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Abstract

The total number of data points required for image generation in Raman microscopy was greatly 

reduced using sparse sampling strategies, in which the preceding set of measurements informed 

the next most information-rich sampling location. Using this approach, chemical images of 

pharmaceutical materials were obtained with >99% accuracy from 15.8% sampling, representing 

an ~6-fold reduction in measurement time relative to full field of view rastering with comparable 

image quality. This supervised learning approach to dynamic sampling (SLADS) has the distinct 

advantage of being directly compatible with standard confocal Raman instrumentation. 

Furthermore, SLADS is not limited to Raman imaging, potentially providing time-savings in 

image reconstruction whenever the single-pixel measurement time is the limiting factor in image 

generation.
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Raman microscopy, which combines Raman spectroscopy with optical imaging, is a 

powerful tool to provide detailed chemical information in multiple dimensions (spatial and 

spectral).1 Because of its high chemical specificity and requirement for minimal sample 

preparation, Raman imaging has found broad adoption in both chemical and biological 

sample analysis, with applications ranging from the screening of pharmaceutical 

formulations,2–5 to characterization of semiconductors,6,7 to cancer diagnosis,8–10 to 

forensic analysis.11,12 Specifically, in the pharmaceutical industry, spontaneous Raman 

spectroscopy and microscopy have been established as a standard method for polymorphic 

characterization of active pharmaceutical ingredients (APIs).2,13 Previous studies show that 

more than 80% of APIs have multiple polymorphic forms,14 and polymorphic transition of 

APIs can significantly impact their chemical and physical properties, including stability, 

apparent solubility, morphology, and bioavailability. Polymorphism is a critical issue in the 

industry, and there is increasing need for fast and reliable analytical methods for API 

polymorphic characterization. However, the spontaneous Raman cross section is weak (on 

the order of 10−30 cm2/sr).15 As a result, imaging based on spontaneous Raman typically 

requires relatively long integration times to obtain suficient signal-to-noise, which in turn 

limits the applications of Raman imaging.16

Several strategies have been adopted to reduce the measurement time in Raman imaging. 

Some techniques, such as stimulated Raman scattering (SRS)17 and coherent antistokes 

Raman scattering (CARS),18 dramatically improve the speed of Raman imaging with 

significantly shorter exposure times (up to video-rate frame rates). However, these 

approaches typically require ultrafast laser sources, which can limit the rate of adoption. 

Furthermore, it can be challenging to recover complete high-resolution spectra at each 

location by SRS and CARS.8 Alternatively, several illumination strategies have been applied 

to improve the speed of spontaneous Raman imaging, which are mainly classified as wide-

field, line-illumination, and confocal scanning methods.19 In wide-field Raman microscopy, 

the entire field of view is illuminated, and the Raman spectra are collected by spectral 

filtering to select discrete frequencies. This approach recovers highly efficient spatial 

information but inefficient spectral collection. Incorporation of acousto-optic tunable filters, 

liquid-crystal tunable filters (LCTFs), fiber array assemblies, and integrated light sheet 

illumination can improve the signal-to-noise ratio and the efficiency of spatial and spectral 

collections.20 However, wide-field strategies such as these reject much of the Raman signal, 

Zhang et al. Page 2

Anal Chem. Author manuscript; available in PMC 2018 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as measurements are typically acquired by serially scanning through wavelengths. In 

addition, illumination of the entire field of view reduces the intensity at each individual 

pixel, with the corresponding signal scaling proportionally. Line-illumination (or push-

broom) methods using a hemicylindrical lens circumvent this complication by allowing full 

spectral acquisition in one dimension of an array-detector and spatial information on the 

orthogonal axis. By sweeping a line of illumination across the sample (or translating the 

sample), spectra images are produced one line at a time.21 However, similar to wide-field 

strategies, line-illumination also suffers from reduced intensity at each individual pixel, 

resulting in extended measurement time.

Point scanning has the distinct advantage of enabling confocal sectioning, which can greatly 

reduce background and interference from out-of-plane contributions. However, the 

traditional approach to point-mapping Raman imaging utilizes raster scanning to sample all 

pixels in the field of view, which often results in prohibitively long imaging times for 

practical applications. Raster scanning always samples locations immediately adjacent to 

those previously sampled, which typically are among the least informative pixels for 

sampling in order to perform image reconstruction. In brief, sampling adjacent pixels 

interrogates the highest spatial frequency achievable by the instrument hardware for all 

locations in the image, regardless of the frequency components actually present.

To improve the speed of point mapping Raman imaging, several selective sampling 

algorithms have been employed to determine the optimal positions of measurement locations 

and reduce the numbers of sampling points. Rowlands et al. developed a sampling method, 

in which a score assigned to each unmeasured pixel was used to determine the next sampling 

location.22,23 This score is equal to the difference between the interpolated values for a 

pixel, computed using two different interpolation algorithms (e.g., a cubic spline and a 

Kriging interpolation). The pixel location where the reconstruction algorithms differed the 

most was deemed the most informative pixel and then measured. While an improvement 

over random sampling, it is not clear from a fundamental perspective that the location where 

the difference is largest with two interpolation approaches corresponds to the pixel with the 

most information about the underlying object. Another approach for selective sampling is to 

use the information from a much faster alternative imaging tool, such as second harmonic 

generation (SHG) microscopy24 and/or confocal fluorescence microscopy.25 However, such 

hyphenated methods add complexity to the instrument and have specific requirements for 

samples (e.g., SHG-guided Raman spectroscopy is only applicable for sample systems 

whose components are symmetry-allowed for SHG).

In the present study, a supervised learning approach for dynamic sampling (SLADS) is 

demonstrated for hyperspectral imaging, which allows rapid determination of optimal 

sampling locations in real-time during image acquisition. In contrast to previous methods for 

sparse-sampling in Raman imaging, SLADS is based on a machine learning approach that 

incorporates training data for sample selection. Furthermore, SLADS allows the use of 

labeled images (i.e., pixels classified according to spectra), as opposed to being limited to 

continuously valued images, which could result in the adverse effects described in 

previously discussed method by Rowlands et al. and in the original SLADS publication.26 

On the basis of the training results and the SLADS algorithm, the error of dynamic image 
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reconstruction was less than 0.5% with 15% sampling points, with resolution negligibly 

different from full raster scanning. The stopping condition was determined by training data 

to optimize the number of sampling points and the quality of reconstructed image. By using 

SLADS guided Raman imaging, polymorphic discrimination of active pharmaceutical 

ingredients (APIs) shown in this study was accelerated by ~6 times.

1. THEORETICAL METHODS

1.1. Classifying Raman Spectra for Discretized Imaging

Classification of acquired Raman spectra was performed to identify the chemical 

composition of the sample measured at specific locations. The Raman spectroscopic image 

was thus converted to a discrete valued image, in which the value of each pixel is its 

corresponding class label, to inform the SLADS algorithm. Raman spectral classification 

was achieved by a combination of linear discriminant analysis (LDA) for initial dimension 

reduction and support vector machine (SVM) classification. In brief, LDA constructs the 

N-1-dimensional space for N classes of data that maximizes the Fisher linear discriminant, 

which in turn maximizes the resolution between classes. SVM is a complementary machine-

learning algorithm specifically designed for classification, in which optimal hyperplanes are 

constructed in the data space to separate different clusters of data points. With linearly 

inseparable data, SVM utilizes a predefined kernel function to draw nonlinear decision 

boundaries, which is a more computationally economical equivalent of projecting data into a 

higher dimensional space, in which the data become linearly separable.

SVM is not inherently designed to work with N-class problems, such that additional steps 

were taken to enable classification. In the present work, a 1-vs-1 SVM approach was 

adopted to enable SVM analysis with N > 2: one decision boundary was made for each pair 

of classes, generating 
n
2  decision boundaries. Classification of a data point is achieved using 

this procedure:27 all the 
n
2  decision boundaries were applied to the unseen data point, and 

each decision boundary returns one prediction for a class label. Then a polling procedure is 

conducted, in which the class that obtains the highest number of prediction votes is used as 

the classification result. If the polling results in a tie, a tie-breaking algorithm is 

implemented to make a final classification decision.

1.2. Dynamic Sampling

In this section, we describe the theoretical framework underpinning SLADS for identifying a 

sparse set of sampling locations, which allows for a high fidelity reconstruction of the 

underlying object.26,28,29 Let us assume that we have previously measured k locations, S = 

{s(1), s(2),··· s(k)}, of some sample, X ∈ ℛN, and we want to find the next location, s(k+1), to 

measure. The measurements can be described by a matrix,
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Y(k) =

s(1), X
s(1)

⋮
s(k), X

s(k)

(1)

After these measurements are acquired, one can perform a reconstruction to form X̂(k) ∈ 
ℛN. In SLADS, the goal is to find the pixel location that maximizes the expected reduction 

in distortion.

s(k + 1) = arg max
s ∈ {Ω\S}

{E[R(k; s) ∣ Y(k)]} (2)

In eq 2, Ω is the set of all pixel locations in X, and the reduction in distortion R resulting 

from measuring pixel s is given by the following expression.

R(k; s) = D(X, X(k)) − D(X, X(k; s)) (3)

In eq 3, X̂(k;s) is the reconstruction made with Y(k) and Xs, and D(A, B) is the distortion 

between two images A and B. In SLADS it is assumed that the expectation value for the 

reduction in distortion can be written as a function of Y.

E[R(k; s) ∣ Y(k)] = f θ
s(Y) (4)

In eq 4, the function f θ
s(Y) is learned using a supervised learning approach, where θ is a 

parameter vector.

In this implementation of SLADS, the distortion D between two images A and B is defined 

as,

D(A, B) = ∑
i = 1

N
I(Ai, Bi) (5)

Here, I is an indicator function defined as,
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I(Ai, Bi) =
0 if Ai = Bi

1 if Ai ≠ Bi
(6)

In eq 6, Ai is the ith element of the image A. However, in this implementation, since we 

measure a spectrum from each pixel location, we have an l-dimensional vector at each pixel 

location. Hence, we label each measured spectrum, as it is measured (i.e., on-the-fly), using 

the classification method described in the previous section.

1.3. Stopping Condition for SLADS

The SLADS framework includes a stopping condition that allows us to stop sampling when 

the expected total distortion (ETD) is smaller than a threshold T;

ETDk = E 1
∣ Ω ∣D(X, X(k)) < T (7)

Since this quantity cannot be computed without foreknowledge of the ground truth image, 

another function ε(k), is used in SLADS instead to identify the stopping condition.

ε(k) = (1 − β)ε(k − 1) + βD(X
s(k), X

s(k)
(k − 1)) (8)

Here, k > 1, β is a user selected parameter that determines the amount of temporal 

smoothing, Xs
(k) is the measured value of the pixel at step k, and X

s(k)
(k − 1) is the reconstructed 

value of the same pixel at step k − 1. The threshold to place on this function, T̃(T), to stop 

sampling when ETDk is below T, is computed as follows.

First, M training images are measured using the SLADS algorithm and stopped when the 

total distortion is below the desired threshold T. For example,

TDk = 1
∣ Ω ∣D(X, X(k)) < T (9)

Then the value of ε(Km) for each experiment is recorded. Here ε(Km) is the value of ε(k) 

when SLADS is stopped for the mth image. Then the threshold to place on ε(k) in the 

SLADS experiment is computed as,
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T∼(T) = ∑
m = 1

M
ε

(Km(T))
(10)

2. EXPERIMENTAL METHODS

Instrumentation for dynamic sampling Raman imaging is shown in Figure 1. A continuous 

wave diode laser (Toptica, 785 nm wavelength) was coupled into a Raman probe 

(InPhotonics, RPS785/24). The light was then collimated by a 1/2 in. fused silica lens and 

directed through an X-Y scan head composed of two galvanometer scanning mirrors. Two 

additional 1 in. diameter fused silica lenses formed a 4f configuration to deliver a collimated 

beam on the back of a 10× objective (Nikon). The Raman signal from the sample was 

collected in epi direction and sent back through the same beam path into the Raman probe, 

and a photodiode was set behind the sample to collect the laser transmittance signal for 

bright field imaging. A notch filter was built in the Raman probe to reject the laser signal. 

Raman spectra were acquired using an Acton SP-300i spectrometer with a 100 × 1340 CCD 

array and controlled by a computer running WinSpec32. Another computer was used to 

control the galvanometer scanning mirrors with a digital to analog converter (DAC, NI 9263, 

National Instruments) coupled with a programmable USB interface (NI USB-9162, National 

Instruments). MATLAB R2014a (MathWorks, Inc.) software written in-house was used to 

output analog voltages to the galvanometer mirrors and direct the laser beam to the desired 

locations. To achieve automation of dynamic sampling, network communication programs 

based on WinSock application programming interface were designed (a client/server 

network) in house using Visual C++ 6.0 (Microsoft Corporation) in combination with 

MATLAB to allow remote control of the Raman spectrometer vendor computer (server 

computer) as well as data transfer between the two computers. During the experiment, the 

client computer used the SLADS algorithm (coded in MATLAB) to determine the next 

measurement location, calculated the corresponding voltages needed at the galvanometer 

mirrors, output voltages via the DAC to direct the laser, and sent request to the server 

computer for Raman spectrum acquisition. After receiving the acquired Raman spectrum file 

from the server computer, the client computer used pretrained classifier to identify the 

sample at the point of measurement and continued SLADS algorithm to decide the next 

measurement point.

Pure clopidogrel bisulfate form I and form II were produced in-house at Dr. Reddy’s 

Laboratories. Both the form I and form II particles were spherical with similar particle size 

distributions (diameter: ~25 μm). The sample prepared for Raman imaging was a mixture of 

clopidogrel bisulfate form I and form II, which consisted of 50% form I and 50% form II by 

mass. The powder sample was placed on a fused quartz microscope slide to collect Raman 

spectrum. The laser power measured at the sample place was ~30 mW. The exposure time 

was 0.5 s per spectral frame. To achieve higher signal-to-noise ratio for high quality training 

data for classification, 30 consecutive frames were averaged for each pixel. A Savitzky-

Golay filter was applied to smooth the spectra,30 and a rolling ball filter was used to remove 

the fluorescence background.31 Finally, the spectra were normalized to their integrated 
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intensities (i.e., the area under the curves). The integrated intensity information on every 

spectrum was recorded so it can be retrieved when intensity information within each 

spectrum was needed for subsequent analysis. The spectral processing procedures are shown 

in Figure 2.

Ground Truth Data Acquisition

Ground truth data were acquired using a raster scan sampling pattern in order to allow 

evaluation of the performance of dynamic sampling. Raman spectra of the 50%/50% (w/w) 

clopidogrel bisulfate form I/form II were taken at every pixel of a 128 pixel × 128 pixel field 

of view. Classification algorithms were developed using the information and knowledge 

obtained from this data set.

Classification of Raman Spectra

LDA and SVM both being supervised learning algorithms, Raman classifiers were 

constructed using 500 training spectra, which were randomly picked from the 16384 ground 

truth spectra and then manually classified by inspection as either form I clopidogrel, form II 

clopidogrel, or background. During this process, if a selected spectrum was ambiguous for 

manual classification (e.g., if a spectrum was taken at the boundary between a form I and a 

form II particle and exhibited spectral features of both polymorphs), it was excluded from 

training. Then, LDA was used to reduce the dimensionality of the training data, and spectra 

in the data set were projected into the two-dimensional space formed by the two LDA axes. 

An SVM algorithm with a Gaussian kernel was then used to define the classification 

decision boundaries for form I, form II, and background Raman spectra. A 5-fold cross-

validation was applied during training to optimize the parameters and ensure the robustness 

of the classifiers. Using SVM to construct classification boundaries enabled both 

discrimination of different classes and maximization of the probability of correct 

classification. Figure 3a shows the constructed decision boundaries in the two-dimensional 

space, with all 500 training data points overlaid.

The constructed classifiers were then applied to the Raman ground truth data previously 

acquired. During the 1-vs-1 SVM polling process, a tie in votes will typically occur when 

the signal measured at the location is a mixture of form I, form II clopidogrel, and 

background spectra. A simplified tie-breaking algorithm was implemented that all voting 

ties (30 out of 16384) are resolved as a form I clopidogrel spectrum. With 16384 classified 

Raman spectra, the Raman spectral image was converted into a discrete valued 128 × 128 

image, in which pixels valued 1, 2, and 3 correspond to form I, form II, and background, 

respectively. This classified image was used as the ground truth data for subsequent 

simulation studies. Figure 3b shows all 16384 data points overlaid in the two-dimensional 

space. Color-shaded regions mark how data points within corresponding areas were 

classified.

Experimental Implementation of Dynamic Sampling

Dynamic sampling Raman imaging was conducted using the aforementioned instrument, 

with SLADS algorithm and Raman classifiers trained for clopidogrel bisulfate samples. 

Another replicate of clopidogrel bisulfate sample was prepared for Raman imaging, with 
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50% form I and 50% form II by mass. The SLADS stopping condition was set such that 

experimental measurements automatically ended when the estimated image reconstruction 

error was less than 1%. More measurements (to 35% of all pixels sampled) were conducted 

after the SLADS stopping condition to evaluate and validate the trained stopping condition.

RESULTS AND DISCUSSION

Simulation Results

Prior to implementation, the SLADS algorithm was characterized through a series of studies 

in which the ground truth results were measured at each pixel. Simulated dynamic sampling 

was conducted on the 128 × 128 ground truth image, the results of which are provided in 

Figure 4g. Before each measurement, the SLADS algorithm used an average of 71.5 μs to 

determine the next measurement location. Image reconstruction was done each time an 

additional 1% of all 16384 pixels was measured. The measured pixel locations, 

reconstructed images, and errors in image reconstruction when 15% of all 16384 pixels were 

measured are shown in Figure 4 (panels a–c). The image reconstruction error with dynamic 

sampling was 0.23%. At 35% of all pixels sampled, all 16384 pixels in the reconstructed 

image are identical to those in the ground truth image. Previously recorded integrated 

intensity of each spectrum was used to rescale the discrete valued Raman image in order to 

reconstruct a grayscale Raman spectroscopic image with classification information, shown 

as Figure 4h. Video S1 is demonstrates the simulation process.

Comparison with Random Sampling

In order to compare the performance of dynamic sampling to other alternative sampling 

strategies, simulated random sampling experiments were also conducted. The first simulated 

random sampling imaging was conducted using the ground truth image acquired in a 

simulated dynamic sampling experiment. The measured pixel locations, reconstructed 

images, and errors in image reconstruction corresponding to measurements of 15% of all 

16384 pixels are shown in Figure 4 (panels d–f). The image reconstruction error with 

dynamic sampling was 0.23%, while with random sampling it was 4.65%. It can be seen that 

most of the errors in random sampling were located at the edges of the sample particles of 

different species (i.e., the boundaries between classes). This edge ambiguity can be easily 

rationalized; boundaries have high spatial frequency information compared to other areas in 

the image. Random sampling does not adjust its measurement density according to the 

different spatial frequency accessed in different locations. In contrast, dynamic sampling 

adjusts the measurement density accordingly, selectively interrogating more pixels at areas 

with higher spatial frequency information and measures fewer pixels at areas with lower 

spatial frequency information.

Experimental Implementation of SLADS for Dynamic Raman Imaging

The experimental dynamic Raman imaging stopping condition of <1% expected distortion 

was reached for a sampling of 15.8%; the sampled pixel locations and the reconstructed 

image are shown in Figure 5 (panels a and b). Consistent with the preceding analysis with a 

known ground truth, the SLADS reconstruction converged quickly to a low relative 

reconstruction error. Also consistent with the evaluation of simulated results, the SLADS 
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approach preferentially sampled the edges in the images, at which the composition changes 

abruptly. This preferential sampling retained the high spatial-frequency information content 

at the boundaries in the image reconstruction, enabling high-edge resolution in the 

classification.

In order to assess the merits of the SLADS algorithm at this stopping condition, additional 

subsequent measurements were made for up to 35% of all pixels sampled, shown in Figure 

5c. No additional changes were observed in the reconstructed images after 29% of all pixels 

were sampled. Video S2 demonstrates the experiment measurement process. The difference 

between the reconstructed image at SLADS algorithm stopping condition and at 35% of all 

pixels sampled is 67 pixels, or 0.41% of all 16384 pixels in the image. Details of images 

used for training the SLADS stopping condition are included in Supporting Information.

Performance Analysis and Potential Applications of Dynamic Sampling

The benefit of reduced measurement time delivered by SLADS is most pronounced in 

Raman imaging, where the data acquisition time for each measurement is over 10 times 

longer than the time required for laser beam relocation, data transfer, spectra analysis, and 

SLADS computation. Comparable advantages are reasonable to expect in other imaging 

applications, in which the random access time can be significantly faster than the single-

pixel measurement time, such as energy dispersive spectroscopy,32 photoacoustic imaging,
33,34 and infrared hyperspectral imaging.35

Previous analysis using images of different pixel resolution suggests that the sampling 

benefits of SLADS increase significantly as the number of pixels in the image increases.36 

In SLADS simulations based on X-ray diffraction imaging, an 80-fold increase in resolution 

(from 40 × 80 to 512 × 512 pixels) yielded a 6-fold reduction in the fraction of pixels 

sampled for similar distortions. This result suggests that substantial improvements over the 

current design could be anticipated with higher resolution of sampling but at the expense of 

increased overall measurement time.

It is interesting to compare the results of SLADS with the previously described sampling 

strategy by Rowlands et al.,23 based on comparisons between spline and Kriging 

interpolations. Quantitative comparisons are challenging, as the previous work did not 

include assessment of the reliability of the algorithm (e.g., by using model calculations with 

known ground truth results). In Rowlands et al., the boundaries between phases appear 

qualitatively to be significantly blurred in the reconstructed images, and as a result, the 

misclassification rate along the boundaries and in the whole image is anticipated to be 

relatively large. One possible reason for this effect is that the difference between two 

interpolations of a pixel is generally not proportional to the information that the pixel would 

provide upon measurement. For example, consider three features with different gray scale 

values in proximity. The Rowlands et al. algorithm will preferentially sample between the 

features with the greatest differences, rather than the locations that will optimize 

reconstruction. Furthermore, the algorithm operates on continuously valued images and uses 

the difference between pixel values directly to select the next measurement. However, the 

difference between continuously valued pixels is a different question than posed in the 

present reconstruction, which focused on properly classifying composition. The algorithm 
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proposed by Rowlands et al. cannot readily be extended to labeled images; all pixels in 

labeled interpolations would either be identical using the two methods or differ by a score of 

1 because of the discrete nature of the classification.

In practice, the discrete classification boundaries identified by SLADS are not representative 

of the smoothly varying changes in composition expected for realistic three-dimensional 

objects. Two strategies were considered for recovering the intrinsic gradient in intensities 

associated with geometric objects (in this case, spheroidal particles). First, the SLADS 

algorithm can be applied for images in which each pixel is allowed to have continuous 

amplitudes of all components (e.g., form I, form II, and background). SLADS imaging has 

been demonstrated using continuously valued images (continuous-SLADS), in which 

different regions have either hard boundaries or soft gradient edges.29 Since gradients in 

continuously valued images are smoother, SLADS will sample along this smoother more 

spread out boundary. As a result, the misclassification rate of the reconstruction, if 

calculated with only one label allowed per pixel, will decrease slower than when SLADS 

trained on labeled images is applied to the same image after labeling it. However, if the 

RMSE was computed as the error metric, continuous-SLADS will decrease the error faster 

because it is trained to find the pixel that reduces the RMSE the most. However, continuous-

SLADS, just as the method proposed by Rowland et al., suffers from the inaccuracy of using 

the difference between continuously valued pixels to quantify how different the pixels are. 

An alternative strategy illustrated in Figure 4h was adopted herein, in which the original 

classified images were subsequently weighted by the ground-truth vector magnitudes of the 

filtered spectra. While the primary focus of the present study was centered on quantitatively 

and accurately classifying composition, the general strategies described above demonstrate 

possible strategies for recovering gradient information in discretized SLADS images.

Although the central focus of the present work is the reduction in measurement time 

afforded by dynamic sampling, the SLADS algorithm has the added benefit of reducing the 

total optical dose to the sample. Phototoxicity is routinely observed in Raman imaging of 

live cells, in which local heating and/or photochemical reactions significantly perturb the 

system under investigation during the process of data acquisition.37,38 In addition, 

significant laser-induced local heating could potentially lead to phase transformation 

between crystal forms in analyses of pharmaceutical materials.39 In a previous application of 

dynamic sampling in synchrotron X-ray diffraction for crystal positioning, the reduced 

number of measurement points significantly reduced the X-ray dosage used for crystal 

identification and avoided excessive X-ray damage.36 Similarly, in other imaging 

applications where sample overheating or damage caused by extended exposure to light 

source is a major concern, such as four-wave mixing microscopy for living cell imaging, 

using dynamic sampling to reduce the number of sampling points can be potentially 

beneficial.

While the measurements presented herein were all acquired using a dedicated prototype 

instrument, the SLADS approach is expected to be directly compatible with broad classes of 

point-scanning instruments for Raman imaging. Assessment of compatibility can be made 

by comparisons between the random access time within the field of view relative to the 

sampling period per-pixel. In many practical commercially available confocal Raman 
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systems supporting imaging applications, the single-pixel measurement time dictates the 

overall frame rate, such that SLADS is expected to be advantageous. Given the quality of the 

reconstructions produced with ~16% of pixels sampled, the time-reductions associated with 

SLADS is highly attractive.

CONCLUSIONS

An integrated Raman imaging system utilizing dynamic sampling with SLADS was 

demonstrated for clopidogrel bisulfate polymorphism discrimination. This approach 

significantly reduced the number of sampling points required for image reconstruction. For a 

three-component system consisting of form I clopidogrel/form II clopidogrel/background, 

the implementation of dynamic sampling was found to increase the imaging speed by over 6 

times without significantly sacrificing image fidelity relative to traditional raster scanning. 

Simulation results also support a 1 order of magnitude improvement of image reconstruction 

accuracy by dynamic sampling over random sampling. Dynamic sampling capabilities have 

the potential to be easily retrofitted into existing imaging systems, with few requirements 

beyond those inherently already present in point-scanning Raman microscopy 

instrumentation. The flexibility of the sampling architecture enables compatibility with a 

variety of applications, providing benefits including increased imaging speed and reduced 

sample damage.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of the random access Raman microscope, with the dynamic sampling Raman 

imaging workflow described in the flowchart. The server computer (outlined in blue to the 

left) controlled the Raman spectrometer, and the client computer (outlined in orange to the 

right) controlled the laser beam location, operated the SLADS algorithm, and performed 

Raman spectral classification.
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Figure 2. 
(a) Sample raw Raman spectra of form I, form II clopidogrel bisulfate polymorphs, and 

background signal, and (b–e) the spectral processing procedure illustrated using a spectrum 

of form II clopidogrel bisulfate measurement, including Savizhky-Golay filtering, rolling 

ball filtering, and normalization to the area under the curve.
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Figure 3. 
(a) Training spectra projected onto the two-dimensional space generated from the two 

principal eigenvectors produced by LDA, and three decision boundaries constructed using 1-

vs-1 SVM, in which the solid curve separates form I and form II clopidogrel data points, the 

dashed line curve separates form II and background data points, and the dotted curve 

separates form I and background data points. (b) Visual representation of Raman spectral 

classification decision making. All 16384 spectra collected by the ground truth Raman 

imaging experiment are projected to the same LDA space as gray dots. Shaded areas that 

these dots fall into indicate corresponding classification results.
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Figure 4. 
Simulated dynamic sampling (first row) and random sampling (second row) reconstruction 

with a known ground truth image. Results shown in the figure are both at 15% sampling 

percentage (i.e., 2458 out of 16384 pixels are measured). (a) Measured locations of 

simulated dynamic sampling. (b) Reconstructed image of dynamic sampling. (c) Dynamic 

sampling image reconstruction error map. (d) Measured locations of simulated random 

sampling. (e) Reconstructed image of random sampling. (f) Random sampling image 

reconstruction error map. (g) The ground truth image in which all 16384 pixels are sampled. 

(h) Grayscale image with classification information by rescaling every pixel in the discrete 

valued image by the integrated intensity of the Raman spectrum measured at the pixel. (i) 

Comparison of image reconstruction error using dynamic sampling (blue solid line) and 

random sampling (orange dotted line) as a function of sampling percentage. In (a), (b), (d), 

(e), (g), and (h) red pixels correspond to form I polymorph, blue pixels correspond to form II 

polymorph, black pixels correspond to background, and gray pixels correspond to 

unmeasured locations. In (c) and (f), gray pixels correspond to locations where the 

reconstructed image is the same as the ground truth image, and cyan pixels correspond to 

locations where reconstructed image difiers from the ground truth image.
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Figure 5. 
Dynamic sampling Raman imaging experimental results. (a) Measurement locations 

correspond to the stopping criterion (15.8% sampling percentage). (b) Reconstructed Raman 

image. (c) Reference image reconstructed after 35% of all pixels locations are measured. (d) 

Difference between reconstructed image at 15.8% sampling percentage and the reference 

image. 67 pixels are different, corresponding to 0.41% difference. In (a, b, and c), red pixels 

correspond to form I polymorph, blue pixels correspond to form II polymorph, black pixels 

correspond to background, and gray pixels correspond to unmeasured locations. In (d), gray 

pixels correspond to locations where reconstructed image is the same as the ground truth 

image, and cyan pixels correspond to locations where reconstructed image is different from 

the ground truth image.
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