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Molecular markers are applied across numerous scientific fields 
from developmental biology, systematics, and conservation biology 
to forensic studies (Schlötterer, 2004). They play a pivotal role in 
constructing genetic maps and identifying individuals with certain 
genes, as well as for studying genetic variability. In plant sciences, 
molecular tools have become key to identifying species and de-
termining relationships for plant production and supervision of 
intellectual property rights. Determining genetic relationships is 
essential for evolutionary and conservation studies, as well as in the 
selection of germplasm for plant breeding. The persistent need for 
the continuous development of genetically improved crops to sat-
isfy the demands of the increasing human population is strongly 
dependent on the development of various molecular markers 
(Henry, 2012).

Molecular marker technologies have evolved from the use of 
isozymes to hybridization-based DNA methods. With the devel-
opment of PCR, these techniques were replaced by arbitrarily am-
plified dominant (AAD) markers (e.g., amplified fragment length 
polymorphism [AFLP], inter-simple sequence repeat [ISSR], and 
random-amplified polymorphic DNA [RAPD] markers) and mi-
crosatellites (simple sequence repeats [SSRs]). The rapid develop-
ment of public genomic databases subsequently initiated a trend to 
abandon AAD markers for functional markers (Poczai et al., 2013). 

This latter type of markers, such as conserved DNA-derived poly
morphism (CDDP) and intron-targeting (IT) markers, are superior 
to randomly generated markers because they are gene-targeted and 
derived from sequences affecting phenotypic variation. Recent ad-
vances that have lowered the cost of high-throughput sequencing 
technology have led to the development of genotyping using next-
generation sequencing (Miller et al., 2007; Elshire et al., 2011; Vartia 
et al., 2016). These developments have significantly changed the ap-
proach to marker discovery and analyses.

The choice of molecular markers largely depends on the level of 
polymorphism to be detected and their genomic coverage, rather 
than on the technology used to generate the markers. Estimates of 
marker-based selection depend on the linkage of the genomic re-
gion and the marker itself. Because highly informative markers can 
reduce the amount of genotyping required for inference of ancestry, 
it is desirable to measure the extent to which specific markers con-
tribute to this inference (Rosenberg et al., 2003). Several approaches 
have been previously developed for measuring polymorphism in-
formation (Table 1), but a user-friendly platform to calculate this 
information is missing or otherwise inaccessible (see PICcalc; 
Nagy et al., 2012). Here, we introduce the program Online Marker 
Efficiency Calculator (iMEC), an online calculator for deriving pol-
ymorphism statistics of individual molecular markers.
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PREMISE OF THE STUDY: To accurately design plant genetic studies, the information content 
of utilized markers and primers must be calculated. Plant genotyping studies should take 
into account the efficiency of each marker system by calculating different parameters to find 
the optimal combination of primers. This can be problematic because there are currently no 
easily accessible applications that can be used to calculate multiple indices together.

METHODS AND RESULTS: The program Online Marker Efficiency Calculator (iMEC) 
was developed using R for the simple computation of seven polymorphism indices 
(heterozygosity index, polymorphism information content, discriminating power, effective 
multiplex ratio, marker index, arithmetic mean heterozygosity, and resolving power). These 
indices are based on dominant and codominant DNA fingerprinting markers, thus allowing 
comparison and selection of optimal genetic markers for a given data set.

CONCLUSIONS: iMEC simplifies the calculation of diverse indices for the marker of choice to 
better enable researchers to measure polymorphism information for individual markers. The 
program is available at https://irscope.shinyapps.io/iMEC/.

  KEY WORDS    arbitrarily amplified dominant markers (AADs); DNA band; molecular marker; 
multi-locus fingerprinting; polymorphism.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-0107-1068
mailto:peter.poczai@helsinki.fi
https://irscope.shinyapps.io/iMEC/


Applications in Plant Sciences 2018 6(6): e1159� Amiryousefi et al.—iMEC: Online Marker Efficiency Calculator  •  2 of 4

http://www.wileyonlinelibrary.com/journal/AppsPlantSci� © 2018 Amiryousefi et al.

METHODS AND RESULTS

iMEC is coded in R and is available as a Web application at https://
irscope.shinyapps.io/iMEC/. The software can be used online or, al-
ternately, users can access and modify the source code deposited on 
GitHub (https://github.com/Limpfrog/iMEC). For more advanced 
users of R, this option allows for more versatile use of the program. 
In addition, the test data used for benchmarking the software are 
also available online and can be used as example files to run the 
program. The software reads standard PHYLIP (.phy) (Felsenstein, 
2002) and NEXUS (.nex) (Maddison et al., 1997) file formats, which 
are widely supported by other software and can be easily created 
using a text editor or other programs (e.g., NEXUS Data Editor 
[Page, 2001] and Mesquite [Maddison and Maddison, 2018]). 
iMEC is able to handle diverse types of data including DNA gen-
erated by high-throughput sequencing, microsatellites, and AADs 
such as AFLP markers. Input data must be binary coded (0, 1) or 
recorded as multi-state characters (0, 1, 3, etc.). For example, AAD 
markers should be recorded in presence/absence matrices, whereas 
microsatellite and single-nucleotide polymorphism data sets can be 
scored either in binary or in multi-state format. As basic measures, 
iMEC calculates heterozygosity index (H), polymorphism infor-
mation content (PIC), discriminating power (D), effective multi-
plex ratio (E), marker index (MI), arithmetic mean heterozygosity 
(Havp), and resolving power (R) (Table  1). It is important to note 

that, for AAD markers, iMEC presumes that fragments of equal 
length amplify from the corresponding loci and that they repre-
sent a single, dominant locus with two possible alleles (presence/
absence). Therefore, patterns generated by AAD markers represent 
multiple loci, whereas it is assumed that SSRs or similar codomi-
nant systems reveal multiple alleles of a single locus, which is not al-
ways the case. The occurrence of non-homologous fragments of the 
same size (size homoplasy) is a constraint of SSRs, which is caused 
by insertion/deletion polymorphisms (indels) in microsatellite 
flanking regions. For codominant markers, the program assumes 
that each assay reveals a single locus and assigns an E value of 1 
for each marker. Table 1 summarizes these seven calculative indices 
with their respective details.

We ran iMEC on an example data set taken from Poczai et al. 
(2011) using CDDP and IT markers on a germplasm set of bitter-
sweet (Solanum dulcamara L.), consisting of 96 accessions. The 
data set is available for download, together with other example 
files, from the application’s website, and the resulting calculations 
are summarized in Table 2. The maximum value of H and PIC for 
binary data is 0.5, because two alleles per locus are assumed, and 
both are influenced by the number and frequency of the alleles; 
for codominant markers, these values vary between 0 and 1. In the 
example data, high values indicate the advanced discriminatory 
capacity of both marker systems. A closer inspection of the MI 
generated for the two different assays highlights the distinguishing 

TABLE 1.  Detailed description of polymorphism indices calculated by iMEC.

Index Formula Definition

Expected heterozygositya H = 1 – Σ pi
2 The probability that an individual is heterozygous for the locus in the population. pi is the allele 

frequency for the i-th allele, and the summation is over all available alleles.
Polymorphism information 

contentb
PIC = 1 – Σ pi

2 – Σ Σ pi
2 pj

2 The probability that the marker genotype of a given offspring will allow deduction, in the absence 
of crossing over, of which of the two marker alleles of the affected parents it received. pi and pj are 
the population frequency of the i-th and j-th allele. The first summation is over the total number of 
alleles, whereas the two subsequent summations denote all the i and j where i ≠ j.

Effective multiplex ratioc E = n β The product of the fraction of polymorphic loci for an individual assay. In other words, the number of 
loci polymorphic in the germplasm set of interest analyzed per experiment fraction of polymorphic 
loci. Defining β = np / (np + nnp), where p and np indicate the polymorphic and nonpolymorphic 
fraction of the markers, so np and nnp represent their respective counting numbers.

Mean heterozygosityc Havp = Σ Hn / np The average heterozygosity calculated for polymorphic markers. Hn is the heterozygosity of the 
polymorphic fraction of markers, and the summation is over all of the polymorphic loci np.

Marker indexc MI = E Havp The product of the effective multiplex ratio and the average expected heterozygosity for 
polymorphic markers, where Havp denotes the average expected heterozygosity for the 
polymorphic markers. It is equal to Σ Hp / np, where the summation is over all polymorphic sites with 
Hp and np defined as above.

Discriminating powerd D = 1 – C The probability that two randomly chosen individuals exhibit different banding patterns and are thus 
distinguishable from one another. C is defined as the confusion probability. For the i-th pattern of 
the given j-th primer, present at frequency pi in a set of varieties, the confusion probability is C = Σ ci =  
Σ pi 

Npi−1

N−1
 where for N individuals, C is equal to the sum of all ci for all of the patterns generated by 

the primer. 
Resolving powere R = Σ Ib Resolving power is based on the distribution of alleles within the sampled genotypes and strongly 

correlates with the ability to distinguish between analyzed samples. The division of samples into 
two groups is based on the presence or absence of a band, ideally present in one part of the 
samples while absent from the other. Bands can be weighed according to their similarity to the 
optimal condition (50% of genotypes containing the band), where Ib or band informativeness is 
represented on a scale of 0–1 and is defined as Ib = 1 – (2 × |0.5 – p|), where p is the portion of the 
samples containing the observed band. Using this value, the resolving power or the ability of a 
primer (technique) to distinguish between genotypes could be represented by the sum of these 
adjusted values for all generated bands.

aLiu (1998)
bBotstein et al. (1980)
cPowell et al. (1996)
dTessier et al. (1999)
ePrevost and Wilkinson (1999)
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power of CDDP markers compared to IT markers, which is due 
to a higher effective multiplex ratio component. R provided the 
basis for comparing the diagnostic effectiveness of primers used 
in the bittersweet example. The combined R value of the prim-
ers also provides a measure of their collective performance for 
identification purposes. The primer MADS-A alone could iden-
tify 53 bittersweet genotypes, according to the equation of Prevost 
and Wilkinson (1999; 0.15x + 1.78 = R, where x is the number 
of genotypes identified). The combination of two CDDP prim-
ers (MADS-A and WRKY-B) or one CDDP primer together with 
one IT primer of the highest R value (e.g., GPSS-943 or S2-317) 
can identify all of the bittersweet accessions (x > 100). For future 
germplasm management and genetic diversity assessment, these 
markers are the most ideal choices. Comparison of the average 
R value of IT and CDDP markers also reveals that the latter per-
forms better in identification of accessions.

The D parameter described by Tessier et al. (1999) evaluates 
the efficiency of the primers in identification of bittersweet acces-
sions. In our example, the D parameter describes the probability 
that two randomly chosen bittersweet individuals have different 
patterns. A higher D parameter (closest to 1) implies a lower 
probability of confusion between bittersweet accessions. For ex-
ample, D parameters of 0.9214 (IT, Adk-242) and 0.6057 (CDDP, 
WRKY-A) are considered highly and moderately polymorphic, 
respectively. The informativeness of a given marker may differ 
between collections originating from different regions, as allele 
frequencies vary between gene pools (Sefc et al., 2000). However, 
a marker set containing the most informative markers defined 
in one germplasm collection with high D values will also yield 
high discriminatory power in other gene pools (Sefc et al., 2000). 
The D parameter can also be used to compare different types of 

marker systems by calculating the average D for each class. IT 
(D = 0.7634) and CDDP (D = 0.7366) markers have almost equal 
values, indicating that the two techniques have similar efficiency 
to discriminate between the accessions. This seems to contradict 
the interpretation of R values, which indicate that CDDPs out-
perform IT markers. Instead, they show that fewer CDDP prim-
ers successfully distinguished among the germplasm set and that 
the use of additional primers did not increase the overall per-
formance of the marker system. In the case of IT markers, more 
primer combinations are needed to reach the same efficiency. The 
addition of more CDDP primers should be avoided and further 
analysis should be supplemented with IT primers with high D 
values to increase the efficiency of distinguishing among bitter-
sweet accessions.

CONCLUSIONS

There is currently a wide variety of software tools available for pop-
ulation genetic analyses with dominant markers; these tools feature 
a number of functions and provide computational possibilities for 
diverse genetic indices (see Excoffier and Heckel, 2006). However, 
despite this, no universal application exists that can be used to cal-
culate indices to optimize the choice of molecular markers for plant 
genetic studies. iMEC software provides a user-friendly interface 
to obtain comparative measures for multiplex marker systems. 
This application will help researchers acquire good estimates of 
the efficiency of a primer or assay and also allows the comparison 
of different methods. This software should be of great interest for 
studies aiming at varietal and species identification using molecu-
lar techniques.

TABLE 2.  Polymorphism statistics calculated with iMEC for different types of primers for the bittersweet (Solanum dulcamara) data set.

Primer name Scored bands H PIC E Havp MI D R
CDDP primers
WRKY-A 10 0.4672 0.3906 6.2813 0.0005 3.8030 0.6057 4.7708
WRKY-B 12 0.4230 0.4103 3.6458 0.0004 3.3093 0.9079 7.0833
MYB 9 0.4998 0.3748 4.5938 0.0006 3.3970 0.7398 6.0625
ERF 12 0.4415 0.4023 3.9479 0.0004 3.5206 0.8920 7.1042
KNOX 10 0.4639 0.3921 6.3438 0.0005 3.7908 0.5978 5.3125
MADS-A 15 0.4979 0.3758 7.9896 0.0003 5.7229 0.7165 9.8125
MADS-B 12 0.4614 0.3933 4.3333 0.0004 3.7683 0.8698 5.6250
ABP1-2 9 0.4869 0.3812 5.2292 0.0006 3.4639 0.6627 5.0833
ABP1-3 10 0.4792 0.3849 6.0208 0.0005 3.8383 0.6377 5.9167
Average 0.4690 0.3895 5.3762 0.0005 3.8460 0.7366 6.3079
IT primers
Adk-242 4 0.4043 0.4180 1.1250 0.0011 1.0360 0.9214 2.2500
Adk-795 4 0.4688 0.3899 1.5000 0.0012 1.2891 0.8600 2.9583
Cat-232 2 0.2188 0.4758 0.2500 0.0011 0.2461 0.9849 0.5000
Cat-260 3 0.3680 0.4320 0.7292 0.0013 0.6861 0.9416 1.4167
GPSS-275 3 0.4946 0.3774 1.3438 0.0017 1.0742 0.8002 1.7708
GPSS-943 7 0.4330 0.4060 4.7813 0.0006 2.5506 0.5338 3.9792
INHWI-509 2 0.4980 0.3757 0.9375 0.0026 0.7315 0.7816 0.3750
INHWI-545 4 0.4761 0.3864 2.4375 0.0012 1.5324 0.6293 2.7917
InG-220 3 0.4797 0.3847 1.8021 0.0017 1.1518 0.6400 1.7708
LBr-G9 3 0.4930 0.3782 1.3229 0.0017 1.0657 0.8064 1.8542
S2-317 6 0.4988 0.3753 2.8542 0.0009 2.2083 0.7741 4.2500
Poni1a-718 4 0.4066 0.4171 2.8646 0.0011 1.3954 0.4877 0.4375
Average 0.4366 0.4014 1.8290 0.0013 1.2473 0.7634 2.0295

Note: D = discriminating power; E = effective multiplex ratio; H = expected heterozygosity; Havp = mean heterozygosity; MI = marker index; PIC = polymorphism information content; 
R = resolving power.
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DATA ACCESSIBILITY

The source code used to develop iMEC is available on GitHub 
(https://github.com/Limpfrog/iMEC). iMEC is available at https://
irscope.shinyapps.io/iMEC/.
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