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ABSTRACT: Nanopore sensing is a versatile technique for the analysis
of molecules on the single-molecule level. However, extracting
information from data with established algorithms usually requires time-
consuming checks by an experienced researcher due to inherent variability
of solid-state nanopores. Here, we develop a convolutional neural
network (CNN) for the fully automated extraction of information from
the time-series signals obtained by nanopore sensors. In our
demonstration, we use a previously published data set on multiplexed
single-molecule protein sensing. The neural network learns to classify
translocation events with greater accuracy than previously possible, while
also increasing the number of analyzable events by a factor of 5. Our
results demonstrate that deep learning can achieve significant improvements in single molecule nanopore detection with
potential applications in rapid diagnostics.

Nanopores have emerged as powerful sensing devices for
single molecules,2,3 with applications in DNA sequenc-

ing,4 protein detection,1,5−9 the study of protein folding,10 SNP
genotyping,11 data storage,8 and DNA computing.12 A typical
setup consists of two liquid filled reservoirs connected by a
nanopore with diameters down to a few nanometres. An
external electric field drives charged molecules through the
nanopore, as shown in Figure 1a. The passage of molecules
modulates the current, producing a characteristic signal that
contains information about the shape of the molecule.
The readout is a time-series current trace corresponding to

the shape of the molecule, usually called an event. Detection of
such events can be achieved using simple current thresholds,
but the subsequent analysis of features within each identified
event is often made difficult by a poor signal-to-noise ratio,
varying conformation of the molecule, and nonspecific
interactions with the nanopore surface. For example, Figure
1b shows two events from a multiplexed protein sensing
technique published in ref 1. The authors used a DNA
molecule as a carrier for a protein target. Modifications along
the DNA molecule and bound targets produce secondary
current drops during the translocation event, as shown in the
two traces. In the first half of the structure, DNA hairpin loops
at defined positions and their corresponding secondary drops
were used to encode a digital barcode. This barcode uniquely
identified a binding site in the other half of the DNA molecule.
The presence of a target at the binding site could be inferred
from a single secondary drop in the second half. This approach
allows the simultaneous detection of a large number of targets,
only limited by the number of distinct barcodes. The
information is encoded in additional current drops during the
event, much like the knots on a string used in the Inca Quipu
system.13

Analysis of the event data requires accurate detection and
subsequent interpretation of secondary current drops.1

However, simple peak finding algorithms often fail at reliably
classifying large parts of the data. Common causes of errors are
a varying peak magnitude, noise,6 fluctuating velocities,14

overlapping peaks, DNA knots,15 and folded molecules. To
mitigate these effects the nanopore community has developed
sophisticated algorithms.16−19 However, they frequently require
manual parameter tuning for each data set and supervision of
algorithms.1,9 In the worst case scenario, researchers have to
manually interpret the data, leading to small sample sizes,
possible confirmation bias, or data analysis duration exceeding
measurement time.
In this paper, we show that deep learning is ideally suited for

automating the analysis of nanopore sensing data. For our
study, we use the previously mentioned multiplexed protein
sensing data set.1 The data set contains separate control
measurements for each specific barcode, without other bit
permutations present in the solution. This automatically
provides labeled data to train the supervised learning model.
At the same time, the data is sufficiently complex to require an
elaborate algorithm for the classification of events. In ref 1, a 12
step approach was used to identify the bit sequence and
presence or absence of a target on each DNA construct. That
method relied on more than a dozen manually adjusted
parameters that were carefully optimized, but still it could only
use a small fraction (∼20%) of events, discarding up to 80% of
the difficult-to-interpret events that failed some predefined set
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of criteria. Here, we show that machine learning models are
able to interpret and classify data without the need for manual
tuning and the development of complex algorithms while
increasing the number of usable events by a factor of 5. Our
implementation is open-source and available online to enable
the adaptation of deep learning to other nanopore sensing
problems.20

Methods. We chose convolutional neural networks (CNN)
as the machine learning approach because of their suitability for
detecting local patterns.21,22 A recent study showed that CNNs
perform well on simulated current traces from an STM tunnel
junction.23 For comparison, DNA bases can be accurately
determined from current levels using recurrent neural net-
works.24 However, our goal is fundamentally different, as we are
trying to identify the pattern encoded on the DNA secondary
structure from a variable nanopore system. Therefore, we chose
to use the CNN architecture. A typical CNN consists of two
parts, as shown in Figure 1c. First, a series of convolutions are
applied to the raw input data. Then a dense neural network
learns to interpret the processed signal. The output is a
prediction about which class a particular input belongs to. In
our case, the prediction is a barcode on the DNA constructs
and whether a target has bound to it.
Before feeding the data into the neural network, we perform

two preparation steps. First, the raw data set contains erroneous
detections, caused by contaminations, incomplete DNA
fragments, and nonspecific interactions with the pore walls.
We use standard filtration methods to remove these
detections:25 we exclude events whose area under the current
trace (electronic charge deficit) lies outside two standard
deviations of the mean, as well as those with current drops
larger than 3.2× the unfolded event current level. Details are
available in the Supporting Information.20 This filtration
removes up to 30% of the detections recorded with the
measurement setup. After filtration we still observe some events
with errors, such as a missing bit in the barcode structure.
Therefore, perfect accuracy is unattainable using realistic data
sets.

Second, we want the model to identify a molecule, but not
the experiment. The problem arises because nanopores vary in
shape and conductivity, leading to a correlation between events
measured with the same nanopore. It is possible for the neural
network to overfit to these variations, thereby learning to
identify a nanopore instead of the barcode on a molecule. To
reduce such overfitting, we normalize the events from each
nanopore to have the same unfolded current level (arbitrarily
set to −1). In addition, we test the model using independent
experiments to reduce the chances of spurious correlations.
Table 1 shows the number of events in the training and test
sets.

As mentioned above, our predictor model is based on a
machine learning technique called neural networks. The
architecture of such a network specifies how the network
nodes are connected and what operations are applied. In order
to find a suitable architecture for nanopore data, we
investigated different alternatives by educated trial and error.
The model presented here is inspired by the image classification

Figure 1. Convolutional neural networks for the analysis of nanopore data. (a) The shape of molecules is contained in the time-dependent ionic
current signal from passing the molecules through a nanopore. For example, a molecule with three protrusions passing through the nanopore leads to
a current event with three secondary current drops as indicated by the red arrow. (b) Current traces associated with the modified DNA molecules.1

The first half of the molecule encodes a unique barcode: the first peak marks the start, three bits uniquely identify the molecule design, and the last
peak signifies the end. The two events have barcodes “111” and “001”. The second half has a binding site for a specific molecular target. (c) Data
analysis using deep learning methods: convolution layers extract local features such as current drops of different width (shown in orange). The
features are interpreted by a fully connected neural network, which outputs a prediction for the barcode and the target binding state.

Table 1. Number of Events in the Training and Testing Setsa

event no. experiment no.

label train test without protein with protein

000 5593 253 5 0
001 8155 502 3 4
010 2319 101 4 0
011 15178 827 4 7
100 876 83 3 0
101 7251 427 2 4
110 6473 606 5 0
111 6680 665 5 2
unbound 36551 2191 31 0
bound 15874 1273 0 17
total 52525 3464 31 17

aThe last two columns show the number of independent experiments
without protein (unbound state) and with protein (bound state).
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network in ref 26, which we modified to perform 1D
convolutions. Figure 2 shows the architecture.

We optimized the (hyper-)parameters to work well for
nanopore data by trial and error. A typical procedure is to pick
one hyper-parameter, such as the number of convolution layers,
then increase the number and measure the resulting accuracy. If
the accuracy increases we stick with the new number, but if it
decreases or does not change we stick with the old number. We
then pick a different hyper-parameter and repeat the procedure.
To avoid overfitting to the test, we measured the accuracy gains
using a development set, which is independent from the test set
and 20 times smaller than the training set. The reported
numbers in Figure 2 are the result of our optimization.
The input for the neural network is a current trace from a

measurement event. The data from ref1 produced events with
an average length of 402 data points. This includes short
stretches of current recording before and after the event. As the

maximum length of the event never exceeded 700 points, we
use a 700-element vector as the input. The shorter events are
padded at the end with Gaussian noise (μ = 0, σ = 0.072,
corresponding to average noise levels).
Each box in Figure 2 corresponds to a so-called “hidden

layer” that performs a specific task and passes on the
information. Here, we give a brief description of each
component; we refer interested readers to the machine learning
literature for more details.21,22

Convolution layers extract features with local structure, such
as peaks or steps. These layers perform a discrete convolution
on a segment of the input by multiplying it with a small
window, called kernel, and moving along to the next segment
(stepping by a single vector element). The output is large if the
input features match the kernel, where its weights are learned
from the training data. For example, Figure 1c shows the output
after the first convolution layer, where the orange line
corresponds to a kernel that detects peaks. Other kernels
detect other features in the input data, which are often difficult
to interpret, as seen by two gray lines that correspond to
different kernels. After each convolution, we apply a batch
normalization (BN) layer that normalizes the data to have zero
mean and unit variance.27 These layers improve our network
training convergence. Finally, an activation function is applied−
a piecewise function called rectified linear unit (ReLU), f(x) =
max(0,x). This nonlinear function is necessary for learning
nonlinear relationships between features.22 The activation
function completes one row in the diagram, its output goes
into the next convolution layer.
Roughly speaking, the deeper layers capture more abstract

and complex features. We follow the common practice of
increasing the number of kernels for deeper layers:21 from 64 to
128, then to 256. Each step doubles the amount of information
passed to the next layer. For every two convolutions, we have a
“max pool” layer to reduce the amount of information by down-
sampling spacial dimensions. A max pool layer splits an input
vector into segments of three numbers and returns only the
maximum values within the segment. This arrangement is
believed to improve spacial invariance for feature extraction.22

The dropout layer reduces overfitting by randomly switching
off a fraction of nodes in the layer above. This encourages the
network to learn more robust features that do not depend on a
single node.28 Note that the dropout is only applied during
training, because we want maximum accuracy while using the
algorithm.
The second half of the network is a densely connected neural

network with two hidden layers and a ReLU activation
function. In a dense network, the nodes between adjacent
layers are fully connected, as illustrated in Figure 1c. The
weights for these connections are learned from the training
data.
The output layer is adjusted depending on the task. In our

case, we have two outputs: the barcode and sensing region. The
barcode output is a vector with 8 elements and a softmax
activation function. The softmax normalizes the output vector
to have a sum of one such that each element is a proxy for the
probability for a different barcode. We take the maximal value
to be the predicted barcode. For the sensing region, the output
is a single number with a sigmoid activation function. This
number is a proxy for the probability of having a target bound
to the sensing region. Note that these are two networks that are
trained separately and give independent outputs.

Figure 2. Architecture of the neural network, where each element is
briefly described in the Methods. Acronyms: BN is a batch
normalization layer; ReLU is a rectified linear unit and is shown on
top. Numbers in the brackets correspond to the matrix sizes encoding
a single event at that point in the network. The model has 3 995 920
trainable parameters.
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The model is trained for 200 epochs on a GPU (Nvidia
GeForce GTX 1080 TI). The aim of the training is to find the
weights that maximize accuracy, which corresponds to
minimizing a loss function. For barcodes, the loss function is
categorical cross-entropy, while for the sensing region it is
binary cross-entropy. To minimize the loss function we use the
Adam optimization algorithm29 (LR = 0.001; decay =0.97;
batch size of 32). Typical training takes 200 min, while
evaluation is much faster at 1600 events/s, making QuipuNet
suitable for real-time classification.
Results. QuipuNet correctly identifies almost all events even

with highly complex shapes, as shown in Figure 3. For example,

the first event in column one enters the nanopore with the
barcode first, while the second and third examples enter with
the sensing region first. QuipuNet can interpret both directions.
Columns two and three show that it learns to identify folded
DNA events which occur when a nanopore captures the DNA
molecule somewhere along its length. These events are
particularly difficult to interpret because there are many
possible outcomes and peaks tend to be less pronounced. For
comparison, the method from ref 1 discarded folded events so
that only the events shown in blue could be identified.
Table 2 presents a quantitative comparison of accuracy. The

first metric for accuracy is precision, which gives the fraction of
correctly identified events out of attempted guesses. Precision
can be boosted by refusing to label difficult events. On the
other hand, the recall metric gives the fraction of correctly
identified events out of all the events (after filtration). For
example, the Bell and Keyser method1 and human experts

achieve high accuracy but have a low recall because events with
ambiguous barcode patterns are discarded.
QuipuNet achieves a precision of 0.946 for barcodes and

0.971 for the sensing regions. This is 1.0% and 3.4% higher
than the Bell and Keyser method. A much bigger difference can
be seen in the recall metric because QuipuNet classifies all the
data. The recall is five times larger than the original method1 for
both the barcode and sensing region. These results suggest that
QuipuNet accurately classifies the nanopore event data,
including folded events. As a result, QuipuNet outputs five
times more data than the previous method for the same
experiments.
To measure human expert performance, one of the authors

labeled 500 randomly chosen events and compared them with
the true labels (it took around 1 h). Only 45% of events could
be labeled reliably because of the ambiguity introduced by folds
or overlapping peaks. Compared with human performance,
QuipuNet is 3.3% less precise at reading the barcode and 4.4%
better at reading the sensing region. In both cases, the recall
metric is more than twice that of a human expert.
To optimize for accuracy, we can discard low confidence

predictions to increase the precision. Practically, it makes sense
to discard events where a barcode is simply missing or
otherwise impossible to identify. To achieve this, we estimate
the confidence using the maximal value of the softmax output
vector and then discard events with the lowest confidence. We
use a “data utilized” fraction to show how much data remains
after discarding low confidence predictions.
Figure 4a shows the accuracy as a function of data utilized for

the barcode predictions (evaluated on the test set). The
accuracy increases with the amount of discarded data,
suggesting that the confidence estimator correctly identifies
poor predictions. The accuracy curve is significantly above
manual labeling and the Bell and Keyser method, suggesting
that QuipuNet outperforms both. For illustrative purposes, at
80% utilized data QuipuNet precision is 0.987, which is higher
than the human performance. Figure 4b shows an equivalent
plot for the sensing region predictions. Here, QuipuNet
achieves a nearly perfect precision of 0.997 for 80% utilized
data. In both cases, discarding low confidence predictions
increases the accuracy of the QuipuNet algorithm.
The predictions for the sensing region have a higher accuracy

than those for the barcodes. We attribute this to two effects.
First, the sensing region typically has a higher signal-to-noise

Figure 3. Example events identified by semiautomated algorithm1 and
QuipuNet. The sketches in part a show some of the possible DNA
configurations during the passage through a nanopore. The shape of
the molecule complicates the semiautomated analysis.1 (b) These 9
example events present typical results from the data set in ref 1. The
original algorithm only identified the two blue events: 111 unbound
and 001 bound; while QuipuNet correctly identified all these events. It
is important to note here that QuipuNet increased the number of
usable events by a factor of ∼5.

Table 2. Performance Comparison between QuipuNet and
Other Methodsa

precision recall data utilized

barcode readout
Bell and Keyser1 0.937 0.182 0.194
human 0.978 0.440 0.450
QuipuNet (all data) 0.946 0.946 1.000
QuipuNet (best 80%) 0.987 0.789 0.800

sensing region
Bell and Keyser1 0.940 0.192 0.204
human 0.931 0.405 0.435
QuipuNet (all data) 0.971 0.971 1.000
QuipuNet (best 80%) 0.997 0.798 0.800

aPrecision is the fraction of correctly identified samples out of
attempted guesses while recall gives the fraction of correctly identified
samples out of all the events. Data utilised is a fraction of events that
the algorithm attempted to identify.
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ratio, i.e., larger current drops. Second, the barcode prediction
is an intrinsically harder problem, because the algorithm must
distinguish between 8 different classes, instead of two.
Figure 4c shows where the errors are made for the barcode

predictions. The matrix suggests that QuipuNet makes more
mistakes for certain barcodes. For example, the prediction for
barcode “100” has a precision of only 0.86, which can be
attributed to the small training set. It only has 876 events
measured by two experiments while the third experiment was
used for the test set. A larger training set is expected to improve
the accuracy.
The error matrix also provides insights for designing more

robust barcodes. The barcodes “000”, “001”, “101”, “110”, and
“111” all have a similar amount of training data, but the
symmetric barcodes have a higher accuracy. Here, symmetric
barcodes are “000”, “101”, and “111” (“010” has a smaller
amount of training data). This observation suggests that using
only symmetric patterns for barcodes might improve the overall
accuracy.
Finally, we trained QuipuNet on a reduced training set to

assess the relationship between accuracy and training set size, as
shown in Figure 5. For the sensing region, we randomly picked
the same number of events for bound and unbound states. For
the barcode, we randomly reduced the training set size of the
“011” barcode to a number specified on the x ̂ axis, while the
other barcodes had the same number of events as specified in
Table 1. The resulting recall metric reaches 80% at 2000

training events, 90% at 8000 and then slowly increases to >90%
for more than 8000 training events. The increase in accuracy
beyond 90% appears to be asymptotic and would require even
larger training sets. The classification of the sensing region
(blue data in Figure 5) reaches higher accuracies for smaller
training sets as it only has two classes and signal-to-noise for
protein signals is higher than for barcodes.

Discussion. We have shown that convolutional neural
networks can accurately classify events from nanopore data.
Our network achieves better accuracy than the previous
algorithm1 or manual classification, while at the same time
classifying events that were impossible to interpret before. As a
result, five times more data can be analyzed from the same
experiments. Furthermore, the machine learning approach
simplifies the analysis by eliminating manual parameter tuning
and algorithm development. Instead, we rely on experiments to
generate the labels that are used to train the neural network.
In the Supporting Information, we use QuipuNet to analyze

raw data from other nanopore experiments.20 In11 the authors
detected single-nucleotide polymorphisms from the presence of
a single binding target. Their designed DNA molecules contain
only the sensing region with no barcode. We successfully
reproduce results from their analysis using QuipuNet. Despite a
significantly lower signal-to-noise level for this data set we
obtain accuracy of up to 72% when including folded events. If
only the unfolded events are analyzed, the accuracy is 0.91. This
shows that QuipuNet can be readily applied to other nanopore
sensing data sets. When designing a nanopore experiment,
others should consider the relationship between the desired
accuracy and the number of training events.
Our work suggests that deep learning is particularly suitable

for nanopore sensing because the experiments can generate
large amounts of training data; often with predefined labels. A
similar conclusion was reached for nanopore-based DNA
sequencing, where a recurrent neural network improves the
precision of DNA sequencing.24 Future work may address other
difficult problems in the nanopore field. Specifically, peak
localization in noisy data sets6 can be trained using DNA with
known modification positions. Also, running QuipuNet against
simulated data sets (generated classically or with generative
adversarial networks) could guide the design of the DNA
structures in order to maximize the information density or
readout accuracy. Both are critically important for information
storage on DNA and hold the promise of highly multiplexed
protein sensing for medical applications.

Figure 4. Evaluating the performance of QuipuNet. (a) Barcode
prediction accuracy (precision) as a function of data utilized. The
accuracy increases when the least confident predictions are removed.
(b) Sensing region prediction accuracy as a function of data utilized.
(c) Error matrix: rows represent true barcodes from the test set, while
columns are the barcodes that QuipuNet assigned them to. In an ideal
case, it would be a diagonal matrix. The matrix was evaluated using the
entire test set. On the right, bars show the number of events in the
training set for each barcode. Accuracy correlates with the size of the
training set.

Figure 5. Recall accuracy as a function of training set size. The number
of events are shown for bound/unbound states and the “011” barcode.
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