CS-L and 

the cCS-B in infectious genomic cDNAs of coronaviruses (17) and arteriviruses (18, 19), it 

was formally demonstrated that (a) the discontinuous step of transcription occurs during the 

synthesis of the negative-strand RNA, and (b) base-pairing between the CS-L and the cCS-B 

is required to drive the template switch of the nascent negative-strand RNA to the leader. 

Additionally, the stability (free energy, G) of the extended duplex between the TRS-L and 

the complement of the TRS-B (cTRS-B), including 5′ and 3′ TRS flanking sequences, was 

confirmed as a critical regulatory factor for the synthesis of sgmRNAs (20, 21).

Coronavirus transcription resembles high-frequency, similarity-assisted copy-choice RNA 

recombination, requiring sequence identity between donor and acceptor RNAs and hairpin 

structures present in the acceptor RNA (22), in which the TRS-L would act as an acceptor 

for the cTRS-B donor sequence (Figure 1c). Secondary structure analysis of the TRS-L 

region from transmissible gastroenteritis virus (TGEV) (23) and bovine coronavirus (BCoV) 

(24) showed that the CS-L is exposed in the loop of a structured hairpin that is relevant for 

replication and transcription (23). These observations provided experimental evidence for 

the selection of the TRS-L during the template switch, excluding other genome TRS-Bs that 

contain the CS. Only the CS-L, located in a sequence context with optimal secondary 

structure and stability for template switching, may act as a landing site for the newly 

synthesized negative-strand RNA.

The coronavirus discontinuous transcription process implies a premature termination during 

the synthesis of the negative-strand RNAs and a template switch of the nascent negative-

strand RNA to the leader (Figure 1c). This switch requires long-distance RNA-RNA 

interactions, probably assisted by RNA-protein complexes that would bring into close 

proximity the 5′- end TRS-L and the TRS-B preceding each gene. These complexes, 

presumably formed prior to the template switch, might contribute to the stoppage of 

negative-strand RNA synthesis at the TRS-B (7). In TGEV, two intragenomic, long-distance 

RNA-RNA interactions have been described to regulate the transcription of sgmRNA N 

[coding for the nucleocapsid protein (N protein)], which is the most abundant sgmRNA 

during viral infection despite its low G value for TRS-L–TRS-B duplex formation (25). The 

first interaction is established between two complementary 9-nt cis-acting elements 

preceding the CS of the N gene, the proximal element (pE) and the distal element (dE) 

(Figure 2), which are located 7 and 449 nt upstream of the CS-N, respectively (25). The 

amount of sgmRNA N produced is directly proportional to the extent of the complementarity 

between pE and dE and inversely proportional to the distance between them (26). This 

interaction is probably necessary to relocate the active domain, another cis-acting RNA 

motif, consisting of a 173-nt region at the 5′ flank of dE, immediately preceding the CS-N 
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(Figure 2) (26). The second long-distance RNA-RNA interaction is held between a 10-nt 

sequence within the active domain and a complementary RNA motif located at the 5′ end of 

the viral genome (nucleotides 477 to 486), more than 25,000 nt apart (27), and represents the 

longest-distance RNA-RNA interaction reported so far in the RNA virus world (Figure 2). 

This interaction could bring into physical proximity the leader sequence, at the genome 5′ 
end, and the TRS-N, which would promote the template switch during synthesis of the 

negative-strand sgRNAs (Figure 2). This long-distance RNA-RNA interaction provided for 

the first time experimental support of the physical proximity between the TRS-L and a TRS-

B during discontinuous transcription in order to promote efficient RdRp transfer. The 

secondary structure of the active domain and the high-order structure formed by the RNA-

RNA interactions could also promote the slowdown and stoppage of the transcription 

complex at the CS-N, as described for tombusvirus transcription (28). The sequences and 

secondary structures of the RNA motifs involved in these long-distance interactions are 

conserved among members of the species Alphacoronavirus I, suggesting a functional 

similarity (27).

Coronavirus Transcription Model

Experimental data on transcription in coronaviruses (7, 17, 21, 25, 27) and the related 

arteriviruses (14) can be integrated into a transcription model that includes three steps 

(Figure 3): (a) First, gRNA forms transcription initiation precomplexes, bringing into 

physical proximity the distal TRS-L and TRS-B. RNA-RNA, RNA-protein, and protein-

protein interactions might maintain these precomplexes in a dynamic equilibrium. (b) These 

precomplexes act as slowdown and detachment signals for the transcription complex during 

the synthesis of negative-strand RNA. (c) Once the TRS-B has been copied, if the ΔG of 

duplex formation between the cTRS-B (in the nascent negative-strand RNA) and the TRS-L 

exceeds a minimum threshold, a template switch to the leader takes place, adding a copy of 

the TRS-L to complete the negative-strand sgRNA. These negative-strand sgRNAs 

subsequently serve as templates for the synthesis of multiple copies of sgmRNAs.

REGULATION OF CORONAVIRUS PROTEIN STOICHIOMETRIC RATIOS

Viruses have developed diverse strategies to ensure the optimal expression ratio of each viral 

protein. In the case of coronaviruses, replicase proteins are expressed from a full-length 

gRNA by translation of two polyproteins that are proteolytically cleaved. In contrast, 

structural and accessory proteins are expressed from a nested set of sgmRNAs. Therefore, 

the abundance of each sgmRNA must be tightly regulated during the discontinuous 

transcription process to ensure appropriate viral protein ratios.

Multiple factors regulate the transcription process by modulating the template switch 

frequency during discontinuous transcription (9, 29). The most important one is the 

complementarity between the TRS-L and the cTRS-B (17, 21). In a study of several 

coronaviruses, most sgmRNAs synthesized could be predicted in silico by local base-pairing 

calculations (17). Additional factors may regulate sgmRNA levels, such as TRS secondary 

structure, proximity to the 3′ end, and RNA-RNA or protein-RNA interactions (7, 9). In this 

sense, coronavirus N protein is required for efficient sgmRNA transcription (30, 31). 

Sola et al. Page 4

Annu Rev Virol. Author manuscript; available in PMC 2018 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Coronavirus N protein has RNA chaperone activity that drives template switching in vitro 

and may also facilitate template switching during coronavirus transcription (31). Although 

nonessential for RNA synthesis, coronavirus nsp1 is associated with viral components of the 

replication-transcription complex (RTC) (32). Therefore, it may modulate coronavirus RNA 

synthesis similarly to arterivirus nsp1 protein, which modulates the relative abundance of 

sgmRNAs and gRNA (33).

As components of the coronavirus RTC, cell proteins can also modulate sgmRNA ratios. 

Infectious bronchitis virus (IBV) N protein was recently shown to recruit cellular helicase 

DDX1 to viral RTCs, facilitating TRS read-through and synthesis of long sgmRNAs (34). 

Interestingly, DDX1 recruitment requires N protein phosphorylation by cellular GSK3 

kinase (34). Thus, the cell factor DDX1, attracted by phosphorylated N protein, provides a 

unique strategy for the transition from discontinuous to continuous transcription in 

coronaviruses to ensure balanced sgmRNA and full-length gRNA synthesis.

Coronavirus protein ratios are also posttranscriptionally regulated. Most sgmRNAs are 

structurally polycistronic but functionally monocistronic, with only the 5′-most ORF being 

translated into a viral protein. The clearest example of coronavirus translational regulation is 

the expression of the polyprotein pp1ab, which is generated by a programmed −1 ribosomal 

frame-shifting mechanism (35). This process leads to minor levels of most of the RNA-

modifying enzymes, encoded by ORF1b, in comparison with those of other replicase 

enzymes, such as proteases, encoded by ORF1a. Alteration of coronavirus frame-shifting 

efficiency modified the ratio of replicase proteins, affecting viral RNA synthesis and virus 

production (36). In this sense, regulation of the ratio between the two viral polymerases nsp8 

and nsp12, encoded by ORF1a and ORF1b, respectively, may be involved in controlling the 

levels of the different sgmRNAs during viral RNA synthesis (37).

ROLE OF DOUBLE-MEMBRANE VESICLES

Like that of other positive-strand RNA viruses, coronavirus RNA synthesis is associated 

with extensively rearranged intracellular membranes (38). High-resolution three-

dimensional images obtained by electron tomography in SARS-CoV-infected cells showed a 

unique reticulovesicular network of modified endoplasmic reticulum that integrated 

convoluted membranes (CMs), interconnected double-membrane vesicles (DMVs), and 

vesicle packets apparently arising from DMV merger. Viral replicase subunits (nsp3, nsp5, 

and nsp8) localized to CMs, whereas dsRNA, presumably the replicative intermediate, 

mainly localized to the DMV interior, supporting the concept that the membrane network 

would contribute to protecting replicating RNA from antiviral defense mechanisms (38). In 

mouse hepatitis virus (MHV)-infected cells, newly synthesized RNA was detected in close 

proximity to DMVs and CMs (39), and viral RNA levels correlated with the number of 

DMVs (40–42). However, other data do not necessarily support the active contribution of 

DMVs to viral RNA synthesis. Nascent MHV RNAs colocalize with dsRNA only at early 

times postinfection; at later times, the dsRNA distributed throughout the cell is apparently 

transcriptionally inactive (43). Furthermore, RdRp or nascent viral RNA has not been 

detected inside DMVs, and ultrastructural analysis could not confirm any connection 

between the DMV interior and the cytoplasm (38), raising questions about the import and 
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export of ribonucleotide precursors and produced RNAs exported from RNA synthesis areas 

(44). The coexpression of the SARS-CoV transmembrane nonstructural proteins nsp3, nsp4, 

and nsp6 resulted in the formation of CMs and DMVs (45), suggesting a function in the 

biogenesis of the membranous replicative structures, and also in the anchoring of the RTC 

(46–48).

In addition to DMVs, the gammacoronavirus IBV also induces different membrane 

structures such as spherules tethered to zippered endoplasmic reticulum (49). Unlike any 

previously identified coronavirus-induced structure, IBV spherules contain a pore 

connecting their interior to the cell cytoplasm (50).

The function and dynamics of DMVs and CMs and the precise localization of the sites of 

active viral RNA synthesis are still unresolved questions, and further studies are required. A 

possible model proposes that DMVs may be the initial sites of active RNA synthesis early in 

infection, whereas at later times, after membrane connections are lost, RNA synthesis shifts 

to the CMs, and DMVs become end-stage products that sequester nonfunctional dsRNAs to 

prevent the stimulation of the innate immune response (51, 52).

STRESS GRANULES AND PROCESSING BODIES IN REPLICATION-

TRANSCRIPTION COMPLEX ACTIVITY

Stress granules and processing (P) bodies are cytoplasmic RNA granules that contain 

translationally silenced messenger ribonucleoproteins, contributing to translation regulation 

in cells. Whereas P bodies are constitutively expressed and include components involved in 

mRNA decay, stress granules are thought to be sites of mRNA storage and triage formed in 

response to stress conditions. Stress granules represent an intermediate stage in the dynamic 

equilibrium between active translation on free polysomes and mRNA decay in P bodies (53, 

54).

During infection, RNA viruses dynamically interact with stress granules and P bodies (55), 

leading to varying stress granule phenotypes. Many viruses have evolved mechanisms to 

antagonize the formation of stress granules, suggesting that stress granules are involved in 

restricting virus replication through RNA silencing (56, 57). In contrast, other RNA viruses, 

such as respiratory syncytial virus, induce stress granule formation and take advantage of 

stress granule responses as part of the infectious cycle (58). For coronaviruses, MHV 

replication was found to be enhanced in cells deficient in stress granule formation, implying 

that stress granules contribute to viral inhibition (59). TGEV induced stress granules that 

persisted from 7 to 16 hpi, which was correlated with a decrease in viral replication and 

transcription (60). These granules contained the stress granule markers T cell intracellular 

antigen 1 (TIA-1), TIA-1-related protein (TIAR), and polypyrimidine tract–binding protein 

(PTB) in association with viral gRNA and sgmRNAs. TGEV-induced stress granules might 

contribute to the spatiotemporal regulation of viral RNA synthesis. Several stress granule 

proteins (including caprin and G3BP) have been associated with IBV N protein, pointing to 

the relevance of these RNA-protein complexes in the regulation of coronavirus gene 

expression (61).
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A new hypothesis postulates that stress granules are involved in an integrated stress–innate 

immunity activation response (57, 62). In this pathway, viral RNA and proteins, along with 

host pathogen-sensing factors, such as the dsRNA-binding protein kinase R (PKR) and the 

RNA helicases retinoic acid–induced gene 1 (RIG-I) and melanoma differentiation–

associated gene 5 (MDA5), can be sequestered in stress granules (63). Additional insight 

into the relevance of stress granules and P bodies for the regulation of coronavirus RNA 

synthesis is still required.

RELEVANCE OF THE CELL NUCLEUS IN CORONAVIRUS RNA SYNTHESIS

All positive-strand RNA viruses that infect animals replicate in the cytoplasm of the infected 

host cell. However, there is ample evidence that implicates the nucleus and nuclear proteins 

in the replication and pathogenesis of positive-strand RNA viruses, including coronaviruses 

(64). The replication of these RNA viruses in enucleated cells is variable, ranging from 10% 

to 100% of that in nucleated controls (65, 66). The relocation of nuclear proteins to the 

cytoplasm and of viral proteins to the nucleus during virus replication (7, 64, 67) (Table 1) 

highlights the relevance of this organelle during the coronavirus infectious cycle and raises 

important questions: What is the role of nuclear factors in the replication of these viruses, 

and do viral proteins traveling to the nucleus participate in RTC activity?

The coronavirus protein most frequently associated with the host cell nucleus is the N 

protein, and its transport to the nucleus is regulated by phosphorylation (68). N protein 

nuclear localization is associated with induction of cell cycle arrest and inhibition of 

cytokinesis (68–72) and is involved in recruitment to the cytoplasm of cell nuclear proteins, 

such as heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and the helicase DDX1 

(34, 73). As noted above, N protein–recruited DDX1 functions in the RTC in facilitating 

TRS read-through and synthesis of long sgmRNAs (34). The 3b proteins of IBV (74) and 

SARS-CoV (75, 76), though different in nature, have also been located in part in the nuclei 

of transfected or infected cells. Following nuclear localization, SARS-CoV 3b protein 

traffics to the outer membrane of mitochondria, where it inhibits the induction of type 1 

interferon (IFN) elicited by RIG-I and the mitochondrial antiviral signaling protein (77). 

Similarly, the 4b proteins of MERS-CoV, bat coronavirus (BtCoV)-HKU4, and BtCoV-

HKU5 also localize to the nucleus and inhibit type 1 IFN induction and, less efficiently, NF-

κB signaling pathways (78).

SARS-CoV proteins 6 and 9b affect nucleocytoplasmic transport. Protein 6 impedes nuclear 

import of factors such as STAT1 (79) and antagonizes IFN signaling pathways (80). Protein 

9b shuttles from the nucleus by its interaction with cellular exportin 1 (Crm1), which is 

essential for proper protein 9b degradation, and blocking nuclear export of protein 9b 

induces cell apoptosis (81).

In TGEV-infected cells, nsp1 is distributed in both the nucleus and the cytoplasm (82), 

which is not surprising as it can freely diffuse into the nucleus because of its small molecular 

weight (~9 kDa) (83). In contrast to TGEV nsp1, both MHV nsp1 and SARS-CoV nsp1 are 

localized exclusively in the cytoplasm of virus-infected cells (83). Due to its binding to the 

40S ribosomal subunit, nsp1 inhibits cellular mRNA translation in some cases (HCoV-229E 
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and HCoV-NL63) but not in others (TGEV) (82, 83). In addition, nsp1 inhibits IFN 

induction and signaling (83).

Arterivirus nsp1 and N proteins also localize in the cytoplasm and the nucleus of infected 

cells (84, 85). Porcine reproductive and respiratory syndrome virus (PRRSV) N protein 

accumulates in the nucleoli of infected cells, where it interacts with the host cell proteins 

fibrillarin, nucleolin, and poly(A)-binding protein (PABP), the latter of which is transported 

to the nucleus during infection (86, 87). PRRSV N protein also activates the NF-κB pathway 

and enhances its nuclear localization. The presence of N protein in the nucleus seems 

important for PRRSV, as removal of its nuclear localization signal significantly attenuates 

the virus (88). The nsp1 protein interferes with IRF3-mediated IFN activity in the nucleus 

and with the NF-κB-mediated pathway in the cytoplasm (89–91). The nsp1β subunit of nsp1 

suppresses the JAK-STAT pathway and also interacts with protein inhibitor of activated 

STAT1 (PIAS1) (92, 93). Because PIAS1 is a nuclear protein with multiple functions, its 

interaction with nsp1 may lead to the modulation of several host cell pathways.

Coronavirus and arterivirus proteins, like those from other cytoplasmic RNA viruses (65), 

interact with host cell proteins, modifying their nuclear-cytoplasmic localization and thereby 

affecting viral replication levels and modulating innate immune responses. Thus, nuclear 

proteins such as hnRNP A1 and PTB accumulate in the cytoplasm of cells infected by MHV 

and TGEV, respectively (60, 94). These proteins bind to TRSs and to the 5′ end of the viral 

genome (95, 96); PTB additionally reduces coronavirus RNA accumulation (60).

Other nuclear proteins, including the p100 transcriptional coactivator, PABP, and certain 

members of the hnRNPs such as hnRNP Q, showed preferential binding to the 3′ end of the 

coronavirus genome and a positive effect on coronavirus RNA synthesis (95, 97). The 

contribution of these proteins to host cell interactions in TGEV infection is supported by the 

formation of a complex including glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 

glutamyl-prolyl-tRNA synthetase (EPRS), hnRNP Q, and the ribosomal protein L13a, which 

regulates the expression of inflammatory genes (98, 99). Similarly, in infections by other 

RNA viruses, several nuclear proteins (La, Sam68, PTB, proteasome activator PA28γ, and 

nucleolin) also relocalized to the cytoplasm and were involved in virus replication (65).

RNA GENOME 5 AND 3 CIS-ACTING ELEMENTS INVOLVED IN 

CORONAVIRUS RNA SYNTHESIS

Similar to that of other positive-strand RNA viruses, coronavirus RNA synthesis requires the 

specific recognition of cis-acting RNA elements, which are mainly located in the highly 

structured 5′ and 3′ untranslated regions (UTRs), although they may also extend into the 

adjacent coding sequences (9, 100, 101). Such cis-acting RNA elements in the 5′ end of the 

coronavirus genome were first studied in BCoV using defective interfering RNAs. More 

recently, these studies have been extended to other betacoronaviruses and, to a lesser extent, 

to alpha- and gammacoronaviruses. These RNA elements mainly consist of stem-loop (SL) 

structures that present a varying degree of conservation among different coronaviruses (9, 

101–103). In order to consolidate the information from various publications, we adopt a 

uniform nomenclature for the 5′ cis-acting RNA elements (Figure 4) based on that used by 
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the Leibowitz, Giedroc, and Olsthoorn laboratories (102, 103). SL1 and SL2 are conserved 

in all coronaviruses (101, 102). SL1 adopts a bipartite structure (104), and SL2 presents a 

highly conserved loop sequence that adopts a YNMG- or CUYG-type tetraloop 

conformation (105, 106). Both SLs are required for genome replication, and they may have a 

specific role in sgmRNA synthesis (104–106). SL3, which contains the leader CS, is 

involved in discontinuous transcription as a receptor for nascent negative-strand RNA. 

Downstream of the leader CS is SL4, a long hairpin that is structurally conserved in all 

coronavirus genera (101, 102). SL4 is essential for replication of BCoV defective interfering 

RNA (107), and it was proposed to function as a spacer element that controls the orientation 

of upstream SLs driving sgmRNA synthesis (108). Finally, a higher-order RNA structure 

(SL5) that extends into ORF1a seems to be conserved within specific coronavirus genera 

(102). In alphacoronaviruses, SL5 may be further subdivided into three hairpins (SL5a, 

SL5b, and SL5c), which are partially conserved in betacoronaviruses (101). In 

gammacoronaviruses, a possible SL5 is predicted to adopt a rod-like structure (102).

Initial studies using defective interfering RNAs from alpha-, beta-, and gammacoronaviruses 

delimitated the 3′ cis-acting RNA elements required for coronavirus RNA synthesis to the 

3′ UTR plus the poly(A) tail (100). Further investigations allowed the identification and 

functional characterization of these 3′ cis-acting RNA elements (reviewed in 9, 101) (Figure 

4). Immediately downstream of the N gene stop codon, there are two overlapping, essential 

RNA structures consisting of a bulged stem loop (BSL) and a hairpin-type RNA pseudoknot 

(PK), which are structurally and functionally conserved in all betacoronaviruses (9, 100). An 

intriguing property of the BSL and the PK is that, because they overlap by 5 nt, they cannot 

simultaneously fold up completely, which has led to the speculation that each element may 

adopt alternate configurations, acting as a molecular switch that operates at some stage of 

RNA synthesis (109). In addition, evidence for a direct interaction of the PK loop 1 (L1) 

with the 3′ end of the genome and with nsp8 and nsp9 has been reported (110). Based on 

these studies, a model for the initiation of coronavirus negative-strand RNA synthesis was 

proposed (Figure 5). In this model, the binding of a protein complex (including nsp8 and 

nsp9) to the stem formed by base-pairing of the PK L1 and the 3′ end of the genome may 

cause a conformational shift that leaves free the 3′ end of the genome and disrupts the lower 

stem of the BSL, leading to the formation of the PK. In this new conformation, the 3′ end of 

the genome is recognized by the RdRp and associated factors, promoting the initiation of 

negative-strand RNA synthesis (110). Further studies are required to confirm this model and 

to analyze whether or not alpha- and gammacoronaviruses, which lack either the BSL or the 

PK, respectively (101, 111, 112), employ a similar molecular switch mechanism.

Downstream of the PK there is a hypervariable region (HVR) that is highly divergent in 

sequence and structure among coronaviruses but contains a universally conserved 

octanucleotide sequence in a single-stranded region (Figure 4) (101, 112–114). In MHV, the 

HVR was predicted to fold in a complex multiple stem-loop structure, which is nonessential 

for RNA synthesis in cell culture but affects pathogenicity in vivo (110, 115). Although the 

strict conservation of the octanucleotide sequence suggests an important functional role, the 

activity of this sequence remains to be determined. Finally, MHV and BCoV defective 

interfering RNA studies have provided evidence that the poly(A) tail is another cis-
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replication signal that requires a minimum of 5 to 10 adenylate residues to be functional, 

probably via interaction with PABP (116).

CELLULAR AND VIRAL PROTEINS OF THE CORONAVIRUS REPLICATION-

TRANSCRIPTION COMPLEX

Most of the nsps encoded in the replicase gene, together with the N protein and an unknown 

number of cellular proteins, assemble into a membrane-associated viral RTC that mediates 

both genome replication and the synthesis of the nested set of sgmRNAs (5, 7, 9, 30, 31, 

117–119). From these, the key enzymes involved in coronavirus RNA synthesis are the 

RdRp (nsp12), the helicase (nsp13), and the nsp7-nsp8 complex, which is a processivity 

factor for the RdRp (Figure 5).

The RdRp domain, located in the C-terminal region of nsp12, contains all conserved motifs 

of canonical RdRps, including the palm, fingers, and thumb domains (120, 121). In addition 

to the RdRp domain, nsp12 also contains an N-terminal domain that is essential for RdRp 

activity (122) and probably interacts with nsp5, nsp8, and nsp9 (123). In vitro, full-length 

nsp12 drives RNA synthesis in a primer-dependent manner on both homo- and 

heteropolymeric RNA templates (124, 125). However, the in vitro nsp12 RdRp activity is 

weak and nonprocessive, in contrast with the efficient replication of the RNA genome in 

vivo.

Coronavirus nsp8 bears a second, noncanonical RdRp activity that synthesizes short 

oligonucleotides (<6 nt), acting as an RNA primase that produces the primers required for 

nsp12-mediated RNA synthesis (37, 126). Structural studies have shown that nsp8 interacts 

with nsp7, forming a hexadecameric protein complex (eight molecules of each nsp) that 

contains a channel capable of encircling RNA due to its internal dimensions and electrostatic 

properties (127, 128). This complex, which is active in both de novo initiation and primer 

extension (126), confers processivity to the RdRp in an in vitro assay using purified proteins 

(129). The nsp7-nsp8-nsp12 complex formed in vitro is able to catalyze de novo synthesis of 

relatively long RNAs (up to 340 nt) in a processive manner. Also interacting with nsp8 is 

nsp9, a small protein that binds ssRNA without sequence specificity (130–132). 

Dimerization of nsp9 is critical for virus replication (133), and its structural and functional 

features strongly suggest that it could be a component of the RTC catalytic core, stabilizing 

viral RNAs during RNA synthesis and processing.

Coronavirus nsp13 contains a superfamily 1 helicase domain linked to an N-terminal zinc-

binding domain (134) that is essential for helicase activity in vitro (135). The protein is able 

to unwind dsRNA and dsDNA in a 5′-to-3′ direction with the energy obtained by the 

hydrolysis of all NTPs and dNTPs (136–140). It was proposed that the resulting ssRNAs 

probably serve as templates for RNA synthesis by the RdRp. Besides NTPase and dNTPase 

activities, coronavirus helicases also possess RNA 5′-triphosphatase (RTPase) activity, 

which may be involved in viral mRNA capping (136, 138). Obviously, the nsp13 5′-to-3′ 
helicase activity does not fit the expected 3′-to-5′ polarity required to separate secondary 

structures in the RNA template during negative-strand synthesis (118). Thus, cellular 

helicases may bind the RTC to assist coronavirus proteins in 3′-to-5′ unwinding. SARS-
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CoV nsp13 has been shown to interact specifically with the cellular RNA helicase DDX5, 

which is involved in coronavirus RNA synthesis (141). In addition, the cellular helicase 

DDX1 is recruited to RTCs, and the effects of DDX1 expression knockdown indicate that it 

might be an essential cofactor for coronavirus RNA replication and transcription (34, 142). 

Interestingly, the helicase activity of nsp13 is enhanced 2-fold by nsp12 through direct 

protein-protein interaction (143), suggesting that interaction of these proteins in a functional 

RTC improves the efficiency of viral RNA synthesis.

Coronavirus Proofreading System

The replication and maintenance of the coronavirus genome, the largest known viral RNA, is 

a hallmark of nidoviruses. These viruses encode a unique set of RNA-modifying activities 

that are not present in other viral RNA genomes. One of them is the exonuclease activity of 

nsp14 (ExoN), related to the DEDD superfamily of exonucleases (144). In addition to the N-

terminal ExoN domain, nsp14 also contains a C-terminal N7-methyltransferase (N7-MTase) 

domain, which is involved in viral mRNA capping (145).

Coronavirus nsp14 ExoN activity was proposed to be part of an RNA proofreading 

machinery during coronavirus replication (146), and accumulating data support this role 

(147). Phylogenetically, only long-size nidovirus genomes encode an ExoN activity, and 

acquisition of this activity seems crucial to allow nidovirus genome expansion. The 

discovery of insect nidoviruses with a 20-kb RNA genome, encoding ExoN function, 

strongly reinforced this idea (148). In addition, point mutations in the catalytic ExoN 

residues led to coronaviruses with altered replication fidelity and a mutator phenotype, as 

they have 15- to 20-fold higher mutation accumulation rates (149, 150). As a proofreading 

component, ExoN activity should contribute to the removal of misincorporated nucleotides. 

In fact, nsp14 ExoN activity efficiently removes a mismatched 3′-end nucleotide, mimicking 

an RdRp misincorporation product (151). At the same time, coronaviruses are relatively 

resistant to mutagens such as ribavirin and 5-fluorouracil, whereas coronaviruses with 

reduced ExoN activity are highly susceptible to these agents (152). These findings were the 

first experimental evidence supporting nsp14 ExoN activity in a coronavirus proofreading 

system.

The nsp14 protein is part of the RTC core complex, formed by nsp12 (RdRp) and the nsp7-

nsp8 processivity factor, providing proofreading and capping activities (129). Interestingly, 

nsp10 is able to enhance ExoN activity up to 35-fold in vitro (151), binding nsp14 either 

alone or in the nsp7-nsp8-nsp12-nsp14 complex (129). The involvement of nsp10 in 

coronavirus RNA synthesis was first reported from the analysis of MHV mutants (153). 

More recently, it has been shown that nsp10 acts as a cofactor of both nsp14 ExoN and 

nsp16 methyltransferase (MTase) activities (154). Moreover, as nsp14 and nsp16 bind to 

overlapping nsp10 sites, nsp10 might act as a molecular switch, mediating interactions 

between RNA and proteins from both proofreading and mRNA capping machineries.

Coronavirus RNA Capping Pathway

Capping of viral RNAs by conventional or unconventional pathways (reviewed in 155) leads 

to 5′-end cap structures that allow efficient viral protein synthesis and, in many cases, 
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escape from the innate immune system. Coronaviruses follow the canonical capping 

pathway, which consists of four sequential enzymatic reactions: (a) RTPase, encoded by the 

nsp13 helicase, hydrolyzing the γ-phosphate of the mRNA; (b) an as-yet-unidentified 

guanylyltransferase (GTase) adding GMP to the 5′-diphosphate RNA; (c) nsp14 N7-MTase 

methylating the guanosine, leading to a cap-0 structure that is essential for efficient 

translation initiation; and (d) nsp16 2′-O-methyltransferase (2′-O-MTase) carrying out 

further methylations, leading to cap-1 and cap-2 structures, which are required to efficiently 

escape the nonself RNA recognition system of the host cell (156). Interestingly, whereas 

nsp10 binding has no effect on nsp14 N7-MTase activity, nsp10 is required for nsp16 2-O-

MTase activity. These data, in conjunction with those in the preceding section, highlight the 

importance of nsp10 as modulator of two different activities in the coronavirus proofreading 

and capping machinery.

Encapsidation of the Coronavirus Replication-Transcription Complex

It is currently accepted that, unlike that in negative-strand RNA viruses, the RTC in positive-

strand RNA viruses generally is not incorporated into viral particles. However, recent studies 

based on proteomic, biochemical, and immunoelectron microscopy assays reported the 

presence of RdRp, nsp2, nsp3, and nsp8 in TGEV particles (157) and nsp2, nsp3, and nsp5 

in SARS-CoV particles (158). These data suggest that the RTC might be encapsidated in 

coronaviruses. It is speculated that the encapsidated RTC could act as a starting replication 

machinery, with a round of genome amplification before translation leading to improved 

efficiency of virus infection. Further studies are required to investigate whether other viral 

and cellular components of the RTC are also encapsidated and what biological role they play 

in the coronavirus life cycle.
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Glossary

SARS-CoV severe acute respiratory syndrome coronavirus

MERS-CoV Middle East respiratory syndrome coronavirus

nsp nonstructural protein

sgmRNA subgenomic mRNA

RdRp RNA-dependent RNA polymerase

TRS transcription-regulating sequence

CS conserved core sequence

TGEV transmissible gastroenteritis virus
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BCoV bovine coronavirus

N protein nucleocapsid protein

RTC replication-transcription complex

IBV infectious bronchitis virus

CMs convoluted membranes

DMVs double-membrane vesicles

MHV mouse hepatitis virus

ExoN exonuclease
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SUMMARY POINTS

1. Coronaviruses express their 3′-proximal ORFs through a collection of 

overlapping, nested sgmRNAs generated by a mechanism of discontinuous 

transcription unique among RNA viruses. This process includes a template 

switch during the synthesis of negative-strand sgRNAs to add a copy of the 

leader sequence, located at the genome 5′ end.

2. Coronavirus transcription is regulated by multiple factors, including the extent 

of base-pairing between the complement of the TRS-B in the nascent negative 

strand and the TRS-L as well as protein-RNA and RNA-RNA interactions. 

Moreover, coronavirus N protein RNA chaperone activity is essential for 

efficient transcription.

3. Coronavirus RNA synthesis is associated with extensive modification of 

intracellular membranes, including DMVs and CMs.

4. The requirement of the nucleus for coronavirus replication is variable, but 

optimum levels of progeny are obtained only in its presence. Several 

coronavirus proteins involved in RNA synthesis travel to the nucleus. 

Conversely, many nuclear proteins are transported to the cytoplasm to 

facilitate coronavirus RNA synthesis.

5. Coronavirus cis-acting RNA elements involved in RNA synthesis are mainly 

located in the highly structured 5′ and 3′UTRs.

6. The replicase proteins nsp7, nsp8, nsp12, and nsp14 may constitute an RTC 

core complex.

7. Coronaviruses encode a proofreading machinery, unique among the RNA 

viruses, to ensure the maintenance of their large genome size. The ExoN 

activity of nsp14 is a key element of the proofreading system.
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FUTURE ISSUES

1. Further research is required on cis-acting elements involved in replication and 

transcription, and on the viral and cellular proteins that bind them.

2. The function and dynamics of DMVs and CMs and the precise localization of 

the sites of active viral RNA synthesis remain unresolved questions.

3. The contribution of cytoplasmic RNA-protein complexes containing viral 

RNAs, such as stress granules, to the regulation of coronavirus RNA 

expression requires further research.

4. Limited information is available on the temporal regulation of viral 

translation, replication, and transcription over the course of infection and on 

how switching between these processes occurs.

5. In vitro reconstitution of the RTC core complex will allow the study of the 

coronavirus proofreading mechanism, the temporal or spatial regulation of 

proofreading and capping activities, which share several viral components, 

and the role of N protein RNA chaperone activity.

6. Understanding the interaction of cell and viral proteins within the nucleus, 

and of nuclear proteins traveling to the cytoplasm to interact with viral 

factors, may provide novel avenues to clarify coronavirus replication.

7. It is still unknown whether replication and transcription are simultaneous or 

sequential processes.
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Figure 1. 
Coronavirus genome structure and gene expression. (a) Coronavirus genome structure. The 

upper scheme represents the TGEV genome. Labels indicate gene names; L corresponds to 

the leader sequence. Also represented are the nsps derived from processing of the pp1a and 

pp1ab polyproteins. PLP1, PLP2, and 3CL protease sites are depicted as inverted triangles 

with the corresponding color code of each protease. Dark gray rectangles represent 

transmembrane domains, and light gray rectangles indicate other functional domains. (b) 

Coronavirus genome strategy of sgmRNA expression. The upper scheme represents the 

TGEV genome. Short lines represent the nested set of sgmRNAs, each containing a common 

leader sequence (black) and a specific gene to be translated (dark gray). (c) Key elements in 

coronavirus transcription. A TRS precedes each gene (TRS-B) and includes the core 

sequence (CS-B) and variable 5′ and 3′ flanking sequences. The TRS of the leader (TRS-

L), containing the core sequence (CS-L), is present at the 5′ end of the genome, in an 

exposed location (orange box in the TRS-L loop). Discontinuous transcription occurs during 

the synthesis of the negative-strand RNA (light blue), when the copy of the TRS-B 

hybridizes with the TRS-L. Dotted lines indicate the complementarity between positive-

strand and negative-strand RNA sequences. Abbreviations: EndoU, endonuclease; ExoN, 

exonuclease; HEL, helicase; MTase, methyltransferase (green, N7-methyltransferase; dark 

Sola et al. Page 25

Annu Rev Virol. Author manuscript; available in PMC 2018 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



purple, 2′-O-methyltransferase); nsp, nonstructural protein; PLP, papain-like protease; 

RdRp, RNA-dependent RNA polymerase; sgmRNA, subgenomic RNA; TGEV, 

transmissible gastroenteritis virus; TRS, transcription-regulating sequence; UTR, 

untranslated region.
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Figure 2. 
Model for the formation of genome high-order structures regulating N gene transcription. 

The upper linear scheme represents the coronavirus genome. The red line indicates the 

leader sequence in the 5′ end of the genome. The hairpin indicates the TRS-L. The gray line 

with arrowheads represents the nascent negative-sense RNA. The curved blue arrow 

indicates the template switch to the leader sequence during discontinuous transcription. The 

orange line represents the copy of the leader added to the nascent RNA after the template 

switch. The RNA-RNA interactions between the pE (nucleotides 26894 to 26903) and dE 

(nucleotides 26454 to 26463) and between the B-M in the active domain (nucleotides 26412 

to 26421) and the cB-M in the 5′ end of the genome (nucleotides 477 to 486) are 

represented by solid lines. Dotted lines indicate the complementarity between positive-

strand and negative-strand RNA sequences. Abbreviations: AD, active domain secondary 

structure prediction; B-M, B motif; cB-M, complementary copy of the B-M; cCS-N, 

complementary copy of the CS-N; CS-L, conserved core sequence of the leader; CS-N, 

conserved core sequence of the N gene; dE, distal element; pE, proximal element; TRS-L, 

transcription-regulating sequence of the leader. For an animated version of the model, see 

Video 1 or download a PowerPoint slideshow.
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Figure 3. 
Three-step model of coronavirus transcription. (❶) Complex formation. Proteins binding 

transcription-regulating sequences are represented by ellipsoids, the leader sequence is 

indicated with a red bar, and core sequences are indicated with orange boxes. (❷) Base-

pairing scanning. Negative-strand RNA is shown in light blue; the transcription complex is 

represented by a hexagon. Vertical lines indicate complementarity between the genomic 

RNA and the nascent negative strand. (❸) Template switch. Due to the complementarity 

between the newly synthesized negative-strand RNA and the transcription-regulating 

sequence of the leader, template switch to the leader is made by the transcription complex to 

complete the copy of the leader sequence.
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Figure 4. 
Coronavirus cis-acting RNA elements. The higher-order RNA structures indicated in the 

diagram are mainly based on studies done in betacoronaviruses. The core sequence within 

the leader transcription-regulating sequence is shown as an orange box on the top of SL3. 

Abbreviations: BSL, bulged stem loop; HVR, hypervariable region; L1, loop 1 of the 

pseudoknot; N, nucleocapsid; Oct, conserved octanucleotide; PK, pseudoknot; S1, stem 1 of 

the pseudoknot; SL, stem loop; UTR, untranslated region.
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Figure 5. 
Coronavirus replication-transcription complex. (a) After binding of the nsp8, nsp7, and nsp9 

complex to the genomic RNA 3′ end, the nsp8 primase activity initiates RNA synthesis de 

novo. This leads to a conformational change in the 3′-end RNA structure, allowing 

transition from a BSL to a PK folding. (b) PK formation allows binding of the RNA-

dependent RNA polymerase (nsp12) complex, including helicase and nsp14-nsp10. This 

core replication-transcription complex includes polymerase activity (nsp12 and nsp8), 

processivity factors (nsp7 and nsp8), and proofreading activity (nsp14 and nsp10). 

Abbreviations: BSL, bulged stem loop; HVR, hypervariable region; nsp, nonstructural 

protein; PK, pseudoknot.
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Table 1

Nidovirus proteins that localize to the nucleus

Family Virus Protein Reference(s)

Coronaviridae IBV N 69

TGEV N 69

MHV N 69

IBV 3b 74

SARS-CoV 3b 76

MERS-CoV 4b 75, 78

SARS-CoV 6 79, 159

SARS-CoV 9b 81, 160

TGEV nsp1 82

Arteriviridae EAV N 85

PRRSV N 88, 92, 93, 161

EAV nsp1 85

PRRSV nsp1 89, 91

Virus structural proteins: nucleocapsid (N), 3b, 4b, 6, and 9b. Virus nonstructural protein: nonstructural protein 1 (nsp1). Virus name abbreviations: 
EAV, equine arteritis virus; IBV, infectious bronchitis virus; MERS-CoV, Middle East respiratory syndrome coronavirus; MHV, mouse hepatitis 
virus; PRRSV, porcine reproductive and respiratory syndrome virus; SARS-CoV, severe acute respiratory syndrome coronavirus; TGEV, 
transmissible gastroenteritis virus.
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