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Abstract

Mutations in peroxin (PEX) genes lead to loss of peroxisomes, resulting in the formation of

peroxisomal biogenesis disorders (PBDs) and early lethality. Studying PBDs and their ani-

mal models has greatly contributed to our current knowledge about peroxisomal functions.

Very-long-chain fatty acid (VLCFA) accumulation has long been suggested as a major dis-

ease-mediating factor, although the exact pathological consequences are unclear. Here, we

show that a Drosophila Pex19 mutant is lethal due to a deficit in medium-chain fatty acids

(MCFAs). Increased lipolysis mediated by Lipase 3 (Lip3) leads to accumulation of free fatty

acids and lipotoxicity. Administration of MCFAs prevents lipolysis and decreases the free

fatty acid load. This drastically increases the survival rate of Pex19 mutants without reducing

VLCFA accumulation. We identified a mediator of MCFA-induced lipolysis repression, the

ceramide synthase Schlank, which reacts to MCFA supplementation by increasing its

repressive action on lip3. This shifts our understanding of the key defects in peroxisome-

deficient cells away from elevated VLCFA levels toward elevated lipolysis and shows that

loss of this important organelle can be compensated by a dietary adjustment.

Author summary

Peroxisomes are organelles that contain several enzymes and fatty acids required for many

metabolic tasks in the cell, and upon peroxisome loss, their educts accumulate. One exam-

ple is the accumulation of very-long-chain fatty acids (VLCFAs) with a chain length of

more than 20 carbons. These fatty acids cannot be oxidized in mitochondria but are exclu-

sively degraded in peroxisomes. Lowering increased VLCFA levels is sometimes attempted

as a treatment option for human disorders with peroxisomal dysfunction, although its

effectiveness remains unclear. Here, we have analyzed this process in Drosophila melano-
gaster and found that peroxisomal loss results not only in VLCFA accumulation but also

in a reduction of medium-chain fatty acids (MCFAs). We could show that this is due to

a state of high lipolysis and increased mitochondrial activity. By supplementation with
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MCFAs from coconut oil, we were able to rescue mitochondrial damage and lethality

observed in peroxisome-deficient flies. We found that this process is mediated by the cer-

amide synthase Schlank, which acts as a transcription factor and shuttles between nuclear

membrane and endoplasmic reticulum (ER) in response to MCFA availability. We con-

clude that peroxisome loss triggers the accumulation of free fatty acids and mitochondrial

damage in flies and that these effects can be rescued by a diet rich in MCFAs.

Introduction

Peroxisomes are vesicular organelles originally discovered and described by C. De Duve as cat-

alase-containing organelles important for the degradation of hydrogen peroxide [1]. Recently,

it has become more and more apparent that they harbor much more complex metabolic func-

tions, which are still incompletely understood. In mammalian cells, they are involved in the β-

oxidation of very-long-chain fatty acids (VLCFAs), the formation of ether phospholipids (e.g.,

plasmalogens), the catabolism of branched-chain fatty acids, the production of bile acids, poly-

amine oxidation, and amino acid catabolism [2]. VLCFAs (chain length of C22 and more) do

not enter the mitochondria via the carnitine shuttle carnitine palmitoyltransferase I (CPT I)

and thus cannot be β-oxidized for energy gain. Instead, VLCFAs are exclusively oxidized in

peroxisomes. They (and to a lesser extent, long-chain fatty acids [LCFAs], which are, however,

predominantly oxidized in mitochondria) enter the peroxisomes after activation into acyl-

CoA, where they are shortened by the peroxisomal β-oxidation machinery. The resulting

short-chain fatty acids (SCFAs) and medium-chain fatty acids (MCFAs) are transported out of

the peroxisome via the carnitine-shuttles carnitine O-acetyltransferase (CRAT) and carnitine

O-octanoyltransferase (CROT) and enter the mitochondrion via carnitine shuttle or thiolase-

dependent transport. In the mitochondria, they are further oxidized to acetyl-coA and feed the

tricarboxylic acid (TCA) cycle and the electron transport chain [3]. It is unclear whether and

to what extent the shortened peroxisomal products contribute to mitochondrial energy pro-

duction, but overall, the energy gain from VLCFAs is minor in comparison to S/M/LCFAs

because of their low abundance [4]. In yeast cells, peroxisomes are required for the β-oxidation

of MCFAs [5], since there they are the only site of fatty acid oxidation.

The complex metabolic functions of peroxisomes are reflected by the multiform pathologic

symptoms of peroxisomal biogenesis disorders (PBDs) of the Zellweger syndrome spectrum,

whose study has greatly contributed to our understanding of peroxisomal function. PBDs are

rare genetic diseases caused by mutations in one of the approximately 16 peroxin (PEX) genes,

which are involved in the assembly and maintenance of peroxisomes. One major disease-caus-

ing effect is thought to be the accumulation of VLCFA-containing lipids, which occurs not

only in PBDs but also in defects specific to the peroxisomal β-oxidation machinery, like X-

linked adrenoleukodystrophy (X-ALD) or single enzyme defects, and is thought to be a result

of abolished degradation of VLCFAs in peroxisomes. While accumulation of VLCFAs in these

peroxisomal diseases is undisputed, there are still some doubts as to the exact underlying

mechanism. Mice lacking a functional VLC-acyl-CoA synthetase, which is needed to activate

VLCFAs in order to enter the peroxisome, show normal VLCFA levels, although peroxisomal

β-oxidation is strongly reduced [6]. Similarly, the exact pathological effect downstream of

accumulating VLCFAs remains elusive, although detrimental effects on mitochondria are

postulated by many authors. Mitochondrial defects are indeed often observed in peroxisomal

diseases [7–10], and in vitro assays show mitotoxic effects of VLCFAs added to cells [11,12].

However, the majority of accumulating VLCFAs in peroxisomal diseases is shown to be
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contained in lipids and not as free fatty acids [13], also called nonesterified fatty acids

(NEFAs), in which form they were added to the cells. Furthermore, a number of authors

observe normal mitochondrial function and morphology in VLCFA-enriched tissues carrying

an X-ALD causing ATP-binding cassette family D transporter (ABCD1) mutation [14–16],

which suggests other pathological mechanisms involved in mitochondrial dysfunction in

PBDs.

The peroxisomal biogenesis and assembly machinery is well conserved in Drosophila [17–

22]. In the present study, we use a D. melanogaster Pex19 mutant [23] as a genetically tractable

in vivo model system to elucidate the impact of peroxisomal deficiency on cellular and organ-

ismal metabolism. Pex19 is a predominantly cytoplasmic peroxisomal core factor and essential

for both the import of peroxisomal membrane proteins (PMPs) and the de novo formation of

peroxisomes [24,25]. Together with Pex3 and Pex16, it is responsible for the translocation of

membrane proteins and membrane vesicle assembly [26]. Pex19 loss of function specifically

leads to Zellweger syndrome, the severest form of PBDs. We have previously shown that major

hallmarks of Zellweger syndrome are recapitulated in Pex19 mutant flies, like absence of per-

oxisomes, VLCFA accumulation, mitochondrial abnormalities, and severely decreased viabil-

ity. Furthermore, we have identified increased free fatty acids as a mitochondria-damaging

agent in these flies. Free fatty acids accumulate as a result from a metabolic shift toward maxi-

mal lipid catabolism with severely increased lipolysis, which is caused by altered hepatocyte

nuclear factor 4 (Hnf4) activity [23].

Here, we identify an imbalance in fatty acid composition in Pex19 flies as a pathology-caus-

ing effect. While VLCFAs accumulate as expected in Pex19 mutants, M/LCFAs are reduced

to an extent far surpassing the relative effect caused by increased VLCFAs. This reduction is

especially pronounced for fatty acids of 12 and 14 carbons (C12:0, C14:0, C14:1), and we here

present evidence that this MCFA gap is involved in pathology progression in the absence of

peroxisomes. Feeding a diet rich in C12- and C14-containing coconut oil (or other natural

oils of similar composition) rescues Pex19 flies into adulthood and ameliorates their metabolic

imbalance, which is not achieved by feeding LCFA-containing oils. Similar rescues of Pex2
and Pex3 mutants unequivocally prove that peroxisomal absence, and not Pex19 loss itself, is

responsible for the metabolic phenotype observed in Pex19 mutants. We show that MCFA

shortage results in a shift in subcellular localization of the ceramide synthase Schlank. Schlank

was recently reported to harbor a secondary function as a transcription factor and was shown

to repress lipase 3 (lip3) [27]. Consistently, we observe severely increased expression of lip3
expression in Pex19 mutants. The feeding of coconut oil results in normalizing the activity of

Schlank, concomitant with reduced lip3 transcription, ultimately resulting in reduced lipolysis,

reduced free fatty acid levels, and amelioration of the mitochondrial phenotype. Furthermore,

we present evidence that this general pathological mechanism is also present in a Pex19-defi-

cient patient cell line, thereby opening up a new path in the search for future therapies for

PBDs and other peroxisomal diseases.

Results

Filling the MCFA gap rescues Pex19 mutants

As we described previously, flies carrying a deletion of the Pex19 gene locus (Pex19ΔF7, from

here on referred to as Pex19 mutants) lose their peroxisomes during larval development and

die predominantly during the pupal stage [23]. When analyzing the fatty acid profile of Pex19
mutant pupae, we found an unexpected shortage in M- and LCFAs in addition to the well-

described accumulation of VLCFAs (SCFAs, MCFAs, LCFAs, and VLCFAs here refer to

chain lengths of 4–8, 10–14, 16–18, and�20 C-atoms, respectively). Direct comparison of the

MCFA-mediated rescue of Pex19 mutants
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absolute concentration of all fatty acid methyl esters (FAMEs) revealed a significant reduction

of M/LCFAs, especially C12:0 and C14:0, while FAMEs of C20:0, C24:0, C26:0, and C28:0 are

enriched (Fig 1A), which is consistent with our previous findings in larvae [23]. M/LCFAs can

fuel mitochondrial ATP production and do not depend on chain shortening by the peroxi-

some before they can enter the mitochondrion and the TCA cycle. Since we suspected an

energy deficit in Pex19 mutants, we sought to fill the gap in MCFAs by dietary modifications.

Freshly hatched larvae were kept by default on a high-caloric diet (apple juice agar plates with

fresh yeast paste) rich in both carbohydrates and proteins. To avoid problems with toxicity or

food avoidance, we used natural oils as sources for fatty acids with varying chain length. In

order to minimize adverse effects of a high-fat diet [28], we added only 5% of the different nat-

ural oils to the yeast paste and analyzed Pex19 mutant survival. We found that oils containing

high amounts of lauric acid (C12:0) and myristic acid (C14:0)—like coconut oil, babassu oil, or

palm kernel oil [29–31]—have a positive effect on the survival rate of Pex19 mutants, yielding

55% of adult flies as compared to 20% on control food. By contrast, oils containing mainly

LCFAs or VLCFAs have no or negative effects on the survival of Pex19 mutants (Fig 1B). For

further studies, we used coconut oil, which contains up to 60% lauric acid and up to 18%

myristic acid [29,30]. To show that the fatty acid composition rather than vitamins or

secondary plant compounds is responsible for the observed rescue effect, we fed purified tria-

cylglycerols (TAGs) from coconut oil to Pex19 mutants, which also resulted in a significant

increase in adult flies (Fig 1C). Surprisingly, addition of synthetic TAGs containing only C12:0

or C14:0 does not copy the rescue effect of coconut oil, suggesting either impurities from the

manufacturing process or other adverse effects of synthetic TAGs, since they slightly reduced

the survival of control flies (Fig 1C). However, upon removal of the mitotoxic preservative

nipagin from the food, synthetic TAGs also showed a rescue effect, while removal of nipagin

alone does not enhance the survival of Pex19 mutants (Fig 1C). Supplementation with 5%

coconut oil does not only increase the number of adults hatching from the pupal case from

20% to 55% but also the number of adults that survive for more than 24 hours after hatching,

from 9% to 29% (Fig 1D). These adult flies survived up to 3 weeks without further supplemen-

tation of coconut oil.

MCFA rescue diet fills the MCFA gap without altering VLCFA levels

The inability to break down VLCFAs is considered the main disease-mediating factor in cells

without functional peroxisomes, and lowering VLCFA levels is the aim of most therapies for

patients with defective peroxisome metabolism, mostly by inhibiting elongases, e.g., with eru-

cic acid–containing Lorenzo’s oil [32,33]. We asked whether the dietary administration of 5%

coconut oil had a rescue effect by lowering the VLCFA content and reanalyzed FAMEs in

coconut oil–fed larvae by gas chromatography/mass spectrometry (GC/MS). We found that

the MCFA-enriched diet leads to an increase in lipids containing C12:0 and C14:0 in both con-

trol and Pex19 mutant animals, both absolutely and relatively (Fig 2A, supplemental file S1

Fig). The total amount of fatty acids as a measure for lipids is reduced in Pex19 mutants, while,

upon coconut oil administration, it is elevated in both wild types and Pex19 mutants (supple-

mental file S1 Fig). The relative amounts of lipid-contained fatty acids with a chain length of

C16:0 are reduced, despite the fact that coconut oil contains up to 9% of C16:0, which suggests

that the fatty acids from the rescue diet alter the FAME profile instead of simply representing

the additional fatty acids taken up from the M/LCFA-enriched diet (supplemental file S1 Fig).

Unexpectedly, lipids containing VLCFAs from C22:0 to C26:0 remain at elevated levels in

Pex19 mutants and even increase in control animals on coconut oil–supplemented food

(Fig 2A, supplemental file S1 Fig). Despite this increase, coconut oil supplementation has a

MCFA-mediated rescue of Pex19 mutants
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Fig 1. Pex19 mutants display shortage in M/LCFAs and survive better when fed with MCFA-rich oils. (A) GC/MS analysis of

FAMEs of wild-typic and Pex19 mutant pupae, concentration in nmol/mg. n = 4. Significance tested with ANOVA. (B) Survival upon

addition of different natural oils with different fatty acid compositions. n = 5 in groups of 25 individuals. (C) Survival upon addition

of M/LC-TAGs. n = 5 in groups of 25 individuals. -Nip: without nipagin. (D) Survival profile with percentage of pupae, adults, and

surviving adults upon rescue diet feeding. n = 10 in groups of 25 individuals. Significance tested using Student t test. Genotypes are

MCFA-mediated rescue of Pex19 mutants
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beneficial effect on the survival of wild-typic flies as well as Pex19 mutants (Fig 1D). We calcu-

lated the average chain length from the absolute concentration of FAMEs and found that

administration of the MCFA-enriched diet reduces the chain length from an average of 15.93

to 14.94 carbons in wild types and from an average of 16.27 to 15.35 carbons in Pex19 mutants

(Fig 2B), showing that food-derived fatty acids have an influence on overall fatty acid content

in flies, consistent with overall changes in the lipidome according to food source [34].

MCFA rescue diet prevents neurodegeneration

Adult Pex19 mutants appeared weak and did not properly inflate their wings. We tested their

climbing ability in a negative geotaxis assay as a readout for neurodegeneration and found that

Pex19 mutants climb slower than wild-typic flies and that most of them do not climb at all.

Upon coconut oil supplementation, the climbing speed of Pex19 mutants increases, and the

number of flies which are not able to climb decreases (supplemental file S1 Fig). Since we were

limited in the number of adults because of the early lethality of the Pex19 mutants, we also con-

ducted a crawling assay as a readout for larval neurodegeneration. We found that w- controls

and Pex19 mutants with a genetic rescue construct show similar crawling performance on con-

trol and coconut oil–supplemented food, whereas Pex19 mutant larvae have locomotion defi-

cits. The low crawling performance of Pex19 mutants significantly improves upon coconut oil

supplementation (Fig 2C). To further characterize neurodegeneration in Pex19 mutants, we

analyzed apoptosis in brains of 1-day-old adults by staining them with Annexin V-FITC (fluo-

rescein isothiocyanate) (Fig 2D–2G). We found that Pex19 mutants have higher numbers of

apoptotic cells in the brain. Supplementation with coconut oil results in a marked decrease of

apoptotic cells in Pex19 mutants (Fig 2F and 2G). This shows that neurodegeneration due to

peroxisome loss can be prevented or slowed down by dietary administration of MCFAs.

MCFA rescue diet ameliorates mitochondrial phenotypes

Peroxisome loss provokes mitochondrial swelling due to elevated lipolysis and free fatty acid

levels, as was shown by tetramethylrhodamine ethyl ester (TMRE) and mitotracker green

stainings, as well as on the ultrastructural level (transmission electron microscopy, TEM) [23].

In order to assess the impact of the MCFA rescue diet on mitochondria, we stained mitochon-

dria in the Malpighian tubules of third-instar larvae with MitoTracker Red CM-H2XRos. This

dye emits fluorescence after oxidation in the cell and thus detects reactive oxygen species

(ROS). We found that tissue of Pex19 mutants contains high amounts of ROS, as indicated by

high numbers of enlarged CM-H2XRos-positive mitochondria. Upon coconut oil administra-

tion, size and number of CM-H2XRos-positive mitochondria decrease (Fig 3A–3D).

The rescue diet normalizes transcript levels of lip3 and other metabolic

enzymes

To investigate the impact of the MCFA diet on the metabolism of Pex19 mutant animals, we

analyzed several genes encoding for metabolic enzymes (Fig 3E). We found that expression of

the acid lipase lip3, which is highly up-regulated in Pex19 mutants, is reduced from 250-fold to

66-fold upon feeding of the rescue diet. Previously, we could show that lip3 expression corre-

lates with free fatty acid accumulation [23].

w-: w1118, Pex19−/−: w1118; Pex19ΔF7/Pex19ΔF7. Error bars represent SD. �p< 0.05; ��p< 0.01; ���p< 0.001. Corresponding raw data

can be found in supplemental file S1 Data. FAME, fatty acid methyl ester; GC/MS, gas chromatography/mass spectometry; LCFA,

long-chain fatty acid; MCFA, medium-chain fatty acid; TAG, triacylglycerol.

https://doi.org/10.1371/journal.pbio.2004893.g001
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Fig 2. Effects of coconut oil rescue on Pex19 mutants’ fatty acid profile and neurodegeneration. (A) FAMEs comparing w-

and Pex19−/− fed with control and M/LCFA-enriched rescue food. Absolute concentration in nmol/mg wet tissue. n = 7.

Significance tested with ANOVA. (B) Calculation of the average chain length from the absolute FAME values. (C) Larval

locomotion assay as a readout for neurodegeneration. Dots represent single experiments, bars represent median. Significance

tested with Student t test. (D-G) Annexin V-FITC staining of 1-day-old adult brains. Scale bars represent 100 μm. n = 5. Error

MCFA-mediated rescue of Pex19 mutants
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Hnf4 target genes such as hexokinase C (HexC), yippee-interacting protein 2 (yip2), and acyl-
CoA synthetase long-chain (Acsl) are up-regulated in Pex19 mutants [23]. Upon coconut oil

supplementation, expression of the glycolysis enzyme HexC is reduced from 33-fold to 11-fold,

and the acyl-CoA synthetase Acsl is reduced from 15-fold to 2-fold (Fig 3E). By contrast, the

acetyl-CoA acyltransferase yip2 remains at high levels on rescue food, suggesting that mito-

chondrial β-oxidation stays at a maximum in Pex19 mutants on MCFA rescue food and that

the transcriptional response upon coconut oil rescue is markedly different than upon genetic

reduction of Hnf4 with reduced yip2 expression [23]. Isocitrate dehydrogenase (IsoDH), a target

bars represent SD. �p< 0.05; ��p< 0.01; ���p< 0.001. Corresponding raw data can be found in supplemental file S1 Data.

FAME, fatty acid methyl ester; FITC, fluorescein isothiocyanate; M/LCFA, medium- and long-chain fatty acid; ns, not

significant.

https://doi.org/10.1371/journal.pbio.2004893.g002

Fig 3. Effects of dietary administration of M/LCFA on mitochondria and metabolism. (A-D) Staining of

mitochondria with MitoTracker Red CM-H2XRos to show production of ROS. Scale bars represent 10 μm. n = 5. (E)

Real-time qPCR analysis of genes encoding for metabolic enzymes. ΔCq values are normalized to w- (ΔΔCq or fold

regulation). (F, G) Oxygen consumption levels of wild-type and Pex19 mutant larvae (G: glutamate, M: malate, Pro:

proline, Pyr: pyruvate, D: ADP, G3P: glycerol 3 phosphate). n = 4. (H) Mitochondrial β-oxidation rate under control

and rescue condition. (I) Addition of 25 μM etomoxir reduces the survival rate of coconut oil–fed Pex19−/−. n = 10 in

groups of 25 individuals. Genotypes are w-: w1118, Pex19−/−: w; Pex19ΔF7/Pex19ΔF7. Error bars represent SD. �p< 0.05;
��p< 0.01; ���p< 0.001. Significance tested with Student t test. Corresponding raw data can be found in supplemental

file S1 Data. Acsl, acyl-CoA synthetase long-chain; HexC, hexokinase C; IsoDH, isocitrate dehydrogenase; lip3, lipase

3; M/LCFA, medium- and long-chain fatty acid; mt comp I, mitochondrial complex I; qPCR, quantitative PCR; ROS,

reactive oxygen species; ROX, residual oxygen consumption; yip2, yippee-interacting protein.

https://doi.org/10.1371/journal.pbio.2004893.g003
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gene of the regulator of mitochondrial abundance and peroxisome proliferator–activated

receptor gamma coactivator 1-α (PGC1-α) ortholog spargel [35], is slightly up-regulated in

Pex19 mutants and remains at this level upon feeding of the rescue diet, while another spargel

target gene, mt Complex I, is down-regulated and also remains at this level upon treatment

with coconut oil (Fig 3E).

MCFAs from the rescue diet act on mitochondrial metabolism

Pex19 mutants have increased β-oxidation rates, probably in response to the high free fatty

acid load, and presumably without gaining additional energy from it (Fig 3F and 3H). We

measured the mitochondrial β-oxidation in wild-type and Pex19 mutants fed with coconut

oil as the etomoxir-sensitive oxygen consumption of permeabilized larval tissue. Amounts of

porin and citrate synthase activity were determined to exclude effects due to higher mitochon-

drial mass (supplemental S2A and S2B Fig). We found that the rescue diet enhances the β-oxi-

dation rate in wild types and found that it stays at high levels in Pex19 mutants under both

feeding conditions. This suggests that MCFAs increase mitochondrial β-oxidation in general

while possibly improving the energy gain in Pex19 mutants, since they already have maximal

β-oxidation rates under normal food conditions (Fig 3G and 3H).

Since mitochondrial β-oxidation is increased in Pex19 mutants, the question arises if the

gap in MCFAs and the rescue effect of MCFA-containing coconut oil is caused by their prefer-

ential degradation in mitochondrial β-oxidation for energy gain. To show that the MCFAs

from coconut oil target the mitochondria, we cotreated the larvae with the CPT I–inhibitor

etomoxir [36]. Etomoxir indeed abolishes the rescue effect of coconut oil with respect to sur-

vival (Fig 3I). This suggests that MCFAs from the rescue diet are efficiently metabolized by the

mitochondria.

Effect of the rescue diet to other Pex mutants

The striking rescue of the loss of a whole organelle by a dietary adjustment provoked the

question whether it was specific for Pex19 mutants or general for the loss of peroxisomes. We

tested the effect of the dietary rescue on the survival of other Pex mutants: transheterozygous

Pex2HP35039/Pex2f01899 [37], referred to as Pex2HP/f; Pex32[19] crossed over a deficiency (Df(32)

6262), referred to as Pex3/Df; Pex5MI06050 (Bloomington stock collection), referred to as Pex5
−/−; and Pex10MI04076 (Bloomington stock collection), referred to as Pex10−/−. Of note, it has

been shown that Pex2 and Pex16 mutants have reduced levels of C12:0 [22], consistent with

our observations in Pex19 mutants. We also reanalyzed the survival and dietary rescue of the

Pex19ΔF7 mutant allele crossed over a deficiency (Df(2L)esc p3-0). We found that addition of 5%

coconut oil to the food improves the survival of all of these Pex mutants (Fig 4A). To exclude

unspecific effects due to enhanced food uptake, we performed a feeding assay but found no

significant differences between genotypes or feeding condition (supplemental file S2 Fig). We

concluded that the dietary rescue compensates for the loss of peroxisomes rather than for the

loss of Pex19.

MCFA diet ameliorates mitochondrial swelling in Pex mutants

To strengthen the hypothesis that the dietary rescue with coconut oil supplementation is a per-

oxisome rather than a Pex19-specific effect, we analyzed mitochondrial swelling in Malpighian

tubules of Pex2HP/f, Pex3/Df, and Pex19 mutant larvae. Similar to Pex19 mutants, Pex2 and

Pex3 mutants display large, balloon-shaped mitochondria, whereas mitochondria are small in

wild-typic tissue. Upon administration of 5% coconut oil with the diet, we observed a rescue of

this phenotype in all mutants: mitochondria were small and numerous, similar to wild-typic

MCFA-mediated rescue of Pex19 mutants
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Fig 4. Other Pex mutants show a phenotype similar to Pex19 mutants and can also be rescued with coconut oil. (A)

Survival of different Pex mutants on control and rescue diet. n = 5 in groups of 25 individuals. (B-I) TMRE staining of third-

instar larval Malpighian tubules. Scale bars represent 10 μm. n = 5. (J) FAMEs comparing w- and Pex mutants fed with

control and M/LCFA-enriched rescue food. n = 3. Genotypes are Pex2HP35039/Pex2f01899, Pex32/ Df(32)6262, Pex5MI06050/
Pex5MI06050, Pex10MI04076/ Pex10MI04076, Pex19ΔF7/ Df(2L)esc p3-0, Pex19ΔF7/ Pex19ΔF7. Error bars represent SD. Asterisks

MCFA-mediated rescue of Pex19 mutants
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mitochondria (Fig 4B–4I). Similarly, the concentration of lipotoxic free fatty acids, which can

cause mitochondrial swelling [23], is elevated in Pex2 and Pex3 mutants as in Pex19 mutants.

Feeding of the rescue diet reduces the free fatty acid concentration in all three Pex mutants.

A Pex19 mutant with a genetic rescue construct does not show elevated free fatty acid levels

(Fig 4J).

MCFA diet restores Schlank nuclear localization

Lip3 expression is drastically increased in Pex19 mutants [23], which is reduced upon feeding

of coconut oil (Fig 3E). Recently, it was discovered that the ceramide synthase Schlank acts as a

transcriptional regulator of lip3 [27]. Schlank shuttles from the nuclear envelope to the endo-

plasmic reticulum (ER) membrane, thereby releasing its repression of lip3 transcription. We

assessed the subcellular localization of Schlank in Pex2, Pex3, and Pex19 mutant fat body tissue

by immunohistochemical stainings with anti-Schlank and anti-Lamin to stain the nuclear

membrane. We found that the nuclear localization is indeed reduced (Fig 5C, 5E, 5G and 5I).

This is consistent with the observed elevated transcript levels of lip3 and free fatty acid levels.

We wanted to know if Schlank plays a role in the rescue effect induced by MCFA supple-

mentation. Of note, upon addition of 5% coconut oil to the diet, Schlank indeed regained its

localization to the nuclear membrane (Fig 5D, 5F, 5H and 5I) in the Pex2, Pex3, and Pex19
mutants we analyzed and would thus be enabled to repress lip3, explaining the observed

decrease in lip3 expression, reduced free fatty acid levels, ameliorated mitochondrial morphol-

ogy, and rescue to adulthood. To further prove this hypothesis, we overexpressed a shortened

version of Schlank (Schlankaa1–138) [38,27], which is constitutively nuclear (supplemental file

S3 Fig), in the Pex19 mutant background. We found that forcing Schlank into the nucleus in

this manner rescues the lethality of Pex19 mutants (Fig 5J). Furthermore, we generated a dou-

ble mutant for Pex19 and a Schlank knock-in (KI) mutant with a mutation in one of the nuclear

localization sequences (NLS2), SchlankKINLS2 [28,27]. SchlankKINLS2 mutants show derepres-

sion of lip3, since the mutant Schlank protein is excluded from the nuclear membrane [27].

Without the ability to enter the nucleus, SchlankKINLS2 protein should not be able to react to

MCFA supplementation, and a rescue with coconut oil should no longer be possible. Indeed,

we found that SchlankKINLS2; Pex19 double mutants are larval lethal and are not rescued by

coconut oil (Fig 5K), which confirms a role of Schlank in conferring the rescue effect of MCFA

supplementation: Schlank releases its repression on lip3 due to MCFA shortage in Pex19
mutants, thereby provoking lipotoxicity and increased mitotoxic free fatty acid levels. Filling

the MCFA gap via the diet restores Schlank nuclear localization and thus its repression of lip3,

which ameliorates the damaging lipolytic program. If Schlank lacks the nuclear localization

sequence, the dietary rescue no longer works, since the mutated Schlank cannot confer lip3
repression by shuttling to the nuclear membrane.

MCFAs rescue mitochondrial damage in PEX19-deficient human

fibroblasts

We posed the question whether rescue of peroxisome loss was specific for D. melanogaster or a

more universal effect. To address this question, we made use of two other models: Caenorhab-
ditis elegans and, to assess the clinical relevance of our findings, a human skin fibroblast cell

represent �p< 0.05, ��p< 0.01, ���p< 0.001. Significance tested using ANOVA with Tukey posttest. Corresponding raw data

can be found in supplemental file S1 Data. FAME, fatty acid methyl ester; M/LCFA, medium- and long-chain fatty acid;

NEFA, nonesterified fatty acid; Pex, peroxin; TMRE, tetramethylrhodamine ethyl ester.

https://doi.org/10.1371/journal.pbio.2004893.g004
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Fig 5. The dietary rescue functions by restoring Schlank nuclear localization. (A-H) Staining of larval fat body tissue with α-

Schlank and α-Lamin. Scale bars represent 20 μm. (I) Quantification of the Schlank nuclear fluorescent signal. Bars represent the

ratio between CTCF from nuclear region (within Lamin staining) and whole cell. (J) Constitutively nuclear Schlankaa1–138

rescues Pex19 mutants. Genotypes are w-, Pex19ΔF7/Pex19ΔF7, Pex19ΔF7UAS Schlankaa1–138/Pex19ΔF7; ppl-Gal4/+. (K) Pex19
Schlank KINLS2 double mutants are not rescued by the M/LCFA-enriched diet. Genotypes are w-, Pex19ΔF7/Pex19ΔF7, +/Y;

MCFA-mediated rescue of Pex19 mutants
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line from a Zellweger syndrome patient with a mutation in PEX19 (Δ19T cells, [39], supple-

mental file S3 Fig).

We fed a C. elegans strain expressing mitochondrial GFP in muscle tissue (myo-3p::mtGFP)
with bacteria expressing RNA interference (RNAi) against prx-19, the C. elegans Pex19 homo-

log. Knock-down of prx-19 led to massively swollen mitochondria. When coconut oil was

added to the bacterial lawn, control worms showed some fragmented and enlarged mitochon-

dria, while mitochondrial swelling in the prx-19 knock-down animals was reduced (supple-

mental file S3 Fig).

We analyzed the mitochondrial morphology in control fibroblasts from a healthy person

and in Δ19T cells by staining them with TMRE and found that mitochondria were organized

in long, stretched, filamentous networks in control cells, while they were more fragmented and

swollen in Δ19T cells. To mimic the M/LCFA rescue diet, we conjugated coconut oil to bovine

serum albumin (BSA, final concentration approximately 1 mM) and added 10% to the media.

Similar to our results in C. elegans, this leads to mitochondrial fragmentation in control cells

but has an ameliorative effect on the mitochondrial swelling in Δ19T cells (Fig 6A–6D, supple-

mental file S3 Fig).

Free fatty acid levels are elevated in Δ19T cells (Fig 6E). Upon addition of 10% BSA-conju-

gated coconut oil, free fatty acid levels increased in both control and Δ19T cells. By contrast,

when Δ19T fibroblasts were cultured with 10% BSA-conjugated coconut oil for several pas-

sages, and samples were taken in the absence of coconut oil in the medium, they showed

reduced levels of free fatty acids (Fig 6E). Our results suggest a conserved mechanism of the

impact of Pex19 mutation on mitochondria and the pathology of the disease, converging on

free fatty acid toxicity. Free fatty acid levels and mitochondrial swelling are ameliorated across

vertebrate and invertebrate models (flies and human cells) upon supplementation with MCFA

from coconut oil.

Discussion

Accumulation of VLCFAs is thought to be one of the main pathology-driving effects of

peroxisomal loss, and many authors claim mitotoxic effects of VLCFAs and phytanic acid,

a branched-chain fatty acid accumulating in PBDs (for a recent review: [16]). On the other

hand, there are a number of contradictory studies observing normal mitochondrial function

and morphology in VLCFA-enriched tissues [14,15], which suggests other, so-far unidentified

pathological mechanisms. Here, we provide evidence that in a Drosophila PBD model, mito-

toxic effects of peroxisomal loss can be ameliorated without altering overall VLCFA levels by

providing MCFAs, which are depleted in Pex19 mutants. The central finding of our study is

the observation that MCFA shortage plays a more important role in the pathophysiology of

peroxisome loss than VLCFA accumulation. MCFA shortage correlates with free fatty acid

accumulation and subsequent mitochondrial damage, which can be overcome by administer-

ing MCFA-rich coconut oil. Importantly, this measure does not reduce VLCFA levels in Pex19
mutants and even increases VLCFA levels in the wild type, although mitochondrial pathology

is clearly improved and neurodegeneration and lethality counteracted. While VLCFAs are

obviously mitotoxic in micromolar concentrations when administered to cells or tissue as free

Pex19ΔF7/Pex19ΔF7, SchlankKINLS2/Y; Pex19ΔF7/Pex19ΔF7. n� 3 in groups of 25 individuals. Error bars represent SD. Dots

represent single experiments. Black bars represent median. �p> 0.05, ���p< 0.001. Significance tested using ANOVA with

Tukey posttest. Corresponding raw data can be found in supplemental file S1 Data. aa, amino acid; CTCF, corrected total cell

fluorescence; KINLS2, knock-in nuclear localization sequence 2; M/LCFA, medium- and long-chain fatty acid; UAS, upstream

activating sequence.

https://doi.org/10.1371/journal.pbio.2004893.g005
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fatty acids [11,12,16], we argue that their accumulation in vivo is, while certainly not without

adverse consequence for the organism, less severe due to their main presence in lipids instead

of in their nonesterified form. Furthermore, we measure VLCFA concentrations in the nano-

molar, not micromolar, range. Instead, we observe increased levels of free fatty acids as the

mitotoxic agent, which accumulate as the result of dysregulated lipolysis.

Free fatty acids are toxic for the cell; therefore, lipolysis and degradation of fatty acids is

tightly coregulated to keep the overall level of free fatty acids low and avoid lipotoxic effects on

mitochondria. This is achieved by their role as activating ligands for Hnf4 in Drosophila (per-

oxisome proliferator–activated receptors [PPARs] in vertebrates) [40], which in response

induces a lipid catabolic program. In the absence of peroxisomes, we observe that this program

is “maxed out” and produces more fatty acids than the mitochondria can handle (as indicated

by maximal mitochondrial β-oxidation in Pex19 mutants, even when fed the rescue diet),

resulting in mitochondrial damage and ultimately energy deficit and death. It was shown that

peroxisomes can protect mitochondria from fatty acid overload in the myocardium after ische-

mia-reperfusion injury: if mitochondrial β-oxidation is reduced, peroxisomal β-oxidation

increases, resulting in lowering overall free fatty acid levels and protection of the myocardial

Fig 6. Conservation of the dietary rescue in human fibroblasts. (A-D) TMRE staining of human skin fibroblasts with a PEX19 mutation (Δ19T). Comparison of

untreated and BSA-conjugated coconut oil–treated cells. Scale bars represent 10 μm. n = 10. (E) Concentration of free fatty acids in human skin fibroblast cell lysates in

untreated and BSA-conjugated coconut oil–treated cells. In addition, Δ19T were cultured in the presence of BSA-conjugated coconut oil (+C), and samples were taken

in the absence of coconut oil–BSA. n = 5. Error bars represent SD. � p< 0.05, �� p< 0.01. Significance tested using Student t test. Corresponding raw data can be

found in supplemental file S1 Data. BSA, bovine serum albumine; NEFA, nonesterified fatty acid; PEX, peroxin; TMRE, tetramethylrhodamine ethyl ester.

https://doi.org/10.1371/journal.pbio.2004893.g006
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cells [41], which is consistent with a general role of peroxisomes in regulating overall free fatty

acid levels and mitoprotection.

We unravel a mechanism by which MCFA shortage mediates Schlank nuclear exclusion,

allowing for high expression of lip3, thereby inducing the production of free fatty acids. In a

previous study, we identified Hnf4 as the central regulator of the resulting lipid catabolic pro-

gram: the increase in free fatty acid levels caused by lip3 up-regulation induces a spiral of

hyperactive Hnf4 signaling, more lipolysis, and mitochondrial swelling [23]. We here provide

evidence that the initial insult and entry point into the spiral is misregulation of lip3 expres-

sion, caused by exclusion of Schlank from the nuclear membrane in Pex19 mutants. As a result,

lip3 is derepressed and produces increased amounts of free fatty acids, thereby activating Hnf4

and the pathological cascade (summarized in Fig 7).

Strikingly, MCFA supplementation ameliorates lipotoxicity by restoring lip3 repression by

Schlank, while VLCFA levels remain high. We therefore conclude that reduced amounts of

MCFA cause Schlank to leave the nucleus and stop its repressive action on lip3.

Interestingly, a recent study could show that the zebrafish Schlank homologue ceramide

synthase 2 reacts to increased levels of sphingosine by enriching in the nuclear membrane

compartment, similar to Schlank in response to coconut oil supplementation [42]. The

enzymes responsible for producing the sphingosine precursor sphinganine are the serine pal-

mytoyltransferases Spt1 and Spt2 (the latter is known as Lace in Drosophila). Of note, the

educts for the condensation reaction catalyzed by Lace are serine and the MCFA lauric acid,

which is the main fatty acid present in coconut oil (for a review on Drosophila sphingolipid

metabolism, see [43]). The medium-chain sphinganine is then further oxidized to yield sphin-

gosine, which is an educt for the acylation reaction catalyzed by Schlank to produce ceramide.

It is therefore conceivable that providing lauric acid from coconut oil rescues Pex19 mutants

by feeding into sphinganine/sphingosine production, which allows Schlank to enrich in the

nuclear membrane and repress lip3 expression, thereby reducing lipotoxicity and lethality of

Pex19 mutants.

We show that mitochondrial damage, lipotoxicity, and Schlank mislocalization contribute

substantially to pathophysiological defects not only in Pex19 mutants but also in flies deficient

in Pex2 and Pex3, and that principle aspects of this cascade are conserved in human cells.

While we do not rule out that accumulation of VLCFA contributes to phenotype progression

in PBDs, we identify a different lethality-inducing cascade driven by Hnf4 and Schlank that

results in free fatty acid overload and mitotoxicity, independent of VLCFA levels. Our findings

highlight that the results of peroxisomal dysfunction lead to more complex metabolic shifts

than just the accumulation of educts and absence of products and argue for a central role of per-

oxisomes in balancing the lipid metabolism of an organism. Earlier studies observed that perox-

isomal β-oxidation rates are influenced by mitochondrial β-oxidation rates and that VLCFA

levels are, to a degree, independent of peroxisomal β-oxidation [14]. Our data not only show

that the opposite is also true (peroxisomal loss influences mitochondrial β-oxidation), but we

furthermore identify the ceramide synthase Schlank as a mediator of these metabolic changes.

Taken together, we show that shortage in MCFAs upon peroxisome loss induces a lipolytic

program, leading to free fatty acid accumulation and mitochondrial damage, and that these

effects can be counteracted by a dietary adjustment and are conferred by the ceramide synthase

Schlank.

Conclusion

We show that supplementation with MCFAs, rather than removal of VLCFAs, rescues a peroxi-

some-deficient PBD model by acting on the ceramide synthase Schlank to prevent lipotoxicity.

MCFA-mediated rescue of Pex19 mutants
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Fig 7. Summary of the role of Schlank in the pathology of Pex19 mutants. The ceramide synthase Schlank leaves the nuclear membrane compartment

in Pex19 mutants as a result of reduced amounts of MCFA, thereby releasing repression of lip3. As a result, increased lipolytic activity of Lip3 leads to

release of free NEFAs from fat stores. In a previous study, we identified Hnf4 as a regulator of increased lipolysis in Pex19 mutants: upon fatty acid

binding, Hnf4 enters the nucleus and activates target genes, among them lip3, thereby initiating a spiral of lipolysis and further Hnf4 activation by NEFA.

Upon coconut oil feeding, the MCFA gap is filled, and Schlank reenters the nuclear membrane compartment and regains its ability to repress lip3,

MCFA-mediated rescue of Pex19 mutants
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Methods

Fly husbandry

The Pex19 mutant was generated by imprecise excision following Drosophila-standard tech-

niques. The line Pex19ΔF7 was chosen from a jump-out screen and tested as a transcript null.

To detect homozygous animals, they were kept with a CyO, twi-GFP balancer. As control flies,

we used the strain w1118 (Bloomington stock #3605). Wild-type and heterozygous, balanced

Pex19ΔF7 flies were reared on standard fly food. Pex2HP35039, Pex2f01899, Pex32, Df(32)6262,

Pex5MI06050, Pex10MI04076, and Df(2L) esc p3-0 were obtained from the Bloomington stock cen-

ter; SchlankKINLS2 /FM7, Kr-GFP, and UAS-Schlankaa1-138 flies were kindly provided by Rein-

hard Bauer. The latter insertion was recombined with the Pex19ΔF7 chromosome using

standard Drosophila techniques. SchlankKINLS2/Y; Pex19 ΔF7/ΔF7 males were selected by absence

of fluorescent markers. As control, we crossed FM7, Kr-GFP/Y; pex19 ΔF7/CyO, twi-GFP males

with +; Pex19ΔF7/CyO, twi-GFP virgins and used the resulting homozygous +/Y; Pex19 ΔF7/ΔF7

males. For all assays, eggs were collected on apple juice agar plates (2% agar, 2.5% sucrose, 25%

apple juice, 1.5% nipagin) with fresh yeast paste (42 g of yeast mixed with 10 ml of tap water),

and first-instar larvae were transferred to fresh plates with yeast as control or yeast and supple-

ments: 5% coconut oil, babassu oil, palm kernel oil, cocoa butter, rapeseed oil, olive oil, saf-

flower oil, or broccoli seed oil. Oils of different manufacturers gave similar results. Except for

babassu and palm kernel oil, which were refined and deodorized, native natural oils were used.

Synthetic TAGs were from Sigma Aldrich. Nipagin was omitted from the apple juice agar

plates for nipagin-free feeding assays. TAGs were purified from native coconut oil with a solid

phase extraction column, and 5% TAGs were added to the yeast paste for feeding experiments.

For the etomoxir assay, 100 μl of a 250-μM etomoxir (Sigma-Aldrich) solution was added to

500 mg of the yeast or coconut oil–containing yeast. For survival assays, 25 first-instar larvae

were collected for each condition, and at least 5 independent experiments were conducted

(exact numbers of n given in figure legends). The number of surviving pupae, adults (including

pharates), and viable adults (survivors) that were able to move and lived at least 24 hours was

counted.

Larval locomotion assay

Five larvae at a time were put with a soft brush onto a prewarmed PBS-agar plate (10-mm petri

dish) placed on top of millimeter graph paper and left for 1 minute to acclimate. Then, they

were filmed using a Panasonic camcorder (HC-V380) for 40 seconds. Their movement was

tracked manually by marking the position of the head every 2 seconds. The millimeter graph

paper was used to scale the resulting image so that track lengths could be measured with Ima-

geJ (Fiji). Larvae that did not move were excluded from analysis.

Cell culture

Human fibroblast control and Δ19T cells were kept in Dulbecco’s modified eagle medium

(DMEM, Gibco) with 10% FBS, 10,000 units of penicillin, and 10 mg streptomycin per ml. For

thereby ameliorating the Pex19 phenotype and reducing the free fatty acid load. Transcriptional analysis revealed that the Hnf4 target genes HexC and

Acsl are normalized upon coconut oil treatment (purple), while the opposite is true for another Hnf4 target: yip2 is even more highly expressed on the

coconut oil diet (blue). ACC, acetyl-CoA carboxylase; Acsl, acyl-CoA synthetase long-chain; CACT, carnitine acylcarnitine translocase; Colt, congested-

like trachea; CPT, carnitine palmitoyltransferase; ER, endoplasmic reticulum; FAS, fatty acid synthase; GAPDH, glyceraldehyde 3-phosphate

dehydrogenase; HexC, hexokinase C; Hnf4, hepatocyte nuclear factor 4; Lip3, lipase 3; MCAD, medium-chain acyl-CoA dehydrogenase; MCFA,

medium-chain fatty acid; NEFA, nonesterified fatty acid; SCAD, short-chain acyl-CoA dehydrogenase; TCA, tricarboxylic acid; VLCAD, very-long-chain

acyl-CoA dehydrogenase; yip2, yippee-interacting protein 2.

https://doi.org/10.1371/journal.pbio.2004893.g007
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coconut oil treatment, coconut oil was coupled to BSA at 37 ˚C, following an adapted protocol

of Seahorse Bioscience for BSA-conjugated palmitate. In brief, 65.94 mg of coconut oil was

added to 44 ml of 150 mM NaCl and stirred at 37 ˚C, and 11.2 ml was added to 14 ml BSA

solution in 150 mM NaCl and stirred for 1 hour at 37 ˚C. For NEFA measurement, 1 × 105

cells were seeded in 6-well plates and harvested after 48 hours. Cells were pelleted and washed

with PBS. Cell pellets were treated like larval tissue (see Free fatty acid section). For experi-

ments with coconut oil–BSA, cells were treated with 10% coconut oil–BSA 24 hours after seed-

ing. Additionally, Δ19T cells were cultured with 10% coconut oil–BSA for several passages and

seeded for NEFA measurement in normal medium. For live cell stainings, cells were seeded

into 8-well slides for microscopy (Ibidi). After 48 hours, cells were washed carefully 3 times

with PBS and stained with 50 nM TMRE for 15 minutes. Afterward, cells were washed again 3

times with PBS and immediately analyzed in the microscopy slide with PBS using a Zeiss LSM

710 with a 63× water objective (Plan-Apochromat, Zeiss).

Imaging

We used an α-Schlank antibody [44], α-Lamin Dm0 (Developmental studies hybridoma bank,

DSHB), and DAPI for (immune)stainings of Drosophila fat bodies. Secondary antibodies cou-

pled to Alexa dyes were from molecular probes, and DAPI from Sigma-Aldrich. For (immune)

histochemistry, we dissected tissue of interest from third-instar larvae. Tissue was fixed for 30

minutes in 3.7% formaldehyde and washed with PBT before and after incubation with primary

antibody and Alexa dye–coupled secondary antibody. Tissue was mounted in Fluoromont G

and analyzed using a Zeiss LSM 710 confocal microscope. Fat body cells were analyzed with

a 25× water objective (Plan-Neofluar, Zeiss) and a pinhole of 1 Airy unit, and Malpighian

tubules were analyzed with a 63× water objective (Plan-Apochromat, Zeiss) and a pinhole of 1

Airy unit. Human fibroblasts stained with TMRE were analyzed with a 63× water objective

(Plan-Apochromat, Zeiss) and a pinhole of 1 Airy unit at a resolution of 1024 × 1024 pixels

and at 1× zoom. For apoptosis assays, brains of adult flies were dissected and stained using an

annexin V-FITC apoptosis detection kit (Sigma Aldrich) according to the manufacturer’s

instructions. Imaging was done with identical imaging parameters for all conditions analyzed,

using a 25× water lens (Plan-Neofluar, Zeiss) and a pinhole of 1 Airy unit on a Zeiss LSM710.

Maximum intensity projections of 5 consecutive optical sections were generated for each geno-

type analyzed. For staining of mitochondria, 96-hour-old larvae or 5-day-old adults were dis-

sected in ice-cold PBS, and their Malpighian tubules were stained for 20 minutes at RT with 50

nM TMRE (Sigma-Aldrich) in PBS according to the manufacturer’s protocol. The Malpighian

tubules were then directly mounted in Fluoromount G and analyzed with a Zeiss LSM 710.

Picture analysis and quantification were done using ImageJ. For quantification of Schlank sub-

cellular localization, the corrected total cell fluorescence (CTCF) was measured with ImageJ

using the Integrated Density and Area parameters. CTCF was calculated as CTCF = IntDen

(Area × Mean gray value of background). The nuclear signal was determined by analyzing the

area within the Lamin staining. For quantification of mitochondria, the particle size was mea-

sured with ImageJ. Each staining was done at least 5 times.

Lipid profile

For quantification of FAMEs, 15 third-instar larvae were homogenized in 1 N MeHCl in a Pre-

cellys 24 homogenizer (peqlab). A minimum of n = 7 was analyzed for each condition. C15:0

and C27:0 standards were added, and samples were incubated for 45 minutes at 80 ˚C. Methyl

esters were collected by addition of hexane and a 0.9% NaCl solution. The hexane phase was

collected in a new glass vial and concentrated by vaporization. Samples were analyzed by
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GC/MS using an Agilent HP 6890 with an HP-5MS column. For FAME analysis in pupae, 100

pupae at n = 3 were processed as described above.

Free fatty acids

NEFAs were measured by an adaptation of the copper-soap method [45]. In brief, 3 third-

instar larvae were weighed and homogenized in 20 μl of 1 M phosphate buffer per mg tissue.

Then, 25 μl of the supernatant were transferred to 500 μl of Chloroform/Heptane 4:3, and lip-

ids were extracted by shaking the vial for 5 minutes. Unspecific background provoked by phos-

pholipids was circumvented by addition of 23 mg of activated silicic acid. Next, 300 μl of the

chloroform phase was transferred to 250 μl of Cu-TEA (copper-triethanolamine). After shak-

ing and centrifuging, 150 μl of the organic phase was transferred to fresh cups. Liquid was

evaporated in a 60 ˚C heat block, and lipids were dissolved in 100 μl of 100% ethanol. Copper

was detected by complexation with a mixture of dicarbazone–dicarbazide, and the color inten-

sity was measured in a 96-well plate at 550 nm in a TECAN plate reader. Each experiment was

conducted at a minimum of 5 biological replicates.

β-oxidation measurements

Six larvae per genotype were washed with PBS, and their weight was recorded for normaliza-

tion purposes. The larvae were inverted in ice-cold PBS and permeabilized in ice-cold BIOPS

buffer (2.77 mM CaK2EGTA, 7.23 mM K2EGTA, 5.77 mM Na2ATP, 6.56 mM MgCl2.6H2O,

20 mM taurine, 15 mM Na2.phosphocreatine, 20 mM imidazole, 0.5 mM DTT, 50 mM MES)

containing 100 μg/mL saponin (fresh) at 4 ˚C with gentle rocking for 10 minutes. Then, the

larvae were equilibriated in respiration medium (MiR05, 0.5 mM EGTA, 3 mM MgCl2�6H2O,

60 mM K-Lactobionate [lactobionic acid is dissolved in H2O, and pH is adjusted to pH 7.4

with KOH], 20 mM Taurine, 10 mM KH2PO4, 20 mM HEPES, 110 mM sucrose, 1 g/L fatty

acid–free BSA) supplemented with 0.5 mM carnitine. The larvae were added into the oxygraph

chambers, and oxygen concentration was brought to around 500 μM by using catalase and

H2O2. After basal respiration was recorded, 5 μM palmitoyl-CoA was added to the chamber.

Fatty acid β-oxidation was induced by adding complex I substrates, electron transfer flavopro-

tein (ETF) substrates, and ADP (10 mM proline, 10 mM pyruvate, 5 mM malate, 5 mM gluta-

mate, 2 mM ADP, and 15 mM glycerol-3-phosphate). After that, etomoxir was added at the

indicated concentrations to block fatty acid transfer into mitochondria via CPT I, thereby

blocking β-oxidation and leaving complex I–dependent respiration. Finally, residual oxygen

consumption (ROX) was measured by inhibiting complex III with antimycin A. All values

were corrected for ROX. β-oxidation was calculated by subtracting etomoxir-resistant respira-

tion from respiration in the presence of all substrates. Each measurement was repeated at least

3 times (biological replicates).

Real-time qPCR

Whole RNA of third-instar larvae was isolated using TriFast reagent (peqlab). Tissue was

homogenized using a Precellys 24 homogenizer (peqlab). Transcription to cDNA was per-

formed using the Quantitect Reverse Transcription Kit (Quiagen). qPCR was performed with

a CFX Connect cycler (biorad). A minus-RT was analyzed in a PCR for each cDNA. qPCR was

performed with a CFX Connect cycler (biorad) using GoTaq SYBR Mix (Promega). Values

were normalized against two housekeeping genes (actin5c and rp49) and against wild-type

control (ΔΔCq). See Table 1 for primer sequences. Each experiment was repeated at least 5

times.
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Statistical analysis

We used the software GraphPad InStat for statistical analysis of our data. We applied the

unpaired, two-tailed Student t test, assuming heteroscedasticity for single comparisons, and

ANOVA with Tukey posttests and Bartlett’s test for homoscedasticity. Error bars represent

standard deviation. Asterisks represent � p< 0.05, �� p< 0.01, ��� p< 0.001.

Supporting information

S1 Fig. Fatty acid profile and neurodegeneration of Pex19 mutants. (A) Representation of

unsaturated and saturated nmol FAME/mg tissue. (B) Relative amount of FAMEs with the

same chain length, calculated from the absolute concentration. Represented are, e.g., the sum

of C14:0 and C14:1. (C) Total fatty acids from lipids (measured as FAMEs). (D) Negative geo-

taxis assay with 1-day-old adult flies. The time [seconds] in which the fly reached the 60 mm

threshold was measured. Dots represent single experiments. Black bars represent median.

Error bars represent SD. ��p< 0.01; ��p< 0.01. Corresponding raw data can be found in sup-

plemental file S1 Data. FAME, fatty acid methyl ester.

(TIF)

S2 Fig. Mitochondrial abundance, feeding behavior, and mitochondrial particle size. (A)

Porin western blot from w- and Pex19−/− third-instar larvae fed on control or coconut oil

diet. The picture shows the uncropped western blot with lysates from 96- and 120-hour-old

larvae and detection with α-porin and α-tubulin as loading control. (B) Citrate synthase activ-

ity assay. (C) Larval feeding assay to determine yeast uptake. Bars represent quantification of

the gut area stained with red yeast. (D) Quantification of mitochondrial particle size. TMRE-

positive particle area was quantified with ImageJ. Error bars represent SD. ��� p< 0.001. Cor-

responding raw data can be found in supplemental file S1 Data.

(TIF)

S3 Fig. Basic characterization of the UAS Schlankaa1–138 construct, the ΔT19 human cell

line, and prx19 RNAi C. elegans. (A) Third-instar larval fat body cells with clonal overexpres-

sion of Schlank1–138 and RFP. Scale bars as indicated. (B) Transcript levels of PEX19 in Δ19T

Table 1. qRT Primers.

actin5c fwd

rev

GTGCACCGCAAGTGCTTCTAA

TGCTGCACTCCAAACTTCCAC

rp49 fwd

rev

TCCTACCAGCTTCAAGATGAC

CACGTTGTGCACCAGGAACT

lip3 fwd

rev

ATCAAGTCCGCCCATCTTCT

CTCTATGCCCAAATCCTGCT

HexC fwd

rev

GGCTTCACTTTTTCCTTCCC

TTCCCACAATGACACCCAC

yip2 fwd

rev

CGCAAAAGAACTGGGAGAAG

TGCTCGTCCACCACAAAG

Acsl fwd

rev

GCCTCACACCCACCATTTT

TCATTGTCATCATTCCGCAC

IsoDH fwd

rev

CAACTGATTCTGCCCTTCCT

GGCGACTTCCACATCTTCTT

mito Complex I fwd

rev

ATCGATGACCAGCCAGTTGA

GCTTGCTGGGATCGATCTTG

Abbreviations: Acsl, acyl-CoA synthetase long-chain; HexC, hexokinase C; IsoDH, isocitrate dehydrogenase; lip3, lipase 3; rp49, ribosomal protein 49; yip2, yippee-

interacting protein 2

https://doi.org/10.1371/journal.pbio.2004893.t001
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fibroblasts compared to control fibroblasts. Fold change represents ΔΔCq. (C) Immunostain-

ing of control and Δ19T cells with α-PEX3 (green) to show the absence of peroxisomes. Scale

bars represent 10 μm. (D-E) Quantification of TMRE stainings of mitochondrial particle num-

ber and area in control fibroblasts. (F-G) Quantification of TMRE stainings of mitochondrial

particle number and area in Δ19T fibroblasts. (H-K) Mito-GFP staining of C. elegans myo3:

mtGFP muscle tissue, fed with prx19 RNAi knock-down bacteria. Scale bars represent 5 μm.

Corresponding raw data can be found in supplemental file S1 Data. GFP, green fluorescent

protein; prx19, putative peroxisomal biogenesis factor 19; RFP, red fluorescent protein;

RNAi, RNA interference; TMRE, tetramethylrhodamine ethyl ester; UAS, upstream activating

sequence.

(TIF)

S1 Text. Supplemental methods and references.

(DOCX)

S1 Data. Raw data corresponding to Figs 1–6.

(XLSX)
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