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Abstract

Despite the prevalence of stroke-induced gait impairment due to foot drop, current rehabilitative 

practices to improve gait function are limited, and orthoses can be uncomfortable and do not 

provide long-lasting benefits. Therefore, novel modalities that may facilitate lasting neurological 

and functional improvements, such as brain-computer interfaces (BCIs), have been explored. In 

this article, we assess the feasibility of BCI-controlled functional electrical stimulation (FES) as a 

novel physiotherapy for post-stroke foot drop. Three chronic stroke survivors with foot drop 

received three, 1-hour sessions of therapy during 1 week. All subjects were able to purposefully 

operate the BCI-FES system in real time. Furthermore, the salient electroencephalographic (EEG) 

features used for classification by the data-driven methodology were determined to be 

physiologically relevant. Over the course of this short therapy, the subjects’ dorsiflexion active 

range of motion (AROM) improved by 3°, 4°, and 8°, respectively. These results indicate that 

chronic stroke survivors can operate the BCI-FES system, and that BCI-FES intervention may 

promote functional improvements.

I. Introduction

With over 795,000 new cases each year, stroke remains the leading cause of long-term 

disability in the US [1]. It is estimated that 30–60% of the 7 million stroke survivors in the 

US suffer from long-term gait deficits, primarily due to foot drop [2]. However, current gait 

therapies for stroke survivors have limited benefits once these individuals reach their 

rehabilitative plateau 6–8 months post-stroke [3], and assistive devices, such as ankle-foot 

orthoses, have no lasting effects after removal. Hence, novel therapies that promote lasting 

neurological and functional improvements are needed. Brain-computer interface (BCI) 

controlled functional electrical stimulation (FES) may be one such approach [4].

BCIs use computers to translate signals of the central nervous system into control commands 

for external devices. They may also promote motor relearning in stroke survivors through 

Hebbian-like neuroplastic changes [5]. More specifically, coactivation of the post-infarct 

cortex (via the BCI) and peripheral neuromuscular system (i.e. antidromic excitation of 
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alpha motor neurons via FES) may lead to long-term synaptic potentiation between these 

upper and lower motor neurons. A preliminary study by Daly et al. [6] suggests that only a 

few sessions of finger and upper-limb BCI-FES therapy may lead to lasting improvements in 

post-stroke motor function. Motivated by this work, we tested the feasibility of using a BCI-

FES system to treat stroke-induced foot drop. The present study represents an extension of 

our previous work to a population of chronic stroke survivors.

II. Methods

A. Overview and Subject Recruitment

Chronic stroke subjects participated in 3 daily sessions of foot-drop-targeted BCI-FES 

therapy over the course of 1 week using a previously developed system [4], [7] (details in 

Fig. 1). During each session, a subject-and-day specific decoding model that classified idling 

and dorsiflexion states from electroencephalographic (EEG) data was created before 

performing several online runs, in which the system detected the subject’s intention to 

dorsiflex or idle and controlled FES delivery, appropriately, in real time. Subjects’ 

dorsiflexion active range of motion (AROM) was measured at the beginning and end of the 

study.

This study was approved by the University of California, Irvine Institutional Review Board. 

Inclusion criteria were chronic adult stroke survivors (>6 months post-stroke) exhibiting 

moderate to severe foot drop; exclusion criteria were the lack of FES response, presence of 

electronic implants, and severe ankle contractures or spasticity.

B. Offline Training and Decoding Model Generation

At the start of each session, EEG data were recorded from subjects using a 63-channel cap 

as they followed 100 alternating 6-s-long computerized cues of idling and attempted 

dorsiflexion on the paretic foot. The offline training data were then used to generate a 

subject-and-day specific decoding model using the methodologies described in [4] and [7]. 

Briefly, those channels with excessive artifacts were removed in an automated manner 

(details in [8]), and 2 s of transition time were removed from each idling/dorsiflexion epoch. 

Power spectral densities (PSDs, in 2 Hz bins from 8–30 Hz) were then calculated for each of 

the resulting 4-s-long trials, and the PSDs were projected on two lower dimensional 

subspaces that retain the class differences using class-wise principal component analysis 

(CPCA) [9]. This was followed by either linear discriminant analysis (LDA) or approximate 

information discriminant analysis (AIDA) [10], depending on which method yielded better 

offline performance. Specifically, if ΦCPCA : ℝC×F → ℝn is a piecewise linear CPCA 

mapping, where n < C × F (C–number of retained EEG channels, F–number of frequency 

bins), and MDA : ℝn → ℝ1 is either the LDA or AIDA linear transform, then feature 

extraction is described by:

f * = MDA ΦCPCA x* (1)
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Here, x* ∈ ℝC×F is an observation in the original sample space and f* ∈ ℝ1 is its 1-D 

representation. Classification of x* was then performed using the following Bayesian 

classifier:

x* ∈ I, if P(I / f *) ≥ P(D/ f *)
D, otherwise (2)

Here, P(I|f*) and P(D|f*) represent the posterior probabilities of idling and dorsiflexion, 

respectively, given the observed feature, f*. Feature extraction and classification were tested 

using stratified 10-fold cross validation before using the decoding model for real-time 

classification of the subject’s intention (i.e. idling or dorsiflexion) during subsequent online 

runs.

C. Calibration

To avoid noisy transitions, the system was implemented as a binary state machine (BSM) 

(Fig. 2) with state transition thresholds TI and TD. These values were manually chosen using 

each state’s posterior probability distribution (details in [4] and [7]), and if necessary, were 

adjusted between online runs to maximize the performance of the system during real-time 

operation.

D. BCI-FES Therapy

Before initiating the therapy, surface FES electrodes were placed over the proximal deep 

peroneal nerve on the paretic leg, and stimulation parameters were adjusted to achieve ~15° 

of dorsiflexion without causing discomfort. During each 1-hour-long therapy session, 

subjects performed as many online BCI-FES runs as possible. Each online run consisted of 

10 alternating 10-s-long epochs of “Idle” and “Dorsiflex” demarcated by computerized cues. 

As described in [4] and [7], the BCI-FES system detected the subjects’ intention to dorsiflex 

or idle from their EEG signals as follows. Posterior probabilities were calculated from a 

0.75s sliding window of EEG data using the decoding model, and were averaged over the 

most recent 1.5–2.0 s using a sliding window (yielding P D f * ). State transitions were then 

initiated using the BSM described in Fig. 2. To this end, the BCI delivered FES whenever 

the system detected a dorsiflexion state, and discontinued FES when it detected an idling 

state. To assess the performance of the system during each online run, maximum cross-

correlation coefficients between the BCI state and computer cues were calculated, and 

corresponding significances were determined by 10,000 Monte Carlo simulations (described 

in [11]). Note that averaging can introduce a time delay for state transitions, so correlations 

at non-zero lag had to be considered. Ultimately, each subject participated in a total of 3 

daily sessions over the course of a week, and their dorsiflexion AROM was measured 3 

times before and after the study (by a single, non-blinded rater) using standard goniometry.

E. Analysis of Decoding Model

To determine if the frequencies and brain areas with large CPCA-AIDA weights were 

physiologically relevant to foot dorsiflexion, the C×F weights were compared to signal-to-

noise ratios (SNRs) using the following analysis. The SNR was calculated as:
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SNR xi, j =
μI xi, j − μD xi, j

2

σI
2 xi, j + σD

2 xi, j
; i = 1, …, C; j = 1, …, F (3)

where xi,j are the observations at channel i and frequency j, and ΜI and σI and ΜD and σD 

are the mean and standard deviation of the idle and dorsiflexion class observations 

respectively at each channel and frequency (see [7] for details). Then, to assess how 

disparate the extracted features were from the SNRs, both were vectorized and scaled to unit 

length, and the L2-norm (Euclidean distance) of their vector difference was calculated. Note 

that this metric is often used for quantifying image similarity [12]. Significance (p<0.001) 

was determined by 100,000 Monte Carlo simulations using a uniform distribution across the 

positive region of a C × F dimensional hyperspherical surface (with unit radius). Fig. 3 

provides a simplified (3-D) example of this comparative analysis.

III. Results

Three chronic stroke survivors with foot drop achieved purposeful operation of the BCI-FES 

system using physiologically relevant brain areas and frequencies, and all had a possible 

increase in dorsiflexion AROM after only 3 sessions. Their demographic data and offline/

online performance results are summarized in Table I. Note that no adverse effects were 

observed during or after the BCI-FES therapy. In addition, the EEG decoding models for all 

subjects and sessions performed well above the chance level (50%), allowing for purposeful 

online operation of the BCI-FES system. Furthermore, the models’ features (1) exhibited a 

high degree of consistency with spatio-spectral physiological data, as measured by the SNRs 

(3). A representative example of this similarity, using subject S1’s 1st session, is provided in 

Fig. 4. Quantitatively, the feature extraction and SNR vectors were found to be significantly 
similar for all subjects and sessions except for subject S1’s 2nd session. Finally, cross-

correlation analysis of the online runs revealed that all subjects had purposeful real-time 

control (Table I). More importantly, all subjects exhibited improved dorsiflexion AROM 

after the short-term therapy (Table I).

IV. Discussion

While the study was limited in sample size, the results provide preliminary evidence that 

BCI-FES physiotherapy may be effective in treating post-stroke foot drop. With the 

exception of one daily session, the system demonstrated its ability to use relevant brain areas 

and frequencies that underlie physiological control of attempted foot dorsiflexion and idling 

in the post-stroke cortex. For example, the decoding model generated for subject S1’s 1st 

session matched the SNR map, and utilized the classical foot representation area, as well as 

posteriorly expanded brain areas, to distinguish between idling and attempted dorsiflexion 

states (Fig. 4). In the single daily session (subject S1’s 2nd session) where the extracted 

features did not significantly match the SNRs, the data-driven methodology extracted the 

expected features, but excessive noise at other frequencies and brain areas changed the SNR 

map such that the analysis resulted in insignificance. Overall, these results indicate that our 

McCrimmon et al. Page 4

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2018 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



feature extraction and classification techniques are able to detect relevant upper motor 

neuron areas and frequencies, and by coupling this to lower motor neuron stimulation, our 

BCI-FES therapy may be able to elicit positive Hebbian-like neuroplastic changes.

All 3 subjects seemed to demonstrate improvements in their dorsiflexion AROM after only 3 

daily sessions. Although these improvements surpassed our criterion for measurable change 

(2.5°) [13], other authors have suggested a larger day-to-day error in dorsiflexion 

goniometric measurements (≤4°) [14]. Even still, S3 showed improvement. This is intriguing 

because the subjects were considered to have reached a rehabilitative plateau, as they were 

all ≥9 months post-stroke and had already received standard physiotherapy prior to the study. 

Furthermore, subject S1 was a long-term user of a commercial FES system for foot drop 

(L300, Bioness, Valencia, CA), so the observed improvements are unlikely to be solely due 

to the use of FES. Thus, preliminary evidence suggests that dorsiflexion BCI-FES therapy 

does facilitate beneficial neuroplastic changes. However, further studies are required to 

determine whether these changes translate into lasting functional gait improvements.

V. Conclusion

Three chronic stroke survivors underwent BCI-FES therapy for 3 daily 1-hour sessions. The 

results suggest that all subjects gained purposeful real-time control of the BCI-FES system, 

and that the frequencies and brain areas utilized by the feature extraction techniques were 

consistent with physiological findings (expressed as SNR). Moreover, some, if not all, of the 

subjects exhibited improvements in dorsiflexion AROM. Hence, this BCI-FES therapy holds 

promise as a new modality to treat post-stroke foot drop.
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Fig. 1. 
A representative setup of the BCI-FES system. In response to computerized cues, the subject 

attempts idling or dorsiflexion, resulting in EEG changes that are detected by the BCI 

computer. The computer then instructs the FES system to either deliver or cease electrical 

stimulation respectively, providing feedback to the subject.
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Fig. 2. 
Hysteresis of the BSM. The system transitions from the idling to dorsiflexion state when 

P D f * > TD, and from the dorsiflexion to idling state when P D f * ≤ TI When 

TI ≤ P D f * ≤ TD, the system remains in the current state. P D f *  is the average posterior 

probability as described in Section II-D.
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Fig. 3. 
An example of the comparative analysis performed between a 3-D SNR vector (green), g , 

and a 3-D feature extraction vector (cyan), c . The yellow vector y  represents the 

difference between the feature extraction and SNR vectors. The Monte Carlo generated 

points that fell within a distance of y  to g  are red, while those that fell outside are blue. 

These points are uniformly distributed over the positive region (octant) of a 3-D sphere.
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Fig. 4. 
SNR (top left) and feature extraction (top middle/right) maps obtained from subject S1’s 1st 

daily session, with corresponding topographic maps at 20–22 Hz. Only a 31 channel subset 

is displayed to enhance clarity. Note that the subject predominantly utilized the beta band at 

20–22 Hz, and these features were most prominent over channels Cz and CPz, possibly due 

to stroke-induced posterior expansion of the foot representation area.
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TABLE I

Summary of the demographic data and performance results.

Subject Age Time 
from 

stroke 
(mo)

Clinical 
presentation 
(right=R, left=L)

# of 
channels 
used

Average 
offline 
decoding 
model 
accuracy 
(%)

Total # of 
BCI-FES 

runs 
completed

Cross-correlation 
between cues and 
BCI-FES response

Dorsiflexion 
AROM (°) 
(before/after)

S1
† 60 25 hemiparesis (R) 63 97.9±1.4 20 0.439 (p<0.001) 5/8

S2 83 29 hemiparesis (R) 32 93.3±4.7 25 0.659 (p<0.001) 3/7

S3 59 9 hemiparesis (L) 32 90.9±1.3 12 0.629 (p<0.001) 0/8

†
Data from this subject have been previously presented in [4].

Subjects S2 and S3 used a 32-channel subset of EEG electrodes during the each daily session to mitigate motion and electromyogram artifacts.

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2018 June 29.


	Abstract
	Introduction
	Methods
	Overview and Subject Recruitment
	Offline Training and Decoding Model Generation
	Calibration
	BCI-FES Therapy
	Analysis of Decoding Model

	Results
	Discussion
	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	TABLE I

