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Abstract

Scaling factors are reported for use in predicting 19F NMR chemical shifts for fluorinated 

(hetero)aromatic compounds with relatively low levels of theory. Our recommended scaling 

factors were developed using a curated data set of >50 compounds, with 100 individual 19F shifts 

spanning a range of >150 ppm. With a maximum deviation of 6.5 ppm between experimental and 

computed shifts, or 4% of the range tested, these scaling factors allow for the assignment of 

chemical shifts to specific fluorines in multifluorinated aromatics. The utility of this approach is 

highlighted by several structural reassignments.

Graphical Abstract

Introduction

The incorporation of fluorine atoms in organic molecules (e.g., materials,1 agrochemicals,
2–3 pharmaceuticals4) is becoming increasingly common, as a result of the unique electronic 

and steric properties of fluorine atoms.5–12 Consequently, 19F NMR is applied ever more 

frequently in structural assignments. Fortunately for chemists working with fluorine, there 
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are many appeals of using 19F NMR, e.g., the NMR active isotope is 100% naturally 

abundant, has a gyromagnetic ratio of about 0.94 times 1H, and is spin ½.13 Nonetheless, 19F 

spectra can be difficult to interpret, especially when multiple fluorine atoms are present in a 

molecule. Some of us have been involved in developing methods for regioselective 

defluorination of polyfluorinated aromatics, methods that produce exactly the sort of 

compounds subject to assignment difficulties.5–9, 14 Useful resources are available to assist 

organic chemists in the interpretation of 19F NMR, but it remains challenging to reliably 

assign all 19F shifts within a multifluorinated molecule.13 Here we endeavor to provide a 

readily accessible method for reliably predicting 19F shifts of fluorinated aromatic 

compounds.

Predicting 1H and 13C NMR chemical shifts with quantum chemical methods (especially 

density functional theory [DFT]) is now commonplace.15–18 Often, linear scaling methods 

are used with such approaches to remove systematic errors in computations.19–20 In doing 

so, absolute isotropic shieldings are computed for a “training set” of molecules and 

compared to experimental chemical shifts. When tight linear correlations between computed 

and experimental data are found, simple scaling factors (slope and y-intercept for the 

correlation line, particular to the specific theoretical method used) fall out, and can then be 

used for predicting chemical shifts for molecules not included in the training set. This 

approach has been explored previously for 19F chemical shifts, including fluorinated 

aromatic compounds,21–27,28 but we provide scaling factors here that work with relatively 

low level theoretical methods accessible to non-experts. We also demonstrate the 

applicability of these scaling factors for heterocycles (common in bioactive compounds) and 

highlight their use in assigning structures of multifluorinated compounds.

Our training set consisted of approximately 50 compounds, with 100 individual 19F shifts 

spanning a range of >150 ppm (Chart 1). This set contains fluorinated aromatics, many with 

multiple fluorine atoms in the same molecule, and mono- and bicyclic heteroaromatics. A 

variety of issues made compiling this data set difficult, including variations in reported shifts 

across the literature and the use of different reference compounds.27 The compounds in 

Chart 1 were chosen not just for the variety of environments in which their fluorine atoms 

reside, but because their 19F shifts were supported by multiple published reports or a single 

report with sufficient experimental details to make us confident in their validity.27, 29–42

Methods

Geometry optimizations were run using B3LYP/6-31+G(d,p) in the gas phase using 

Gaussian09, and resulting structures were confirmed as minima using frequency 

calculations.43–47,26 These structures were subjected to NMR (GIAO)48–54 calculations at 

B3LYP/6-31+G(d,p), B3LYP/6-311+G(2d,p) and B3LYP/6-31G levels in the gas phase. 

B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d,p) calculations were repeated using the SMD 

implicit solvent model for experimental solvents in NMR calculations.55 Experimental shifts 

were plotted against calculated isotropic shielding values, and scaling factors were derived 

according to equation (1):
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σExperimental = slope ∗ θIsotropic + intercept (1)

These scaling factors were applied to all each test compound using equation (2):

θIsotropic − intercept
slope = σScaled (2)

While the compounds in Chart 1 were chosen, in part, for their lack of conformational 

flexibility, some compounds to which the developed scaling factors were applied were 

conformationally flexible. For such compounds, conformational searches were run with 

Spartan10, and then optimized in Gaussian09 with B3LYP/6-31+G(d,p) in the gas phase. 
26,56–57 Conformers within 3 kcal/mol of the lowest energy conformer were included in the 

NMR calculations, with their contributions weighted with a Boltzmann distribution based on 

their relative free energies.

Results and Discussion

Using B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d,p), the maximum error on any one 19F shift 

was 6.5 ppm, with a mean absolute deviation (MAD) of 2.1 ppm over a range of 153 ppm 

(Figure 1, middle). Performance was similar when NMR calculations were repeated with a 

larger basis set (B3LYP//6-311+G(2d,p))//B3LYP/6-31+G(d,p)): maximum error of 6.6 ppm 

and MAD of 1.7 ppm (Figure 1, right). Use of a smaller basis set (B3LYP/6-31G//B3LYP/

6-31+G(d,p)) resulted in a much higher maximum deviation (28 ppm) and a much higher 

MAD of 4.0 ppm (Figure 1, left). On the basis of these results, we recommend the B3LYP/

6-31+G(d,p)//B3LYP/6-31+G(d,p) for rapid predictions of 19F chemical shifts.

Although the 19F spectra for compounds used in the training set were taken in a variety of 

solvents, the majority were taken in either CDCl3 or CCl4 (a full list of the solvents is 

available in the Supporting Information). To test the effect of solvent on our predictions, the 

gas phase optimized structures were subjected to NMR calculations in continuum solvent 

(SMD) and new scaling factors were determined (Figure 2). For the 45 19F shifts from our 

test set that were measured in chloroform, gas phase NMR calculations had a maximum 

error of 8.2 ppm, while continuum chloroform calculations had a maximum error of 7.2 

ppm. The MAD also decreased slightly, from 2.9 to 2.6 ppm. For the 27 shifts determined in 

carbon tetrachloride, the maximum error decreased from 5.1 to 4.6 ppm, while the MAD 

remained the same at 1.5 ppm. Although including solvent in the calculations did provide 

small improvements in prediction accuracy, gas phase calculations appear to be sufficient.

To put our scaling factors to the test, we applied them to several multifluorinated compounds 

synthesized in one of our labs (Chart 2). The original assignment of one structure was found 

to be in error on the basis of our predicted 19F shifts. The shifts for the corrected structure 

(Chart 2) are completely consistent with the experimental spectrum.
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After discovering this misassignment, a group of 13 substituted benzene and pyridine 

compounds with various substitution patterns (Chart 3) were examined to confirm, or 

correct, the published structures.7, 9, 12 Although many of the spectra match experiment, two 

of the structures had large errors (Chart 3, red). Based on the correction described above, 

revised structures were tested and these match the experimental values within the error 

expected for our scaling factors. These straightforward applications of computational 19F 

shift prediction highlight its utility in avoiding mistakes in assignments for highly 

fluorinated compounds.

Conclusion

We have developed scaling factors aimed at fast and accurate prediction of 19F shifts for 

fluoroaromatics. In particular, the methods described here allow for the assignment of 

challenging structures bearing multiple fluorine atoms. The application of these scaling 

factors does not require advanced computations and, as a result, we hope that it will be 

applied broadly.
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Figure 1. 
Correlation data for two NMR computational methods (all using B3LYP/6-31+G(d,p) 

geometries): Left: B3LYP/6-31G Middle: B3LYP/6-31+G(d,p); Right: B3LYP/

6-311+G(2d,p). Mono-cyclic aromatic compounds (group A, Chart 1) are shown in green, 

non-heterocyclic compounds (group B) are shown in grey, and bicyclic-heterocyclic 

compounds (group C) are shown in yellow.
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Figure 2. 
Experimental and computed shifts for the training set used for optomization and NMR 

calculation at B3LYP/6-31+G(d,p) – structures taken in chloroform (top) and calculated in 

gas (left) and chloroform (right), structures taken in carbon tetrachloride (bottom). Mono-

cyclic aromatic compounds (group A) are shown in green, non-heterocyclic compounds 

(group B) are shown in grey, and bicyclic-heterocyclic compounds (group C) are shown in 

yellow.
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Chart 1. 
Experimental shifts of compounds used as training set to develop scaling factors: A: 
substituted mono-cyclic heterocylces, B: substituted non-heterocyclic aromatics, C: 
substituted bicyclic heterocycles.
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Chart 2. 
Initial compounds explored, including a structure that was corrected by computations 

(highlighted in red). Computed shifts and error from experiment are shown for each 

aromatic fluorine.
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Chart 3. 
Fluorinated aromatic compounds for which assignments were not certain. Numbers in 

parenthases are numbering from the original paper. The calculated shifts and error from 

experimental shift are shown for each aromatic fluorine.
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