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Abstract

Rationale and Objectives—We evaluate utilizing convolutional neural networks (CNNs) to 

optimally fuse parenchymal complexity measurements generated by texture analysis into 

discriminative meta-features relevant for breast cancer risk prediction.

Materials and Methods—With IRB approval and HIPAA compliance, we retrospectively 

analyzed “For Processing” contralateral digital mammograms (GE Healthcare 2000D/DS) from 

106 women with unilateral invasive breast cancer and 318 age-matched controls. We coupled 

established texture features (histogram, co-occurrence, run-length, structural), extracted using a 

previously validated lattice-based strategy, with a multi-channel CNN into a hybrid framework in 

which a multitude of texture feature maps are reduced to meta-features predicting the case or 

control status. We evaluated the framework in a randomized split-sample setting, using the area 

under the curve (AUC) of the receiver operating characteristic (ROC) to assess case-control 

discriminatory capacity. We also compared to CNNs directly fed with mammographic images, as 

well as to conventional texture analysis, where texture feature maps are summarized via simple 

statistical measures which are then used as inputs to a logistic regression model.

Results—Strong case-control discriminatory capacity was demonstrated on the basis of the meta-

features generated by the hybrid framework (AUC=0.90), outperforming both CNNs applied 

directly to raw image data (AUC=0.63, p<0.05) and conventional texture analysis (AUC=0.79, 

p<0.05).

Conclusion—Our results suggest that informative interactions between patterns exist in texture 

feature maps derived from mammographic images, and can be extracted and summarized via a 
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multi-channel CNN architecture toward leveraging the associations of textural measurements to 

breast cancer risk.
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Introduction

The stratification of breast cancer risk levels is becoming increasingly important and is 

rapidly evolving beyond the “one-size-fits-all” approach in breast cancer screening to 

personalized regimens tailored by individual risk profiling1, 2. Starting from the pioneering 

work of Wolfe3, studies have consistently shown an association of the breast parenchymal 

complexity (i.e., the distribution of fatty and dense tissues) on breast images with levels of 

breast cancer risk. In particular, full-field digital mammography, which is routinely used for 

breast cancer screening4, has demonstrated substantial potential in providing novel 

quantitative imaging biomarkers related to breast cancer risk. Mammographic density is one 

of the strongest risk factors for breast cancer5, 6, while studies increasingly support 

significant associations of breast cancer risk with mammographic texture descriptors7–9, 

which reflect more refined, localized characteristics of the breast parenchymal pattern.

In early studies investigating the role of mammographic texture in breast cancer risk 

assessment10–14, textural measurements have been estimated within a single region of 

interest (ROI) in the breast. In an attempt to provide more granular texture estimates, more 

recent studies have proposed sampling the parenchymal tissue through the entire breast for 

subsequent texture analysis15–17. For instance, in a recently proposed lattice-based 

strategy15, each texture descriptor is calculated within multiple non-overlapping local square 

ROIs through the breast and texture measurements are then averaged over the breast regions 

sampled by the lattice. In a preliminary case-control evaluation15, the lattice-based texture 

features were shown to outperform state-of-the-art features extracted from the retroareolar or 

central breast region, thereby suggesting that enhanced capture of the heterogeneity in the 

parenchymal texture within the breast may also improve the associations of texture measures 

with breast cancer risk. However, by averaging regional texture values, important 

information about the overall parenchymal tissue complexity might be still missed and, 

therefore, an improved fusion approach, which retains richer information about texture 

variability over the breast, might leverage the potential of such granular texture 

measurements provided by multiple ROIs.

Convolutional neural networks (CNNs) and “Deep Learning” technology18, 19 are able to 

automatically generate hierarchical representations useful for a particular learning task via 

neural networks with multiple hidden layers. In the last few years, CNNs have demonstrated 

a remarkable impact on medical image analysis20, 21 and they are now gaining increasing 

attention in applications with digital mammography, including primarily mass or lesion 

detection and characterization22–25. However, their potential in breast cancer risk prediction 

remains largely unexplored with only a few studies having used CNNs to relate 

mammographic patterns to breast cancer risk26, 27 or breast density28. Moreover, although 
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CNNs have been primarily applied to raw imaging data, they may also have value as 

efficient feature-fusion techniques, especially in cases that conventional feature 

summarization approaches may have limitations.

In this study, we employ a multi-channel CNN architecture to fuse parenchymal texture 

feature maps into discriminative meta-features relevant for breast cancer risk prediction. The 

rationale is that CNNs can also be used as a high-level approach to effectively summarize 

high-dimensional patterns resulting from handcrafted features such as texture descriptors, 

for which conventional feature summarization and/or dimensionality reduction approaches 

may be limited in capturing the available rich information. Our hypothesis, therefore, is that 

by capturing sparse, subtle interactions between localized patterns present in texture feature 

maps derived from mammographic images, a multitude of textural measurements can be 

optimally reduced to meta-features capable of improving associations with breast cancer. We 

assess our hypothesis by evaluating these meta-features in a case-control study with digital 

mammograms, and we also compare their performance to the performances of conventional 

texture analysis and CNNs when fed directly with raw mammographic images.

Materials & Methods

Study Dataset

In this IRB-approved, HIPAA-compliant study under a waiver of consent, we retrospectively 

analyzed a case-control dataset of raw (i.e., ‘FOR PROCESSING’) mediolateral-oblique 

(MLO)-view digital mammograms previously reported15, 29. Briefly, the cases included 

women diagnosed with biopsy-proven unilateral primary invasive breast cancer (n = 106) at 

age 40 years or older, recruited by a previously-completed, IRB-approved, multimodality 

breast imaging trial (2002–2006; NIH CAXXXXX), in which all women had provided 

informed consent. For cases the contralateral images were analyzed (i.e., images from the 

unaffected breast) as a surrogate for inherent breast tissue properties associated with high 

breast cancer risk, as done in prior case-control studies of mammographic pattern 

analysis15, 29–31. Controls were randomly selected from the eligible population of women 

seen for routine screening over the closest possible overlapping time period at the same 

institution, and had negative breast cancer screening and confirmed negative one-year 

follow-up. Controls were age-matched to cases on 5-year intervals at a 3:1 ratio (n = 318), 

yielding a total sample size of 424.

Image Acquisition

All images were acquired using either a GE Senographe 2000D or Senographe DS full-field 

digital mammography (FFDM) system (image size: 2294×1914 pixels; image spatial 

resolution: 10 pixels/mm in both dimensions). Prior to further analysis, images were log-

transformed, then inverted, and, finally, intensity-normalized by a z-score transformation 

within the breast region which was automatically segmented in each image using the 

publicly available “Laboratory for Individualized Breast Radiodensity Assessment” 

(LIBRA)29, 32. These common preprocessing steps help to alleviate differences between 

studies via intensity histogram alignment, while also maintaining the overall pattern of the 
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breast parenchyma17. Additionally, we flipped horizontally the images of right MLO views 

so that the breast is always on the same side of the image.

Revealing Meta-features of Breast Parenchymal Complexity

We developed a hybrid framework which coupled state-of-the-art texture analysis with 

CNNs (Fig. 1). In the first step which follows the previously validated lattice-based strategy 

for parenchymal texture analysis15, a regular lattice was virtually overlaid on the 

mammographic image and a set of texture descriptors were computed on 6.3×6.3 mm2 

(63×63 pixels2) local square ROIs centered on each lattice point within the breast. For each 

image, this step generated a set of 36×30 pixels2 texture feature maps (each pixel 

corresponds to an ROI defined by the lattice), one for each texture descriptor, that represent 

the spatial distribution of the corresponding textural measurements as sampled by the lattice 

over the entire breast.

Our texture feature set included a total of 29 established texture descriptors (Table 1 and 

Appendix for detailed feature descriptions), including gray-level histogram, co-occurrence, 

run-length, and structural features, all of which have been previously used for 

mammographic pattern analysis and breast cancer risk assessment7. Briefly, gray-level 

histogram features are common first-order statistics which describe the distribution of gray-

level intensity. The co-occurrence features also consider the spatial relationships of pixel 

intensities in specified directions and are based on the gray-level co-occurrence matrix 

(GLCM) which encodes the relative frequency of neighboring intensity values. Run-length 

features capture the coarseness of texture in specified directions by measuring strings of 

consecutive pixels which have the same gray-level intensity along specific linear 

orientations. Finally, structural features capture the architectural composition of the 

parenchyma by characterizing the tissue complexity, the directionality of flow-like structures 

in the breast, and intensity variations between central and neighboring pixels.

The set of 29 texture feature maps generated for each mammogram were then fed as separate 

“channels” of breast parenchymal complexity into a multi-channel CNN with a LeNet-like 

design, a pioneering CNN architecture suitable for small input images33. The multi-channel 

CNN consisted of two hidden convolutional/down-sampling layers (2×2 max-pool) and each 

convolutional layer contained 10 convolutional maps with 5×5 and 4×3 kernels for the first 

and second hidden layers, respectively. The second hidden layer fed into a fully-connected 

layer with five nodes, which in turn outputs five meta-features used as inputs to a final 

logistic regression layer (LR) predicting the case or control status. The hyperbolic tangent 

activation function was utilized in all but the LR layer, which utilized the sigmoid activation.

The multi-channel CNN was trained via training (n=200) and validation (n=100) sets, with 

the final model tested on 124 women; membership assignment into each set was carried out 

by stratified random sampling. Training occurred by sequentially feeding the CNN with the 

training image data (forward pass) and updating the weights (backward pass) via stochastic 

gradient descent (batch-size = 1 and learning rate = 0.01) so as to minimize the difference 

between the LR classification and the ground-truth case-control status34. Then, the trained 

model was applied to the validation set and the validation error was measured as the mean 

difference between the LR outputs and the ground-truth information. To better train our 
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model while also avoiding over-fitting, this process was repeated 200 times (epochs) 

maximum, until the validation error got higher than it was in the previous epoch35. The final 

trained CNN was applied to the “unseen” images of the test set, via a single forward pass of 

all the test image data and the case-control discriminatory capacity was assessed via the area 

under the curve (AUC) of the receiver operator characteristic (ROC).

The multi-channel CNN was implemented using Theano v.0.8.2 on Python v.2.7 and 

parameters involved in the CNN architecture and training were empirically set.

Comparative Evaluation

To investigate the potential advantage of the proposed hybrid framework, we compared with 

the case-control discriminatory capacity of 1) conventional texture feature analysis and 2) 

CNNs applied directly to the original mammographic images (Fig. 2). DeLong’s tests36 

were used to test for AUC differences between our hybrid framework and each of these two 

approaches.

Briefly, to evaluate conventional parenchymal texture analysis, each lattice-based texture 

feature map was summarized by the mean and the standard deviation of the corresponding 

feature across all the ROIs defined by the lattice15, thereby generating a 58-element feature 

vector for each breast (Fig. 2 (a)). To build a logistic regression model (similar in principle 

to the final layer of the CNN) while also limiting potential over-fitting, the texture feature 

vectors of subjects belonging to the training and validation sets were processed with elastic 

net regression37, a regularized technique suitable for strongly correlated features which 

assigns zero coefficients to weak covariates during model construction. The model was then 

fed with the texture feature vectors of the test set to obtain an estimate of its discriminatory 

capacity (AUC) which was compared to the AUC of the hybrid framework.

To assess the performance of CNNs when fed directly with the mammographic images, we 

developed a single-channel CNN with input the pre-processed image downscaled by a factor 

of four, as typically done in the field to address the computational issues of handling full-

resolution images28. Our network was developed using the Lasagne library (Release 

0.2.dev1)38 built on top of Theano, with an overall architecture as shown in Fig. 2 (b). The 

CNN consisted of five hidden convolutional/down-sampling layers, feeding into a pair of 

fully-connected layers and a logistic regression classifier. The parameters of the network 

were initialized using the recipe of Glorot & Bengio39 and, similarly to the multi-channel 

CNN, the CNN was trained and tested via distinct training, validation and test phases, now 

using the pre-processed mammograms of the same training, validation and test sets, 

respectively.

Results

Strong linear separability of cancer cases from controls was demonstrated on the basis of the 

five meta-features generated by the proposed hybrid framework. Figure 3 shows the 

predicted probabilities, along with the ground-truth labels of the test set. The corresponding 

case-control classification performance was AUC = 0.90 (95% CI: 0.82–0.98), with 

sensitivity and specificity equal to 0.81 and 0.98, respectively.
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When the texture feature maps were summarized into simple statistical measures (i.e., 

average and standard deviation), the discriminative performance was significantly lower 

(DeLong’s test, p = 0.03). Specifically, 12 texture features were selected by elastic net 

regression for inclusion in the logistic regression model, including one gray-level histogram 

feature, four co-occurrence, four run-length, and three structural features; among these, eight 

represented mean values and four the variability in the texture feature maps (Table 2). With 

these features, the lattice-based strategy demonstrated an AUC = 0.79 (95% CI: 0.69-0.89). 

The hybrid framework outperformed also the single-channel CNN (DeLong’s test, p = 

0.0004) which showed an AUC = 0.63 (95% CI: 0.57–0.81) in the same case-control dataset 

(Fig. 4).

Discussion

We assessed the feasibility of a texture-feature fusion approach, utilizing a CNN architecture 

able to capture sparse, subtle, yet relevant interactions between localized patterns present in 

texture feature maps derived from mammographic images. This approach may also be 

interpreted as a methodology for non-linear feature reduction, in which an entire ensemble 

of parenchymal texture feature maps is reduced down to a small number of meta-features 

which may serve as a basis for separating cases from controls via a simple linear classifier 

such as the logistic regression classifier implemented in the last layer of our CNN 

architecture.

Our hybrid framework demonstrated a promising case-control classification performance. 

Moreover, it outperformed standard texture analysis (AUC = 0.90 vs. AUC = 0.79), 

providing preliminary evidence that coupling texture analysis with this CNN-based texture-

feature fusion approach can leverage textural features in breast cancer risk assessment. 

Additionally, the proposed hybrid framework also outperformed CNNs fed directly with raw 

mammograms. Our results from the single-channel CNN are in line with the few reported 

similar analyses with raw mammographic images26, in which comparable case-control 

classification performance (AUC = 0.57 – 0.61) was demonstrated by features learned with a 

multilayer convolutional architecture in multiscale patches of film and digital mammograms. 

However, given the relatively small size of our dataset, and considering that no data 

augmentation was applied in our study which might increase the performance of CNNs 

especially when deeper networks are used, a more extensive comparison between our hybrid 

approach and CNNs fed directly with raw image data is warranted.

Limitations of our study must also be noted. First, we evaluated our framework using as 

“case” images the contralateral mammograms of cancer cases, rather than prior unaffected 

screening mammograms of women in whom breast cancer was later detected. This is a 

common first-step approach in this field7, based on the premise that the contralateral 

unaffected breasts of cancer cases share inherent breast tissue properties that may predispose 

to a higher breast cancer risk. In future studies, we aim to test our hybrid framework on 

larger datasets in which prior negative screening mammograms for cancer cases will be 

analyzed. Larger datasets, combined with data augmentation techniques to further increase 

the volume of training data, may also allow us to develop deeper networks and to boost the 

performance of our CNNs, as well as to consider established demographic and clinical risk 
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factors (e.g., body-mass-index, parity, family history of breast cancer) in our logistic 

regression models. Moreover, this study used only images from two FFDM devices, both of 

which were from the same vendor. Considering the reported substantial differences in 

textural measurements across image acquisition settings17, FFDM representations, and 

vendors40, in our future analyses we will also test the performance of our method by 

incorporating data from multiple FFDM vendors. Additionally, because of limited 

computational resources, we had to heavily rely on our experience in the choice of learning 

CNN hyper-parameters. Given the promising results obtained, in a future step, we will 

perform a systematic search for optimal hyper-parameters following grid or random search 

optimization41, which might further improve the performance of our CNNs.

In conclusion, this work introduced a texture feature fusion method, implemented via 

convolutional neural networks, designed for the detection of interactions among a multitude 

of hand-designed features, and optimized for the assessment of breast cancer risk. Our 

results suggest that informative interactions between localized patterns exist in feature maps 

derived from mammographic images, and can be extracted and summarized via a multi-

channel CNN architecture toward leveraging textural measurements in breast cancer risk 

prediction. Upon further optimization and validation, such tools might be useful in routine 

breast cancer screening to provide each woman a breast cancer risk score, as well as to 

visualize parenchymal complexity patterns and breast locations associated with increased 

levels of breast cancer risk, towards assisting radiologists’ recommendations for 

supplemental breast cancer screening or breast cancer prevention treatments.
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Appendix

Descriptions of texture features

Gray-level histogram features are 13 well-established first-order statistics42, which were 

calculated from the gray-level intensity histogram of the image using 128 histogram 

bins17, 40.

The co-occurrence features reflect the spatial relationship between pixels and summarize the 

information encoded by the gray-level co-occurrence matrix (GLCM)43 which corresponds 

to the relative frequency with which two neighboring pixels, one with gray level i and the 

other with gray level j, occur in the image. Such matrices are a function of the distance (d) 

and the orientation (ϑ) between the neighboring pixels. In this study, the M × M GLCM 

matrices were estimated using M = 128 gray levels to balance computational precision with 

efficiency, d = 11 pixels17, 40, and the co-occurrence features were computed by averaging 

over four orientations.

Gastounioti et al. Page 7

Acad Radiol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Run-length features capture the coarseness of a texture in specified directions44, 45. A run is 

defined as a string of consecutive pixels with the same gray-level intensity along a specific 

linear orientation. Fine textures tend to contain more short runs with similar gray-level 

intensities, while coarse textures have more long runs with different gray-level intensities. 

Similarly to the GLCM, a M × N run-length matrix is defined, representing the number of 

runs with pixels of gray-level intensity equal to i and length of run equal to j along a specific 

orientation. In correspondence with the co-occurrence features, the run-length statistics were 

estimated for M = 128 gray levels, N = 11 pixels17, 40, and averaged over four polar-grid-

driven orientations.

The structural features include (a) the edge-enhancing index, which is based on edge 

enhancing diffusion and it describes the directionality of flow-like structures within the 

image46, (b) the local binary pattern (LBP), which captures intensity variations between 

central and neighboring pixels47 and (c) the fractal dimension (FD), which reflects the 

degree of complexity and was estimated using the box-counting method48.
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Fig. 1. 
Hybrid framework workflow: Employing multi-channel convolutional neural networks to 

fuse texture feature maps into case-control discriminative meta-features.
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Fig. 2. 
Design of comparative evaluation experiments: Evaluating the case-control discriminatory 

capacity of (a) conventional texture analysis and (b) convolutional neural networks applied 

directly to the original images.
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Fig. 3. 
Case-control classification outcomes of the hybrid framework: Probabilities (with 95% 

confidence limits) of test images to belong to a cancer case as predicted by the hybrid 

approach versus corresponding ground-truth labels (1: Case, 0: Control).
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Fig. 4. 
Comparative evaluation results: The hybrid approach,, i.e., texture analysis followed by 

multi-channel CNNs, (AUC = 0.90) compared to conventional parenchymal texture analysis 

(AUC = 0.79) or single-channel CNNs applied directly to the original images (AUC = 0.63). 

CNNs: convolutional neural networks.
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Table 1

Parenchymal texture feature maps (TFMs) extracted from each digital mammogram of the study dataset.

Gray-level Histogram

TFM1 5th Percentile

TFM2 5th Mean

TFM3 95th Percentile

TFM4 95th Mean

TFM5 Entropy

TFM6 Kurtosis

TFM7 Max

TFM8 Mean

TFM9 Min

TFM10 Sigma

TFM11 Skewness

TFM12 Sum

Co-occurrence

TFM13 Contrast

TFM14 Correlation

TFM15 Homogeneity

TFM16 Energy

TFM17 Entropy

TFM18 Inverse Difference Moment

TFM19 Cluster Shade

Run-length

TFM20 Short Run Emphasis

TFM21 Long Run Emphasis

TFM22 Gray Level Non-uniformity

TFM23 Run Length Non-uniformity

TFM24 Run Percentage

TFM25 Low Gray Level Run Emphasis

TFM26 High Gray Level Run Emphasis

Structural

TFM27 Edge-enhancing index

TFM28 Box-Counting Fractal Dimension

TFM29 Local Binary Pattern
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Table 2

Texture features selected by elastic net regression. For each feature, the logistic regression coefficient (b), the 

p-value and 95% confidence interval (CI) for b are provided.

b p-value 95% CI

TFM13_mean −0.59 0.013 [−1.05 −0.12]

TFM17_mean 0.03 0.897 [−0.44 0.50]

TFM19_mean −0.69 0.001 [−1.08 −0.29]

TFM22_mean −1.31 0.395 [−4.34 1.71]

TFM23_mean 0.76 0.582 [−1.96 3.48]

TFM24_mean −0.14 0.602 [−0.64 0.37]

TFM28_mean 1.07 0.437 [−1.62 3.75]

TFM29_mean 0.05 0.944 [−1.34 1.44]

TFM11_std 0.24 0.642 [−0.79 1.28]

TFM15_std 0.52 0.031 [0.05 1.00]

TFM22_std 0.14 0.483 [−0.25 0.53]

TFM28_std −0.54 0.002 [−0.87 −0.20]
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