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Summary

Many naturalistic behaviors are built from modular components that are expressed sequentially. 

Although striatal circuits have been implicated in action selection and implementation, the neural 

mechanisms that compose behavior in unrestrained animals are not well understood. Here we 

record bulk and cellular neural activity in the direct and indirect pathways of dorsolateral striatum 

(DLS) as mice spontaneously express action sequences. These experiments reveal that DLS 

neurons systematically encode information about the identity and ordering of sub-second 3D 

behavioral motifs; this encoding is facilitated by fast-timescale decorrelations between the direct 

and indirect pathways. Furthermore, lesioning the DLS prevents appropriate sequence assembly 

during exploratory or odor-evoked behaviors. By characterizing naturalistic behavior at neural 

timescales, these experiments identify a code for elemental 3D pose dynamics built from 

complementary pathway dynamics, support a role for DLS in constructing meaningful behavioral 

sequences, and suggest models for how actions are sculpted over time.
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Introduction

The brain evolved to support the generation of naturalistic behaviors, in which animals 

interact with the environment by freely choosing and executing actions that reflect internal 

state, external cues, innate biases and past experiences (Tinbergen, 1951). Such behaviors 

are at once discrete and continuous: they are built out of stereotyped motifs of movement, 

which are concatenated to generate coherent action (Lashley, 1951). In order to create 

meaningful behaviors, the brain must therefore select and string together behavioral 

components into sequences. This implies a mechanism in which the brain uniquely encodes 

each motif, and then takes advantage of these representations to flexibly organize and 

implement behavior over time.

Multiple lines of evidence suggest that the basal ganglia — and specifically spiny projection 

neurons (SPNs) within its input nucleus, the striatum — play a key role in specifying both 

the contents and structure of behavior (Aldridge et al., 1993; Graybiel, 1998). Within the 

dorsal striatum, for example, neural correlates have been identified for many movement 

parameters, including body velocity, the speed of head movements, turn angle, and reaching 

kinematics (Barbera et al., 2016; Cui et al., 2013; Isomura et al., 2013; Jaeger et al., 1995; 

Kim et al., 2014; Klaus et al., 2017; Panigrahi et al., 2015; Rueda-Orozco and Robbe, 2015; 

Tecuapetla et al., 2014). These observations raise the possibility that the striatum 

comprehensively encodes the moment-to-moment kinematics of ongoing behavior.

In addition, SPN activity can represent more abstract aspects of behavior, like the start and 

stop of an action sequence, or the identity of a specific behavioral component within a 

sequence (Jin and Costa, 2010; Jog et al., 1999). Neural correlates have been identified in 

dorsolateral striatum (DLS) for components of naturalistic behaviors, such as grooming, 

“warm up” locomotion and juvenile play (Aldridge et al., 1993; Aldridge et al., 2004). Focal 

lesions of the DLS alter the sequencing of these hand-annotated patterns of action, 

demonstrating a causal role for the striatum in controlling the sequential structure of at least 

some behaviors (Berridge and Fentress, 1987). These findings suggest an additional role for 

the striatum in action selection, the process of deciding what to do — and not to do — next.

However, it is not clear how SPNs simultaneously encode granular information about 

movement parameters and higher-order information about behavioral components and 

sequences. The striatum influences action through two main constituent neural circuits, the 

direct and indirect pathways. The opposing influence of these two pathways on downstream 

areas like thalamus and cortex has suggested a broad model in which the direct pathway 

selects actions for expression, while the indirect pathway inhibits unwanted behaviors. 

Consistent with this model, optogenetic and circuit-level evidence supports a role for the 

direct pathway in initiating locomotion and the indirect pathway in arresting locomotion 

(Kravitz et al., 2010). Yet when pathway activity is recorded in separate mice and then 

temporally aligned to a turn or a lever press, the direct and indirect pathways often exhibit 

near-coincident activation; these observations suggest that both pathways somehow 

collaborate to generate specific behaviors (Cui et al., 2013).
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We wished to characterize how direct and indirect pathway activity in the DLS relates to 

both the discrete and continuous features of spontaneous 3D behaviors. Furthermore, we 

wished to ask whether DLS activity during such behaviors is obligate for action 

implementation and/or for behavioral sequencing. To address these questions, we took 

advantage of a recently-developed machine vision and unsupervised machine learning 

technique called Motion Sequencing (“MoSeq”), which identifies a set of sub-second 

behavioral motifs or “syllables” that make up 3D mouse behavior within any given 

experiment, and captures the statistical “grammar” that governs how these syllables are 

sequenced over time (Berridge et al., 1987; Wiltschko et al., 2015). This approach has 

revealed that open field behavior can be remarkably complex, involving tens of discrete 

behavioral syllables that are placed probabilistically into sequences to generate an overall 

pattern of exploratory locomotion. Importantly, MoSeq independently identifies which 

syllable is expressed at any moment in time (enabling analysis of action selection), as well 

as the 3D pose dynamics that make up each syllable (enabling analysis of behavioral 

kinematics).

Here we combine MoSeq with bulk and cellular imaging technologies to assess direct and 

indirect pathway activity during spontaneous behavior. In these experiments pathway 

activity is characterized both separately and simultaneously, allowing assessment of the 

relative contribution of each pathway to behavioral encoding. This approach reveals that the 

direct and indirect pathways are frequently decorrelated at sub-second timescales, that SPN 

activity encodes both ongoing 3D pose dynamics and sequence probabilities, and that the 

DLS is required for assembling behavioral sequences. Thus, striatum does not contain purely 

abstract representations for syllables, nor does it simply represent behavioral kinematics. 

Instead, these data suggest a model in which the striatum takes advantage of kinematic 

information to uniquely identify each behavioral syllable, and then uses this code to organize 

naturalistic behavioral sequences. In principle, such a code could also support the generation 

of new behaviors under conditions of learning and reward.

Results

To characterize the influence of the DLS on the sub-second structure of spontaneous 

behavior, we developed a novel multicolor photometry system to monitor the fluorescence of 

green (GCaMP6s) and red (jRCaMP1b) genetically-encoded calcium indicators expressed in 

SPNs belonging to the direct (dSPNs) and indirect (iSPNs) pathways (Figure 1A, Figures 

S1A – 1D, see Methods) (Chen et al., 2013; Dana et al., 2016). Direct pathway expression 

was specified by delivering jRCaMP1b using a Cre-On adeno-associated virus (AAV) to 

Drd1a-Cre mice (Gerfen et al., 2013). Simultaneous indirect pathway expression was 

achieved by infecting these same animals with a Cre-Off AAV expressing GCaMP6s. Given 

that 95 percent of cells in striatum are SPNs, we operationally assigned signals generated by 

Cre-Off infection to the indirect pathway (Rymar et al., 2004; Saunders et al., 2012).

The photometry system exhibited negligible cross-talk between channels, and low noise 

attributable to motion artifacts (Figures S1E and S1F). To account for the temporal lag 

between photometric signals and underlying electrophysiological changes, we performed 

simultaneous two-channel photometry and multiunit electrophysiology in awake behaving 
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mice. While photometry signals lagged multiunit activity by circa 300 milliseconds, the 

derivative of the photometry signal lagged by only circa 10 milliseconds, indicating that the 

fluorescence derivative could be used to identify the onset of changes in the underlying 

neural activity (Figures 1B, 1C and S1G).

We integrated the photometry system into MoSeq, enabling us to analyze behavior and 

record from direct and indirect SPNs in parallel (all recordings in right DLS, Figures 1D and 

S2A). Probabilistic machine learning methods were used to infer the pose of the mouse 

when it was occluded by the photometry tether (Figure S2A, see Methods) (Roweis, 1998; 

Tipping and Bishop, 1999). These corrected data were then processed by MoSeq to 

characterize the identity and usage of individual behavioral syllables, and the grammar that 

connects syllables together over time (Figure 1E). As has been shown previously, each 

identified syllable (of the 41 discovered by MoSeq that were expressed more than 1 percent 

of the time) was morphologically distinct, with a median syllable duration of 347 ± 0.1 

milliseconds (Bootstrap SEM, Figure S2B). Each syllable was associated with a 3D 

behavioral motif that could be described by a human observer, and included multiple 

variants of pauses, locomotion, turns, rears and sniffs (Movie S1; see isometric view 

examples in Figure 1D).

Differential encoding of 2D and 3D velocity by the direct and indirect pathways

Neural activity in the striatum has been shown to correlate with several performance-related 

behavioral variables, including average running speed, turning speed, and action velocity. 

We therefore asked whether our integrated system could capture the expected correlation 

between direct pathway activity and two-dimensional (2D) velocity. Indeed, when averaged 

over timescales of seconds to minutes, mouse velocity was well-correlated with direct 

pathway activity. The dual-channel photometry system revealed that indirect pathway 

activity also correlated with velocity over long timescales, although less strongly than the 

direct pathway (Figure 2A).

Surprisingly, however, both of these correlations weakened when behavior was binned at 

shorter timescales (Figure 2A). We therefore asked whether binning striatal activity at the 

sub-second timescale associated with each behavioral syllable would reveal correlations with 

speed, turn angle (which has been previously associated with near-simultaneous activity in 

both pathways), length or height (Tecuapetla et al., 2014). Weak but statistically-significant 

relationships were observed between syllable-timescale neural activity and each of these 

behavioral parameters. Activity in the direct pathway, but not the indirect pathway, 

correlated with the mouse’s syllable-binned 2D velocity (Figure 2B). While 3D velocity 

(which accounts for the 3D position of the mouse centroid) was also correlated with direct 

pathway activity, it was anti-correlated with indirect pathway activity, suggesting a role for 

the indirect pathway in modulating fast 3D movements. The difference in activity between 

the pathways was a better predictor of 3D velocity than either pathway alone, consistent with 

the direct and indirect pathways encoding non-redundant information relevant to 3D 

behavioral variables.
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Average direct and indirect pathway activity is correlated across syllables, but fine-
timescale decorrelations distinguish syllables

In addition to 3D velocity, strong correlations were observed between syllable-binned neural 

activity and the height of the mouse, consistent with the possibility that the DLS may encode 

3D pose dynamics (Figure 2B). As behavioral syllables and grammar effectively encapsulate 

these pose dynamics, we asked whether striatal activity fluctuates systematically as mice 

express syllable sequences. Consistent with this possibility, direct and indirect pathway 

fluorescence was on average decreased immediately before and elevated immediately after a 

transition into a new behavioral syllable (Figure 2C). The signal derivative in both dSPNs 

and iSPNs increased before syllable onset, suggesting that average activity in both pathways 

begins to change 50–75 milliseconds before a new syllable begins. This temporal 

correlation, which is not present in shuffled data, demonstrates a structured relationship 

between striatal activity and fast behavioral transitions (representing switching amongst 3D 

behavioral motifs) during spontaneous behavior. Control experiments demonstrated that the 

strong short-timescale neural-behavioral relationships observed in DLS were not the 

consequence of contaminating striatal interneuron fluorescence, and were not apparent in 

multicolor recordings from the ventral striatum (Figures S3A–S3C).

Plotting the average fluorescence observed during each behavioral syllable revealed that 

each was associated with specific levels of fluorescence in the direct and indirect pathways 

(Figures 2D and 2E). Characteristic direct and indirect photometry waveforms also 

corresponded to each syllable (Figures 2F and S4A–S4C). While the direct and indirect 

pathways generally exhibited correlated levels of average syllable-specific fluorescence, 

many syllables were observed in which elevations in direct pathway fluorescence occurred 

in the context of decreased indirect pathway fluorescence and vice-versa (Pearson’s r = 0.76, 

Figure 2E). Syllables with particularly high or low velocity tended to exhibit the most 

decorrelated average pathway activity; interestingly, several syllables with low activity in 

both pathways exhibited high 3D velocities.

Inspection of syllable-specific direct and indirect waveforms revealed that, although similar, 

pathway dynamics often exhibited fast-timescale decorrelations (Figures 2F, S4D and S4E). 

These periods of decorrelation could be related anecdotally to the specific patterns of motion 

associated with each syllable. For example, a running syllable included an epoch in which 

direct pathway activity was elevated while the indirect pathway was inhibited. Similarly, the 

waveforms associated with “scrunching” behavior were characterized by a sharp and phasic 

elevation of activity in the indirect pathway, and a less pronounced phasic elevation of 

activity in the direct pathway (Figures 2F and S4D). Taken together, these results suggest 

that direct and indirect pathway activity dynamics relate to the ongoing 3D pose dynamics 

expressed by mice during spontaneous behaviors; although direct and indirect pathway 

activity was largely correlated when averaged over the timescale of individual syllables, 

pervasive within-syllable decorrelations were also observed.

Pathway decorrelations facilitate behavioral encoding and decoding

The observed relationships between neural activity and specific behavioral syllables were 

conserved across individual mice and behavioral states, consistent with different types of 3D 
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actions being represented through an invariant neural code (Figures S5A – S5E). To address 

whether this invariance reflects a systematic mapping between neural activity and behavior, 

we developed a distance metric based upon the 3D pose trajectories that define each syllable 

(Figures 3A, 3B and S4A – C; see Methods). Organizing behavior hierarchically using this 

distance metric revealed that morphologically related behavioral syllables were often 

associated with similar photometry waveforms, despite the distinctiveness of each syllable 

(Figures 3B, S4C, and S2B). For example, two different rearing syllables were represented 

by simultaneous impulse-like upward-deflecting waveforms in both the direct and indirect 

pathways, with the dSPNs exhibiting a higher amplitude response; however, neural activity 

(e.g., temporal dynamics and amplitude) associated with each of the two rears varied in a 

syllable-specific manner (Figure 3B). Likewise, two different “scrunching” syllables were 

represented by similar but distinguishable phasic waveforms in both the direct and indirect 

pathways.

To quantify the degree to which neural activity systematically encodes for behaviors based 

upon similarity, we asked whether the behavioral distances between any two syllables relates 

to the distances between their corresponding neural representations. This analysis revealed 

that direct and indirect pathway activity each reflect behavioral relationships between 

syllables (Pearson’s correlation between behavior and dSPNs r = 0.33, iSPNs r = 0.21). 

However, stronger neural-behavioral relationships were apparent when waveforms from both 

pathways were considered (r = 0.48; Figure 3C), consistent with fine-timescale 

decorrelations in dSPN and iSPN activity conveying additional information about behavior. 

This improvement was only observed when both pathways were considered as independent 

channels, as repeating this analysis with pathway identities scrambled failed to enhance 

neural-behavioral correlations (Figure 3D). Performing a predictive correlation analysis 

using held-out data confirmed that maximal correlation was observed with information 

combined from the two pathways (Figure S5F). Because weak correlations were also 

observed between direct and indirect pathway activity and velocity, turn angle and height 

(Figure 2B), we used LASSO regression to consider the influence of these variables 

(Tibshirani, 1996). Including these parameters plus syllable-based pose trajectories 

increased the Pearson’s correlation between fluorescence signal in both pathways and 

behavior (r = 0.53), although most of this dependence still relied upon information about 3D 

pose dynamics rather than 2D variables like velocity (Figure 3E).

These data demonstrate a systematic and largely invariant relationship between direct and 

indirect pathway activity and the particular behavioral syllable being expressed at any 

moment in time, raising the possibility that syllable-associated waveforms can identify the 

syllable being expressed. We therefore asked if neural activity in DLS could be used to 

decode behavioral syllable type or identity, and if so whether decoding improved when 

considering information from both pathways compared to each pathway alone. Although the 

resolution of photometry is limited by strong filtering and averaging, a random forest 

classifier could use syllable-specific waveforms to decode 3D pose dynamics on a trial-by-

trial basis across mice (Figure 3F). The classifier was most accurate when decoding a root 

level of a hierarchical tree describing behavior (in which multiple, related behavioral 

syllables were lumped), and gradually became less accurate as more behavioral details were 

considered (Figure 3F). Despite this decline in accuracy, the classifier successfully decoded 
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the identity of each behavioral syllable at a rate significantly above chance (19.36 ± .12% vs. 

12.58 ± .013% at chance when decoding 10 “types” of syllables, 9.17 ± .03% vs. 2.45 ± .

007% at chance when decoding all 41 syllables, bootstrap SEM). This performance 

degraded when each pathway was considered separately, with the combined pathways 

consistently outperforming each pathway alone (Figure 3F). Taken together, these data 

demonstrate that the direct and indirect pathway waveforms associated with each syllable 

differentially and collectively represent the 3D pose dynamics that define each behavioral 

syllable.

Sequence-dependent neural representations for syllables

Previous experiments have suggested that the striatum can represent components of 

sequenced behaviors like grooming (Aldridge et al., 1993). We therefore asked whether 

syllable-associated DLS activity depends upon the sequential context in which a given 

syllable is expressed during naturalistic exploratory behavior (Figure 4A). On average, high 

probability transitions into a given syllable were associated with less activation of the direct 

and indirect pathways than was observed after low probability transitions (Figure 4B). These 

sequence-dependent differences were abolished by temporally shuffling the data (p < .001, 

shuffle test, see Methods) and did not depend upon the 3D velocities of the prior syllable, 

demonstrating that differences in the neural representations of high and low probability 

sequences were not due to quantitative differences in movement (Figures 4C and 4D). 

Furthermore, inspection revealed that the context-dependent modulation of average syllable-

associated photometry waveforms reflected differential modulation of individual syllables 

(Figure 4E). Taken together, these results demonstrate that the neural code associated with a 

given behavioral syllable is altered by the sequential context in which that syllable is 

expressed. Syllable-associated waveforms therefore can be at least partially uncoupled from 

behavioral kinematics, consistent with a role for the DLS in action selection and sequencing.

Direct and indirect pathway neural ensembles represent behavioral syllables and grammar

The fluctuations in activity captured by photometry represent the collective dynamics of 

DLS neurons during behavior; these signals may reflect the continuous evolution of DLS 

neural activity or switching between different neural ensembles. To explore the relationship 

between cellular activity in the striatum and the expression of behavioral syllables, we 

implanted a gradient-index (GRIN) lens over DLS neurons expressing virally-delivered 

GCaMP6f, and used head-mounted miniscopes to ask how the activity of individual striatal 

neurons relates to behaviors expressed during open field exploration (Figure 5A) (Ghosh et 

al., 2011). The direct and indirect pathways were labeled by infecting Drd1a-Cre and A2a-
Cre mice with Cre-dependent AAVs (n = 653 dSPNs, n = 794 iSPNs) (Gerfen et al., 2013), 

and pathway-independent labeling was achieved by infecting mice with a Cre-independent 

AAV (n = 694 neurons).

Inspection of cellular fluorescence traces suggested that DLS neurons preferentially 

exhibited calcium transients near syllable boundaries (Figure 5B). Indeed, quantifying the 

number of neurons active in each or both pathways at syllable transitions revealed 

fluctuations in syllable-associated activity that were similar to those observed by photometry 

(Figure 5C). Small groups of neurons were modulated during each instance of any given 
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behavioral syllable, although averaging across all instances of a given syllable revealed the 

participation of a greater proportion of DLS neurons (median fraction of neurons active 

during each syllable = 8.88 percent, 95 percent bootstrap confidence interval 4.76 - 14 

percent, median fraction active during each syllable instance = 6.51 percent, 95 percent 

bootstrap confidence interval 6.38 – 6.6 percent, see Methods, Figure 5D). When sorted, 

neurons were active throughout the expression of a given syllable, although this pattern was 

far less apparent during single syllable instances, consistent with sparse firing of DLS 

ensembles. Furthermore, dSPN and iSPN activity revealed similar syllable-specific 

correlations and decorrelations in amplitude and timing as observed previously via 

photometry (Figures 5E and S6A).

These observations suggest that the identity of the behavioral syllable being expressed at any 

given moment is represented in DLS by an ensemble code. Consistent with this possibility, 

ensemble activity patterns aligned to individual examples of the same syllable were more 

similar to each other than to the activity patterns occurring during different syllables (Figure 

5F). The neural code for behavioral syllables was systematic, as the expression of similar 

behaviors correlated with activation of similar direct and indirect pathway neural ensembles; 

these correlations were maximized when information was combined from the two pathways 

(Figure 5G). Ensemble activity could also be used to decode syllable identity, with the best 

performance observed when neurons from the direct and indirect pathways were 

simultaneously fed to the classifier (Figure 5H). Classifiers based upon ensembles 

outperformed those based upon photometry signals, suggesting that the variability of 

individual neurons substantially contributes to decoding accuracy (using 300 dSPNs and 300 

iSPNs, 43.1 ± .18 percent vs. 11.7 ± .05 percent at chance when decoding 10 “types” of 

syllables, 24.2 ± .18 percent vs. 3.2 ± .03 percent at chance when decoding all syllables, 

bootstrap SEM).

The membership of syllable-associated DLS ensembles was modulated by the sequence in 

which particular syllables were expressed (Figure 5I). These sequencing effects were not 

uniform across the population; rather, bidirectional modulation of neurons was observed 

when comparing high and low probability sequences. The net result of this modulation was 

the inhibition of overall neural ensemble activity associated with high probability sequences, 

a finding consistent with the results obtained with photometry (Figure 5J). Moreover, 

syllable sequences could be classified as high or low probability at above chance rates when 

using data from all recorded neurons (rates varied from 70 percent accuracy distinguishing 

the top and bottom 50th percentile to 80 percent accuracy distinguishing the top and bottom 

30th percentiles, see Methods). Taken together, these data demonstrate that the DLS 

ensembles comprised of both direct and indirect pathway neurons systematically encode 

information about behavioral syllables and grammar in a manner accessible to downstream 

circuits.

These cellular analyses were performed by assessing the activity of dSPNs and iSPNs in 

separate mice. To ask whether cellular activity in the two pathways was decorrelated within 

the same mouse, SPN activity was characterized in behaving mice without regard to pathway 

identity, and then multiphoton microscopy was used post hoc to assign individual neurons to 

the direct or indirect pathway (based upon pathway-specific expression of a dTomato 
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marker, see Methods). By aligning miniscope and multiphoton images, we could assess 

functional activity and definitively assign pathway identity for a subset of neurons per 

mouse (4–19 neurons per pathway per mouse, n = 4 mice, n=40 total dSPNs and n=50 total 

iSPNs, Figure S6B).

Simultaneous analysis of syllable-associated cellular activity in both pathways revealed 

temporal decorrelations in the activity of individual dSPNs when compared to iSPNs, and in 

iSPNs when compared to dSPNs, particularly during active 3D movements (Figure 6A). 

Specific neural ensembles were associated with individual behavioral syllables and could be 

used to decode syllable identity; however, classifier performance was not substantially 

different to that observed when dSPNs and iSPNs were recorded separately (with the caveat 

that few neurons were available for this comparison, Figures 6B and 6C). These dual 

pathway cellular recordings validate the main conclusions drawn from experiments in which 

pathway-specific activity was assessed in separate mice, and suggest that the behavioral 

segmentation afforded by MoSeq is sufficiently precise for effective alignment of pathway-

specific neural data between mice.

Given that dSPN and iSPN activity is decorrelated and encodes complementary information 

about behavioral syllables, we asked whether we could predict if a given neuron belonged to 

the direct or the indirect pathway based upon its syllable-associated pattern of activity. Using 

merged data from experiments in which pathway-specific cellular activity was recorded 

separately, a trained random forest classifier could correctly assign pathway identity to a 

given neuron between 85 and 100 percent of the time (Figure 6D). Above chance 

performance was also observed when the pathways were recorded simultaneously, though 

the performance was degraded due to the relatively small size of the training and testing 

datasets. These syllable-based classifiers significantly outperformed classifiers in which 

individual neurons were characterized on the basis of their correlation with scalar behavioral 

metrics like velocity or height. Thus, behavioral syllables are more effective at highlighting 

differences between the direct and indirect pathways than scalar metrics for characterizing 

spontaneous behavior. Furthermore, syllable-specific differences in patterned activity are 

sufficient to identify the pathway to which a given DLS neuron belongs.

The DLS is required for moment-to-moment action selection

Both photometry and cellular recordings indicate that the DLS encodes information relevant 

to both action implementation (e.g., the fast dynamics associated with each syllable, the 

decorrelations between the direct and indirect pathways, and the systematic relationships 

between neural activity and behavior) and action selection (e.g., the systematic fluctuations 

of activity at syllable boundaries, and the context-specific representation of syllables). To 

characterize the functional influence of the DLS on the sub-second structure of spontaneous 

behavior, we focally lesioned the DLS, allowed the mice to recover for several days, and 

then assessed the pattern of exploration generated by mice in the circular open field (Figures 

7A and S7A, see Methods). Control and lesioned mice exhibited similar velocity during 

locomotion, and inspection of 3D video revealed no obvious changes in the overall pattern 

of behavior (Figure S7B, Movie S2). Furthermore, MoSeq-based characterization of the 

underlying sub-second structure of behavior revealed that the set of behavioral syllables 
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deployed during exploration was similar in control and lesioned mice, as were the specific 

3D pose dynamics associated with each syllable (Figures 7B and 7C).

However, the frequency with which each syllable was used was significantly altered by DLS 

lesions, with a subset of syllables preferentially expressed in each condition (Figure 7B). In 

addition, the sequencing of these syllables was changed, with the transitions between 

syllables becoming significantly more random (Figures 7D, 7E and S7C). Furthermore, an 

intact DLS was required for mice to avoid the fox odor TMT, which has been previously 

demonstrated to elicit innate aversion entirely through stimulus-driven changes in syllable 

transition frequencies (Figures S5C, 7F and 7G, Movie S3) (Wiltschko et al., 2015). Thus, 

lesioning the DLS profoundly alters the grammatical microstructure of action — while 

preserving its underlying components — during spontaneous and motivated behaviors. 

Although these experiments cannot rule out a role for the DLS in implementing behavioral 

kinematics during normal physiology (due to the focality of the lesions, and the possibility 

of functional redundancy), these findings suggest a general role for the DLS in assembling 

context-appropriate sequences out of sub-second behavioral syllables.

Discussion

In many organisms, naturalistic behaviors are built from modular components that are 

organized hierarchically and expressed probabilistically (Tinbergen, 1951). Mice express 

sub-second 3D behavioral syllables that are placed into coherent sequences to create patterns 

of action (Wiltschko et al., 2015). However, the neural mechanisms that govern the 

expression and sequencing of these behavioral motifs are not understood. Here, by 

monitoring DLS activity in both the direct and indirect pathways, we show that behavioral 

syllables are associated with characteristic and pathway-specific neural dynamics. These 

dynamics represent key 2D and 3D movement parameters, and effectively encoding these 

parameters — which collectively encapsulate much of the behavioral diversity expressed by 

mice — requires both dSPN and iSPN activity. In addition, the DLS both encodes and 

specifies behavioral grammar, demonstrating that the striatum plays a key role in choosing 

which sub-second behavioral syllable to express at any given moment.

DLS encodes behavioral syllables and grammar

Recordings from SPNs in awake behaving animals, along with anatomical evidence, 

demonstrates that the striatum is both somatotopically mapped and preserves timing and 

kinematic details about motor outputs (Alexander and DeLong, 1985; Barbera et al., 2016; 

Isomura et al., 2013; Kim et al., 2014; Panigrahi et al., 2015; Rueda-Orozco and Robbe, 

2015; Tecuapetla et al., 2014). Information about movement parameters arrives at DLS from 

the motor cortex and from sensory cortex, and thus DLS activity could reflect motor 

commands and/or detected movements. We observe pervasive and invariant relationships 

between sub-second DLS neural activity and behavioral syllables, reminiscent of 

relationships previously suggested between striatal activity and a subset of high-velocity 3D 

actions (Klaus et al., 2017). One possible function for these representations in the striatum is 

to influence pose dynamics and thereby to facilitate the implementation of behavior. Our 

focal excitotoxic lesion experiments suggest that the DLS is not required for the execution of 
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spontaneously-expressed behavioral syllables, but do not rule out a physiological role for the 

DLS in action implementation under circumstances in which cortical-basal ganglia circuits 

are intact.

In addition to potentially influencing motor outputs, the striatum has been proposed to 

mediate action selection. This notion is supported by the broad convergence of cortical 

inputs onto SPNs, the integrative nature of SPN physiology, and the widespread mutual 

inhibition that is characteristic of SPN networks, which has led to “winner-take-all” models 

in which striatal ensembles representing chosen actions effectively inhibit competing actions 

(Carter et al., 2007; Mao and Massaquoi, 2007; Zheng and Wilson, 2002). Most work on the 

function of the striatum in action selection has been in the context of decision making, in 

which animals are rewarded for choosing from amongst a set of simple behavioral 

alternatives. However, the concept of action selection can include more probabilistic and 

naturalistic forms of behavior, such as sequence generation (Berridge and Fentress, 1987; Jin 

and Costa, 2010). Our demonstration that both bulk and cellular DLS activity are modulated 

by sequence probability, and that the DLS is required to place behavioral syllables into 

appropriate sequences during both exploration and odor avoidance, argues that the striatum 

actively selects and organizes the contents of behavior at the sub-second timescale.

The requirement for the DLS in behavioral sequencing raises an important question about 

neural representations for action: why does the DLS represent syllables by encoding their 

contents rather than more abstractly? In other neural systems charged with constructing 

behavioral sequences, such as the song circuit in the zebra finch and the descending motor 

circuit in the fruit fly, behavioral components are represented in the patterned firing of 

command neurons that recruit downstream circuits responsible for action implementation 

(Cande et al., 2017; Hahnloser et al., 2002). We speculate that the DLS uses this alternative 

representational strategy for two reasons. First, mice can learn to express new behaviors and, 

presumably therefore, new behavioral syllables. Using representations of 3D movement as a 

code for syllables obviates the need to generate a new abstract representation for each new 

syllable that is generated during a lifetime. Second, the striatum is a likely locus at which 

particular motor actions are reinforced. It therefore follows that the striatum should contain 

sufficient information to enable credit assignment of the appropriate action in a rewarding 

context (Fee and Goldberg, 2011). Our experiments reveal that during exploratory 

locomotion — a typical precursor to reinforcement in the wild — the striatum encodes all of 

the information required to reinforce both specific syllables and syllable sequences. This 

mode of behavioral representation may therefore afford the DLS the ability to flexibly 

modulate both syllables and grammar in response to learning cues.

Fine-timescale pathway decorrelations support neural codes for action

When averaged over timescales of single syllables, we observe strong correlations in direct 

and indirect pathway activity across most behavioral syllables. However, when viewed at the 

sub-syllable timescale, many syllables exhibit periods in which decorrelations between 

dSPN and iSPN activity are apparent. From both an encoding and decoding perspective 

these decorrelations appear to play an important role in conveying information about the 

identity and form of individual behavioral syllables. Indeed, syllable-specific patterns of 
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activity are sufficient to predict whether a given SPN belongs to the direct or indirect 

pathway. Thus, despite the strong correlations in their dynamics, these pathways 

fundamentally represent complementary (rather than redundant) codes for behavior. The 

observed correlations between dSPN and iSPN activity at longer timescales, together with 

decorrelations at the sub-syllable timescale, potentially reconcile the longstanding conflict 

between models in which the direct and indirect pathway compete, with those suggesting 

that they collaborate (Cui et al., 2013; Kravitz et al., 2010; Oldenburg and Sabatini, 2015; 

Tecuapetla et al., 2014). Further characterization of the relationship between decorrelated 

pathway activity and sub-second behavior will likely require the use of behavioral 

segmentation methods like MoSeq, which enables temporally-precise alignment of neural 

data to a large number of diverse behavioral components.

Revealing neural correlates for 3D behavior in time and space

While syllable identity is encoded in the patterned activity of DLS ensembles, we were 

unable to perfectly decode behavior from neural activity either via photometry or cellular 

imaging. This may reflect our inability to record from sufficient numbers of neurons, an 

imperfect behavioral segmentation (which is almost certain to be the case, given the linear 

nature of our behavioral modeling and the inherent non-linearities in behavior itself), or a 

biological limit on the amount of information SPNs convey about ongoing syllables. 

Furthermore, although we failed to observe strong coupling to behavioral syllables in ventral 

striatum, it is unlikely that the DLS is unique in encoding information relevant to the 

underlying structure of behavior. Future experiments will almost certainly reveal important 

(and potentially causal) relationships between syllables and neural activity in the many 

cortical and subcortical structures involved in motor control, including different subregions 

of dorsal striatum not queried here. While the circa 300 ms timescale at which behavioral 

syllables are organized appears to be at least somewhat privileged in DLS, behavior is 

structured hierarchically across many timescales. As a consequence, there likely also exist 

representations for the longer-timescale structure of behavior both within DLS and 

elsewhere. Further development of MoSeq — which offers a powerful but limited view of 

behavior — will help to clarify how multiple regions of the brain cooperate to organize 

spontaneous behavior at multiple spatiotemporal scales, and ultimately to understand how 

behavioral variability and reward interact to generate precise learned behavioral sequences.

STAR Methods

Contact for reagent and resource sharing

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact Sandeep Datta (srdatta@hms.harvard.edu).

Experimental model and subject details

Mice—All experiments were approved by and in accordance with Harvard Medical School 

IACUC protocol number IS00000138. Photometry and imaging were performed in 8–26 

week old C57/BL6J (Jackson Laboratories) male mice harboring either the Drd1a-Cre allele 

(B6.FVB(Cg)-Tg(Drd1-cre)EY262Gsat/Mmucd; MMRRC #030989-UCD) or the A2a-Cre 
allele (B6.FVB(Cg)-Tg(Adora2a-cre)KG139Gsat/Mmucd; MMRRC #036158-UCD) 
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(Gerfen et al., 2013). Mice were group-housed prior to virus injection and fiber 

implantation, and then individually-housed for the remainder of the study, on a reverse 12-

hour light-dark schedule.

No randomization of animals was implemented, and experimenters were not blinded to 

animal genotype or condition. Sample sizes for all experiments were determined based on 

previously published work, and statistical significance was determined post hoc.

Method details

Stereotaxic surgery

Virus injection and optical fiber cannula implant: 8 week old male Drd1a-Cre mice were 

anesthetized with 1–3% isoflurane in oxygen, at a flow rate of 1 L/min. Each animal was 

injected with 250 nL or 500 nL of a 3:1 or 2:1 mixture of AAV9.CBA.DIO.jRCaMP1b (Cre-

On) and AAV9.CBA.DO(fas).GCaMP6s (Cre-Off) (UNC Vector Core), respectively (n = 10 

mice) using a Nanoject II Injector (Drummond Scientific, USA) (Saunders et al., 2012). This 

pattern of infection is expected to simultaneously label direct pathway SPNs with the red 

calcium reporter jRCaMP1b, and the indirect pathway SPNs with the green calcium reporter 

GCaMP6s; these fluorophores were chosen due to similarities in the kinetics of their calcium 

responses (Dana et al., 2016). A 200 µm core 0.37 NA multimode optical fiber (Doric) was 

implanted in the right dorsolateral striatum, 200 µm above the injection site. Coordinates 

used for injections and fiber implants: AP 0.260 mm; ML 2.550 mm; DV −2.400 mm from 

bregma (Paxinos and Franklin, 2004). The optical setup was coupled to the fiber via a 

zirconia sleeve (Doric).

Due to the low number of local interneurons present in the striatum (<3%), and no known 

interneuron-specific tropisms for the CBA promoter or the AAV9 serotype in striatum, the 

contribution of fluorescence signal from interneurons infected from the Cre-Off virus is 

expected to be minimal (Rymar et al., 2004). We therefore heuristically throughout refer to 

neurons infected with the red fluorophore as “direct pathway” neurons, and neurons infected 

with the green fluorophore as “indirect pathway” neurons. To validate this heuristic we 

directly assessed the degree of interneuron signal contamination. 8 week old A2a-Cre mice 

were injected with 350 nL of a 3:1 mixture of AAV9.CBA.DIO.jRCaMP1b (Cre-On) and 

AAV9.CBA.DO(fas).GCaMP6s (Cre-Off) virus, respectively (n = 5 mice), effectively the 

genetic inverse of fluorophore expression with respect to the Drd1a-Cre photometry mice. 

The same optical fiber implant procedure and implant coordinates described in the previous 

paragraph were used. Photometry and behavioral acquisition occurred 3–5 weeks post-

surgery, for 5–6 sessions of 20 minutes each.

For photometry in the nucleus accumbens core (NAcc), 8–26 week old Drd1a-Cre mice 

were injected with a 3:1 mixture of AAV9.CBA.DIO.jRCaMP1b (Cre-On) and 

AAV9.CBA.DO(fas).GCaMP6s (Cre-Off) virus, respectively (n = 5 mice). A 200 µm core 

multimode fiber was implanted 200 µm above the injection site (Doric 0.37 NA, 5.5 mm 

length or Thorlabs 0.39 NA, 5 mm length). Coordinates used for injections and fiber 

implants: AP 1.3 mm; ML 1.0 mm; DV −3.25 mm. Photometry and behavioral acquisition 

were performed 3–5 weeks post-surgery, for 4 sessions of 20 minutes each.
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Virus injection and GRIN lens implants: To assess pathway-specific single-cell 

contributions to behavior, 5–12 week old mice (Drd1a-Cre to label the direct pathway; A2a-
Cre to label the indirect pathway; both male and female) were unilaterally injected with 

500–600 nl of AAV1.Syn.Flex.GCaMP6f.WPRE.SV40 virus (Penn Vector Core) into the 

right dorsal striatum (n = 4 Drd1a-Cre mice; n = 6 A2a-Cre mice). Coordinates used for 

injections: AP 0.5mm; ML 2.25 mm; DV −2.4 mm or AP 0.6mm; ML 2.2 mm; DV −2.5 mm 

from bregma. A gradient index (GRIN) lens (1 mm diameter, 4 mm length; Inscopix; PN 

130-000143) was implanted into the dorsal striatum 200 µm above the injection site 

immediately following virus injection. Behavioral data were obtained between 2–5 weeks 

post-surgery by coupling the GRIN lens to a miniaturized head-mounted single photon 

microscope with an integrated 475 nm LED (Inscopix). In total, from these mice, we were 

able to record calcium activity from n = 653 dSPNs and n = 794 iSPNs,

Pathway-independent single-cell contributions to behavior were also measured. 8–21 week 

old Drd1a-Cre mice were unilaterally injected with 600 nl of a 1:1 mixture of 

AAV1.EF1a.DIO.GCaMP6s.P2A.nls.dTomato (Cre-On; Addgene #51082) and 

AAV9.CBA.DO(Fas).GCaMP6s (Cre-Off; UNC Vector Core), with the coordinates 

described above (n = 5 mice). This approach selectively labeled direct pathway SPNs with a 

nuclear-localized dTomato, so that the direct pathway-projecting neurons could be identified 

under a two-photon (2P) microscope and cross-registered with single photon miniscope data, 

as described below. While endoscopic data was included from all mice for the pathway 

independent analysis shown in Figure 5F and Figure 5G (n = 986 neurons), n = 4 of these 

mice had suitable dTomato expression for cell type identification. To generate additional 

pathway independent data, 5–11 week old Dyn-Cre mice were unilaterally injected with 500 

nl of AAV1.Syn.GCaMP6f (Penn Vector Core), using the same coordinates described above 

(n = 3 mice). Calcium imaging and behavioral data were obtained 4–6 weeks post-surgery. 

We were able to identify calcium activity from n = 694 neurons from these mice.

Dorsolateral striatum lesions: C57/BL6 mice were injected with 150 nL NMDA (2mg/

100µL; n = 8 mice) or PBS (saline; n = 5 mice) into the DLS. Coordinates used for 

injections: AP 0.260 mm; ML 2.550 mm; DV −2.500 mm from bregma. Mice were allowed 

to recover for 1 week. Mice were then placed in a circular open field and imaged using depth 

cameras during 6 sessions of 45–60 minutes each; data were then analyzed using MoSeq.

Photometry experimental methods and analysis

Photometry and electrophysiological array assembly and implantation: An optical fiber 

was glued in place above an electrode array (Neuronexus model number 

A4×8-5mm-200-703-CM32, n = 15 channels were included in this study). The end of the 

fiber was located in close proximity but dorsal to the conducting pads. Photo-curable cement 

was used to hold the optical fiber in place. A craniotomy was performed, and the electrode 

array and fiber combination was implanted so that the fiber was placed 200 µm above the 

virus injection site (same coordinates described above). The electrode ground was placed in 

the cerebellum while the reference was placed in visual cortex. The lag between spiking and 

fluorescence traces was not directly used to adjust the timing of any data in this paper.
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Photometry and behavioral data acquisition: Depth-based mouse videos were acquired 

using a Kinect 2 for Windows (Microsoft) uing a custom user interface programmed in C#. 

Animals were placed in a circular open field (US Plastics, Ohio) for 20 minutes per session, 

with at least one day of rest between sessions. The open field was painted black with spray 

paint (Acryli-Quik Ultra Flat Black; 132496) to avoid image artifacts created by reflective 

surfaces. Frames were recorded at a rate of 30 Hz.

Photometry data were collected simultaneously with behavioral data. A lock-in amplifier 

was programmatically designed using a TDT RX8 digital signal processor (code available 

online at https://github.com/dattalab). A 475 nm LED was sinusoidally modulated at 300 Hz 

while a 550 nm LED was modulated at 550 Hz (Mightex). Excitation light was passed 

through a two-color fluorescence mini cube (Doric FMC2_GFP-RFP_FC) into a rotary joint 

and, in turn, through a fiber optic patch cord connected to the mouse via a zirconia sleeve. 

Emission was collected through the same patch cord, and then passed through the mini cube 

to two fiber-coupled silicon photomultipliers (SenSL MiniSM 30035). Raw photometry data 

were collected through the TDT interface at 6103.52 Hz. Data were de-modulated, low-pass 

filtered, and down sampled to 30Hz. To align photometry and behavioral data, timestamps 

obtained from the depth sensor were aligned to the closest timestamp obtained from the 

TDT acquisition. Sessions with apparent equipment failure or motion artifacts present in the 

reference channel were excluded from further analysis.

Photometry and electrophysiological array data acquisition: Photometry data were 

collected through the TDT interface described above, while the electrophysiological data 

were collected at 30 kHz through the supplied Intan user interface software. Timestamps for 

the photometry data were aligned to the Intan data through interpolation between both sets 

of timestamps. Electrophysiological data were common average referenced offline prior to 

downstream analysis.

Photometry and electrophysiological lag computation: Electrophysiological data were 

bandpass filtered between 300 and 3000 Hz (4th order Elliptic bandpass filter, 0.2 dB ripple, 

40 dB attenuation) and the number of threshold crossings above two standard deviations 

from the mean were smoothed to produce a measure of multi-unit firing rate. These filtered 

signals were used to compute the cross-correlation between the multi-unit firing rate and 

photometry signals.

Photometry data pre-processing: Photometry data from the green and red silicon 

photomultipliers were collected at 6103.52 Hz with 24-bit sigma-delta analog to digital 

converters. Then data were demodulated offline by multiplying the digitized raw signals 

with the appropriate in-phase and quadrature reference sinusoids (300 Hz and 550 Hz for the 

two excitation LEDs) and then low-pass filtering with a 4th order Butterworth filter (2 Hz 

cutoff). After demodulation, photometry data were then anti-alias filtered and resampled at 

the same rate as video acquisition, 30 Hz. The baseline fluorescence component F0 was 

estimated using a 15 second sliding estimate of the 10th percentile. ΔF was then estimated by 

subtracting this baseline. For alignment to behavioral changepoints (i.e. switches between 

syllables, Figure 2C), photometry data were high-pass filtered with a 2nd order Elliptic filter 

(40 dB attenuation, 0.2 dB ripple, 0.25 Hz cutoff) to remove low-frequency content. We note 
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that this result was robust across a variety of filtering settings, and was also apparent without 

any filtering at all. Only sessions where the 97.5th percentile of ΔF/F0 exceeded 1% were 

included. For the calculations shown in Figure 2E, to account for the lag between 

photometry and electrophysiology signals, syllable-associated activity was considered from 

50 ms before syllable onset to 50 ms before the onset of the next syllable. Finally, for all 

syllable-triggered averages with the exception of those shown in Figures S4C and S5D, to 

normalize for the different number of trials included in any given plot, the averages were z-

scored relative to their respective time-shuffled controls. That is, for each average the mean 

of the time shuffled averages was subtracted and then divided by the standard deviation of 

the time shuffled averages.

Photometry waveform distance: For comparisons of waveform distance in Figures 3C and 

3E, analysis was conducted in the same manner as the decoding analysis (see below). In 

brief, waveforms aligned to syllable onset were clipped from syllable onset to syllable offset, 

then linearly time warped to a common time-base–20 samples. As with the decoding 

analysis, to compute waveform distance, both z-scored ΔF/F0 and the derivative of this trace 

were used.

Pathway shuffle: The pathway shuffle shown in Figure 3D was performed as follows. First, 

the pathway identity for all single trial syllable triggered waveforms was permuted. Then, 

the same number of trials that went into the averages for Figure 3C was used for each 

pathway. Finally, the correlation was computed between photometry waveform and behavior 

distance for each pair of syllables as in Figures 3C and 3E. The procedure was repeated 

1,000 times.

Decoding and held-out regression analysis: Decoding of photometry data was performed 

using a random forest classifier (2000 trees, maximum number of splits 1000, minimum leaf 

size 1) initialized with uniform prior probabilities for each syllable ID. As with the 

correlation between photometry waveforms and behavioral distance, for each trial we used 

the z-scored ΔF/F0 and the derivative of this trace as features. Then, since syllables could 

have a variety of durations, waveforms were clipped from syllable onset to syllable offset 

and were linearly time warped to a common time-base (20 samples, same as the correlation 

analysis). Qualitatively similar results were found when simply clipping the waveforms from 

syllable onset to 300 ms after syllable onset with no time warping, though the best 

performance was observed using time warping along with combining both the z-scored 

ΔF/F0 and derivative traces; the hit rates reported represent the performance of this 

particular variant. Decoding accuracy was then assessed using the average hit rate measured 

using a five-fold cross validation (i.e. the number of correct classes predicted out of the total 

number of predictions). Note that similar performance was observed using alternative 

classification algorithms, including Naïve Bayes. Syllable labels were clustered using 

agglomerative clustering with complete linkage. Clusters were formed using a distance 

cutoff in steps of 0.1 from the minimum to the maximum linkage distance (e.g. in Figure 3A 

from 0 to 2). Held-out regression of behavioral distance (Figure S5F) was set up in an 

identical manner, except we used random forest regression. Behavioral distances were 

defined as the combined distance of a given syllable from syllable 1 (here the reference 
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syllable does not matter, combined distance was constructed using the LASSO regression 

coefficients in Figure 3E, see below). All parameters for the regression were the same with 

the exception of minimum leaf size, which was set to 5.

Sequence Modulation: The statistical significance of sequence modulation was tested using 

the same time window that was used for imaging data–syllable onset to 350 ms after onset 

(see below). Here, we compared the mean absolute difference in average waveforms for high 

and low probability sequences (50th percentile cutoff) to the same difference computed for 

controls where the sequence probabilities were shuffled (n=1,000 shuffles).

Histological examination and cellular counting: Mice used for the two-color photometry 

were perfused first with PBS and then 4% formaldehyde, and 50 µm coronal sections were 

cut on a vibratome. Slices were placed under a confocal microscope with a 40X/1.3 NA oil 

objective, and tiled z-stacked images were acquired. Cells that were labeled with only red, 

only green, and both fluorophores were manually counted, and expression frequencies were 

recorded.

Mice used for the lesion experiment were also perfused first with PBS and then with 4% 

paraformaldehyde and 50 µm coronal sections were cut on a vibratome. Slices were stained 

with antibodies for glial fibrillary acidic protein (GFAP; Abcam; ab4674, 1/1000 dilution) 

and NeuN (Abcam; ab104225, 1/1000 dilution) to visualize the extent of the lesion. Slices 

were imaged using an Olympus VS120 Virtual Slide Microscope.

Imaging experimental methods and analysis

Miniscope data processing: Data were acquired at a rate of 30 Hz, and timestamps were 

aligned to the nearest depth sensor timestamp for behavioral analysis. Inscopix nVista 

software was used to concatenate experimental recordings from a single session. The data 

were motion corrected and spatially down sampled by a factor of 4 and cells were extracted 

using the constrained non-negative matrix factorization for microendoscopic data (CNMF-e) 

algorithm (Pnevmatikakis et al., 2016; Zhou et al., 2018). Extracted data underwent a 

manual exclusion criteria to remove non-neural objects. Only one session per animal was 

included for downstream analysis, so tracking of neurons across sessions was not necessary. 

Raw CNMF-e traces were used for all analysis except for Figure 6B, where we used the 

deconvolved traces. For Figure 5C, a neuron was considered active if its average ΔF/F0 

exceeded two SDs above the mean. To better visualize tiling patterns in single trials for 

Figure 5D, the data in this panel were first smoothed with a .5 Hz low-pass filter, and the 

trial-average images were smoothed with a 2D Gaussian filter (3 pixel standard deviation).

Two-photon and single photon image cross-registration: In a subset of mice, GCaMP6s 

was expressed in all SPNs while dTomato was co-expressed in dSPNs. A custom-built 2-

photon (2P) microscope was used post hoc to register dSPNs within the field-of-view (FOV) 

of the miniscope recordings. Mice were awake and head-fixed during 2P data acquisition. A 

z-stack was taken across 150–220 µm of tissue. Each frame was smoothed with a median 

filter, and averaged to generate a template image. Then, at least 4 reference points were 

selected in both the 2P template image and miniscope data to compute an affine transform to 
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map from the miniscope FOV to the 2P FOV (shown in Figure S6B). After this, dSPNs and 

iSPNs were hand-picked according to a conservative red/green signal overlap threshold. A 

cell was considered a dSPN if there was red/green overlap that exceeded this threshold, 

while a cell was considered an iSPN if it only emitted green fluorescence. GCaMP6s was 

excited with 940–1000 nm. dTomato was excited at the highest SNR wavelength found 

during acquisition, at 940–1040 nm. For the cross-correlations between dSPNs and iSPNs 

shown in Figure 6A, we included only timepoints where the animal’s 3D velocity exceeded 

the 50th percentile (although significant decorrelations were observed across nearly all 

behaviors except when the mouse was still or nearly still). Pausing syllables increase the 

inter- and intra-pathway correlations due to the overall lack of activity observed when 

imaging both pathways at the single cell level during stillness; note that pathway 

decorrelations were still observed during the expression of slow syllables in data obtained 

using photometry, which averages activity across hundreds to thousands of neurons.

Decoding of calcium imaging data: For decoding of miniscope calcium imaging data, the 

ΔF/F0 trace for each neuron was averaged from each syllable onset to syllable offset 

(syllable binning). Then, neurons across mice were merged by including responses to 

syllables with a minimum number of trials for all neurons (in this case 15). The merge was 

used to form a pseudo-population of neurons by including the 15 trials of each neuron’s 

response to each syllable that met this criterion, so the number of trials per syllable was 

balanced. This resulted in a feature matrix with 15 × n(syllables) observations and 

n(neurons) dimensions. A random forest using the same parameters as with the photometry 

data (2000 trees, 1000 maximum splits, minimum leaf size 1) was then trained using 5-fold 

cross-validation, and as with the photometry decoding, performance is reported as percent 

correct–percent syllable labels predicted correctly out of all predictions.

To compare the performance as a function of number of neurons in the pseudopopulation, 

we randomly sampled neurons 100 times without replacement with a varying number of 

samples from 10 to 600. For comparisons between dSPNs, iSPNs, and both neuron types, 

we used the same number of neurons, and equal numbers of iSPNs and dSPNs were sampled 

to create a balanced dual-pathway population. For example, to compare performance for 

n=300 neurons, we compared n=300 dSPNs with n=300 iSPNs or n=150 dSPNs and iSPNs 

(for a total of 300). Data were pooled from n=4 Drd1a-Cre mice and n=6 A2a-Cre mice, 

with the number of neurons per mouse ranging from 27–336.

Additionally, to test the consistency of decoding performance across mice, we trained 

decoders on data from individual mice to classify syllable identity. Here, we only used mice 

with more than 50 neurons in their field of view, and randomly sampled 50 neurons without 

replacement 10 times and assessed performance using 5-fold cross-validation. Again, a 

random forest classifier was used with the same parameters that were used for decoding 

from pooled data. For the A2a-Cre animals (n=4/6 with more than 50 neurons), when 

classifying all 42 syllables, the decoder achieved 8.35 percent accuracy on average (8.06–

8.65 percent, 95 percent bootstrap confidence interval; chance performance was 2.5%). For 

the Drd1a-Cre animals (n=3/4), average accuracy was 10.21 percent (9.81–10.67 percent, 95 

percent bootstrap confidence interval). Thus, performance was not substantially different 
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from decoders trained on data pooled across animals using a similar number of neurons 

(Figures 5H and 6D).

To decode sequence probability from the miniscope calcium imaging data, we simply 

merged neurons from the entire dataset into a pseudo-population and replaced syllable labels 

with a 0 or 1, indicating whether each syllable was in a low or high probability sequence, 

respectively. As with decoding of syllable identity, the ΔF/F0 trace for each neuron was 

averaged from each syllable onset to syllable offset. Decoding efficiencies were computed 

for multiple subsets of the data, including above and below the 50th percentile for both 

incoming and outgoing transition probabilities, and for the top and bottom 40th percentiles 

and 30th percentiles; performance increased from 70 percent accuracy to 80 percent accuracy 

as the separation between what was considered low and high probability progressively 

increased. Decoding was performed using a support vector machine with a 3rd order 

polynomial kernel, and accuracy was assessed using 5-fold cross-validation.

Decoding cell type using response properties: For decoding the molecular identity of 

neurons recorded from Drd1a-Cre and A2a-Cre mice, we used the following features: (1) the 

Pearson correlation coefficients between each neuron’s time-course and all scalars included 

in Figure 2B, and (2) the trial-averaged response to each of 42 syllables, from syllable onset 

to syllable offset. A random forest classifier (2000 trees, minimum leaf size 1) was then 

trained to predict whether a neuron came from a Drd1a-Cre or A2a-Cre mouse based on 

either a feature set with just (1), just (2) or (1) and (2) combined. To include predictions of 

varying confidence levels, we used the probability that a neuron was assigned to a particular 

class from the random forest classifier. For instance, at a confidence threshold of .6, we only 

included predictions assigned a probability of .6 or higher when calculating percent correct. 

Performance was assessed using 5-fold cross validation. The same preprocessing pipeline 

and classifier were used for decoding the molecularly identity of simultaneously recorded 

dSPNs and iSPNs, with two differences: (1) given the small size of the dataset of 

simultaneously recorded neurons (n=90) relative to the number of features (n=42 for the 

syllable-based features), each feature vector was compressed using PCA, retaining the 

minimum number of components required to account for 90% of the variance, (2) for the 

same reasons we used 100 trees instead of 2000.

Identifying significant relationships between syllables and single neuron activity: For 

each neuron and syllable pair, we estimated the area under the receiver operating 

characteristic curve (AUC) and evaluated its significance through shuffling the syllable 

labels and repeating the calculation 1000 times. A neuron-syllable pair was considered 

significant for p<.05 according to the shuffle test. Then, to determine the reliability of each 

neuron-syllable pair that passed this test, we computed the number of single trials for which 

the neuron’s peak ΔF/F0 exceeded 1 STD above the mean.

Sequence modulation index: To quantify the degree to which sequence context impacted 

the activity of a given neuron, we derived a simple modulation index. First we averaged each 

neuron’s activity to every instance of a given syllable from syllable onset to 350 ms after 

syllable onset, which was chosen since it approximates the modal duration of syllables in 

our model. Then, as with the photometry data, we computed the likelihood of incoming and 
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outgoing transitions for each syllable, and split into low and high likelihood groups using a 

50th percentile cutoff for both; that is, if the transition probabilities coming in and leaving a 

syllable instance exceeds the 50th percentile cutoff, it is considered a high likelihood 

sequence, if the same probabilities are both below their respective cutoffs, the instance is 

considered a low likelihood sequence. These group labels are shuffled, and their difference 

is computed 1000 times to create a null distribution. The mean and standard deviation of this 

distribution is used to z-score the observed difference, shown in Figure 5I. Cells that are 

greater than or less than the null distribution for more than 95% of the randomizations are 

considered significantly modulated.

Motion Sequencing (MoSeq)

Motion sequencing overview: Motion Sequencing (MoSeq) is a catch-all term for a 

combined machine vision and machine learning system that automatically identifies 

behavioral motifs and the order in which they occur (Wiltschko et al., 2015). In brief, the 

technique works as follows: mice are placed in an apparatus (in this case, a circular open 

field), and their 3D pose dynamics are measured at 30 Hz through the use of a depth camera 

(here, the Kinect 2, Microsoft). MoSeq seeks to quantify how these pose dynamics change 

as the mouse freely explores, and so pre-processsing code automatically identifies the mouse 

in the arena, centers the mouse in an 80 × 80 pixel square, and then aligns the mouse’s nose 

to the right and tail to the left. All processing is then done on this aligned and cropped set of 

images, in which the mouse is continually aligned along the virtual axis of its spine.

In the case of simultaneous neural recordings, either through electrophysiology, fiber 

photometry or through calcium imaging, an additional complexity occurs: the mouse wears 

some sort of “hat” that partially obscures its head, and there is a fiber coming out of the 

“hat” that swings as the animal freely behaves, thus variably obscuring the animals from the 

depth camera placed above. To address this challenge, the updated version of MoSeq 

described here identifies the hats and cables, subtracts them from the image of the mouse, 

and then reconstructs those missing pixels through probabilistic PCA.

After filling in missing pixels, the MoSeq algorithm then takes the 80 × 80 pixel aligned 

movies of each mouse, and performs PCA on this high-dimensional datastream to lower the 

dimensionality of the data that is being analyzed. Note that this PCA procedure is only 

performed to make the subsequent computations easier; MoSeq returns similar results when 

fed raw pixels, although at significant computational cost.

These PCA-reduced 3D imaging data are then fit to a generative model for mouse behavior 

through the use of computational inference techniques. The model and fitting procedure use 

regularities in the data to automatically discover, in any behavioral dataset, the optimal 

number of behavioral syllables, the identity of each of these behavioral syllables (in terms of 

the specific pose trajectories that define each syllable) and the frequency with which each 

syllable transitions from one to the other. MoSeq also labels the dataset that was used for 

training: for each frame of 3D data, MoSeq identifies the most likely behavioral syllable to 

be expressed. Thus MoSeq takes as its input 3D imaging data of mice, and returns a set of 

behavioral syllables that characterizes the expressed behavior of those mice, and the 

statistics that govern the order in which those syllables were expressed in the experiment. 
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While MoSeq has been described previously, the main advance here is to build extensions to 

this technique that afford better imaging (as the Kinect 2 has better spatial resolution than 

the originally-used Kinect for Windows), and that enable simultaneous neural recordings. 

See Figure S2A for a schematic overview of the current MoSeq pipeline.

Motion sequencing: Depth data was modeled as in (Wiltschko et al., 2015) with 

modifications to accommodate imaging with the Kinect 2. First, raw depth frames were 

collected from a Microsoft Kinect V2, mounted above the arena, using custom acquisition 

software written in C#. Frames were collected at 30 Hz, and each frame was composed of 

512 × 424 pixels, where each pixel contained a 16-bit integer specifying the distance of that 

pixel from the sensor in mm. After each session, frames were gzip compressed and moved to 

another computer for offline analysis.

If no cable was present, the mouse’s center and orientation were found using an ellipse fit. 

Otherwise, a simple tracking model was used to maintain the mouse’s position in the 

presence of noise in the depth image. The model assumes that the mouse’s body in the depth 

image is well fit by a 3D Gaussian with full covariance (x, y, and height from the ground). 

For each frame, the mean and covariance of the model were initialized using the fit from the 

previous frame and then refined using expectation maximization, which was run until the 

improvement in likelihood fell below a threshold value. The log-likelihood weighted pixels 

were used to then estimate the mouse’s center and orientation with an ellipse fit (similar to 

the case with no cable). Then, an 80 × 80 pixel box was drawn around the mouse, and the 

mouse was rotated to face the righthand side. Next, if the tracking model was used, missing 

pixels were identified by their likelihood according to the Gaussian model. Low-likelihood 

pixels were treated as missing data and principal components (PCs) are computed using 

probabilistic PCA (Roweis, 1998; Tipping and Bishop, 1999). If the experiment had no 

occluding artifacts in the depth video (all experiments that did not require tethering the 

animal), standard PCA was used. Finally, frames were projected onto the first 10 PCs, 

forming a 10 dimensional time series that described the mouse’s 3D pose trajectory.

These data were used to train an autoregressive hidden Markov model (AR-HMM) with 3 

lags to cluster mouse behavioral dynamics into discrete “syllables,” with state number 

automatically identified through the use of a hierarchical Dirichlet process. Each state was 

comprised of a vector autoregressive process that captures the evolution of the 10 PCs over 

time. The model was fit using Gibbs sampling as described in (Wiltschko et al., 2015) using 

freely available software (https://github.com/mattjj/pybasicbayes). Model output was 

insensitive to all but two hyperparameters, which were set using unsupervised techniques for 

determining the length scales for discrete behaviors as in (Wiltschko et al., 2015). Due to 

differences in mouse shape and size, along with differences in equipment attached to the 

mouse, a separate model was fit to each experimental condition: NMDA lesions, Drd1a-Cre 
DLS photometry, A2a-Cre DLS photometry, NAcc photometry, and miniscope imaging.

Syllable Cross-Likelihood Computation: In order to demonstrate that the states discovered 

by the AR-HMM (autoregressive hidden Markov mdoel) described meaningful structure in 

the data, we estimated how well, on average, each state’s AR parameters can describe data 

segments assigned to other states. This assesses how likely the model is to confuse two given 
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syllables based on the similarity of their 3D pose trajectories on a trial for trial basis. Cross-

likelihoods near or above 1 indicate one state can explain another. Cross-likelihoods well 

below 1 indicate one state does not explain another well. For details see (Wiltschko et al., 

2015).

Behavioral usage and transition matrix analysis: Syllable usage was calculated by 

summing the number of occurrences of each syllable and dividing by total syllable usage 

across a recording session, converting syllable usage into a percentage. The number of 

syllables used for each analysis was based on the syllable usage across all sessions within a 

condition. Syllable usage was cut off at 1% usage (Wiltschko et al., 2015) for all conditions, 

resulting in 41 syllables in both the lesion and Drd1a-Cre DLS photometry experiments, 42 

syllables in the Inscopix experiments, 27 syllables in the NAcc experiments, and 32 syllables 

in the A2a-Cre experiments. Transition matrices were calculated by counting the total 

number of occurrences syllable A transitions into syllable B (for all syllables). Behavioral 

distances used in Figure 7C were computed by estimating the difference in principal 

component trajectories over the time course of each syllable. More specifically, the 

Euclidean distance between the first 10 principal components for the first 600 ms after 

syllable onset was used as a behavioral distance metric. The median behavioral distance 

value was used for comparisons within conditions and between conditions for the same 

syllable, and between syllables across all conditions. Note that this behavioral distance 

metric is a separate distance metric from MoSeq-based behavioral distances (see below), and 

used specifically in Figure 7C.

MoSeq-based behavioral distances: In order to ask whether similarities between 

waveforms or neural ensembles corresponds to similarities in behavior, we established a 

metric to assess how similar or different each behavioral syllable is from every other 

behavioral syllable. Importantly, each behavioral syllable is clearly distinct from each other 

(see Figure S2B); although in two-dimensional representations these differences can be hard 

to appreciate (in no small part because behavior occurs in 3D), from a mathematical 

perspective and in 3D movies each syllable appears distinct, which suggests that one can 

derive such a metric for behavioral similarity or difference. To do this, we took advantage of 

the fact that MoSeq identifies a mean 3D pose trajectory (and the variance from that mean) 

that is associated with each behavioral syllable. This pose trajectory is encapsulated by the 

autoregressive process that describes each syllable.

We therefore assessed the similarity of behavioral syllables using the distance between 

simulated trajectories derived from the autoregressive (AR) coefficients fit to the data. The 

dynamics of the AR coefficients for each of the 10 principal components (PCs) were 

computed over 10 time steps (corresponding to 300 ms), and represent that syllable’s 

prototypical 3D pose dynamics. The trajectories were initialized from the average starting 

position of the 10 PCs for each syllable. The correlation distance (1-r, where r is Pearson’s r) 

was then computed between each AR trajectory for all syllables.

LASSO regression: LASSO regression (Figure 3E) was performed using MoSeq distance 

between all syllables (Figure 3A), along with the correlation distances for height, angle, and 

2D velocity as predictors, and the waveform distance (Figure 3C) as observations 
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(Tibshirani, 1996). The final coefficients we selected minimized the 10-fold cross-validated 

mean square error on this dataset.

Striatal lesions experimental methods and analysis

Information theoretic analysis: Entropy rate was calculated using the standard formula 

over bigram probabilities (Wiltschko et al., 2015). Jensen-Shannon divergence, a symmetric 

distance measure between probability distributions (either usage distributions and first order 

transition distributions), was calculated as described in (Lin, 1991).

Trimethylthiazoline (TMT) exposures: Mice were subjected to one open field session 

consisting of a 3.5 cm petri dish with a piece of filter paper inside as a control for novel 

object interactions. In the control and odor experiments, the dish was sealed and holes were 

drilled in the top to promote odor exchange, but to prevent direct interaction with the 

odorant. 25% TMT diluted in dipropylene glycol was presented on a piece of filter paper 

within the petri dish during the next open field session (odor exposure session). In the 

photometry experiments, to show persistence in syllable encoding between valence states, 

fluorescence signals were compared between odor and control sessions. In the lesion 

experiments, to show differences in odor-related behavior in lesioned mice vs sham mice, 

animal positions were compared between odor and control sessions. To determine the 

amount of time spent close to the odor source in the lesion odor exposure experiments, we 

counted the number of frames the mouse was within 10 cm of the petri dish (Euclidean 

distance).

Quantification and statistical analysis

Binning: For all correlation and decoding analysis (Figures 3C–F, 5F–H, 6B–D) in order to 

control for Markovian dependencies in the behavior itself that could impact our analysis, we 

only considered neural activity from syllable onset to syllable offset. Specifically, 

photometry data was clipped from syllable onset to syllable offset and linearly time warped 

to a common timebase and calcium traces in the single cell data were averaged from onset to 

offset (for details see relevant sections above). Note that we also tiled bin sizes to compute 

neural behavioral relationships at different offsets, widened and narrowed the bin size itself, 

and considered warped and unwarped data across those bin sizes. In all cases, the specific 

choice of bin size did not substantially affect any results in the paper.

Statistical comparisons: Statistical comparisons were non-parametric, exceptions are 

marked throughout the manuscript. Except where noted, error bars indicate bootstrap 

standard error (1000 bootstraps) and multiple comparison corrections were applied using the 

Holm-Bonferonni step-down procedure where appropriate.

Data and software availability—All code related to Motion Sequencing will be made 

available upon request (see www.dattalab.org for download instructions). Data related to this 

study will also be made upon reasonable request to the Lead Contact 

(srdatta@hms.harvard.edu).
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Figure 1. Motion Sequencing during neural recordings
A. AAVs expressing Cre-On jRCaMP1b and Cre-Off GCaMP6s were injected into the DLS 

to assess direct (dSPN, red) and indirect (iSPN, green) pathway activity via multicolor 

photometry (see Methods). Top, sagittal schematic of injection site. Middle and bottom, 

histological verification of jRCaMP1b (dSPN, red) and GCaMP6s (iSPN, green) expression 

(sagittal sections, SNr = substantia nigra pars reticulata, GP = globus pallidus). Scale bar, 1 

mm.

B. An example of simultaneous electrophysiological (top, black), firing rate (middle, 

yellow) and photometry recording (bottom, green, GCaMP6s, red, jRCaMP1b).

C. Top, correlation between electrophysiologically-acquired firing rates and cre-independent 

photometry signals (red, jRCaMP1b; green, GCaMP6s), compared to time-shuffled 

electrophysiology (shading, 95% confidence interval). Bottom, same as top panel using the 

derivative of the photometry signals.
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D. Left, Experimental schematic. Three-dimensional (3D) imaging data is fed to the MoSeq 

algorithm, which outputs identified behavioral syllables and their transition statistics (color 

bars, lower and right, top). Middle, three examples of syllables, occurring successively 

over time, depicted as “spinograms,” in which the spine of the mouse is depicted as if 

looking at the mouse from the side, with time indicated as increasing color darkness. 

Bottom, isometric-view illustrations of the 3D imaging data associated with the “reared 

pause,” “dive,” and “locomotion” behavioral syllables.

E. Example of MoSeq-defined syllables (top, individual syllables labeled with unique 

colors) aligned to dSPN (middle, red) and iSPN-related (bottom, green) photometry signals.
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Figure 2. Direct and indirect pathway activity correlates with fast behavioral transitions
A. Correlation between velocity, direct pathway activity (red), and indirect pathway activity 

(green) at indicated time bins.

B. Correlations between scalar variables and their derivatives to dSPN fluorescence signals 

(Pearson r, n = 189315 comparisons), iSPN fluorescence signals (n = 173577 comparisons), 

and to the difference between the two signals binned at the timescale of individual syllables 

(n = 146636 comparisons). * = p < 0.001, ** = p < 1×10e−10.

C. Top, grand-averaged, z-scored dSPN (red) and iSPN (green) activity aligned to all 

syllable transitions. Bottom, derivative of top panel. Shading, time-shuffled 95% confidence 

interval. Note that all syllable-triggered averages are z-scored relative to the time-shuffled 

control (see Methods).

D. Average z-scored dSPN and iSPN fluorescence levels for individual syllables. Top, 

syllable-triggered averages for each syllable shown for the direct and indirect pathways, 

sorted by the averages in the direct pathway (first positive then negative peaks). Bottom, 

same as Top except sorted by indirect pathway syllable-triggered averages.
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E. Top left, average peak z-scored direct and indirect pathway fluorescence signal (ΔF/F0) 

associated with each syllable (individual syllables identified via an arbitrary color code, with 

coding preserved across all top panels to illustrate relative dSPN and iSPN activity across 

individuals; Pearson r = 0.76, p < 1×10e−7, n = 41 comparisons). Top middle, example peak 

z-scored dSPN and iSPN fluorescence signals (ΔF/F0) from a single mouse. Top right, 
result of randomly shuffling syllable onsets. Bottom, z-scored dSPN and iSPN fluorescence 

signal for each syllable is plotted similarly to the top left but each syllable is now instead 

shaded by their average height (left), 2D velocity (middle), and 3D velocity (right) during 

the execution of the indicated syllable.

F. Average dSPN (red) and iSPN (green) activity for four example syllables, each of whose 

pose dynamics were described by a human observer.
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Figure 3. The direct and indirect pathways contain complementary codes for behavioral syllables
A. Syllables hierarchically ordered by model-based distance (see Methods). Dashed lines 

indicate human observer-specified boundaries between syllable classes.

B. Six examples of average z-scored photometry signals, aligned to syllable onset (red, 

dSPNs; green, iSPNs). Colored boxes designate the syllable in panel A represented by the 

associated waveform.

C. Left, correlations between behavioral distances and syllable-associated dSPN (red), iSPN 

(green), and combined (yellow) photometry signals (Pearson r, direct pathway p < 1×10e

−10; indirect pathway p < 1×10e−9; both pathways p < 1×10e−10; n = 820 comparisons). 
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Right, histograms describing residual correlations after shuffling relationships between 

syllable identities and photometry signals (1000 random shuffles, see Methods).

D. Same as C bottom right, except here pathway identities were shuffled and the analysis 

was repeated 1,000 times (pathway shuffle, see Methods).

E. Left, correlation between photometry signals and behavioral distance (here, defined using 

MoSeq, height, angle, and velocity, with each parameter weighted using LASSO regression) 

(Pearson r = 0.53, p < 1×10e−10, n = 820 comparisons, see Methods). Right, recovered 

LASSO regression weights that maximize the neural-behavioral correlations in left.
F. Left, same dendrogram shown in A, with 4 example hierarchical cuts used for the 

decoding shown on the left displayed (see Methods). Middle, classifier decoding hit rate (y-

axis) of syllable identity based upon either dSPN (red) or iSPN (green) waveforms alone, or 

their combination (yellow); classifier performance was evaluated at progressively deeper 

levels of the hierarchical clustering (left), with the outermost branch (the full set of 41 

syllables) represented as cut 1. Shuffle represents the random assignment of syllable identity 

to the classifier. Note that the number of classes to decode decreases at higher hierarchical 

cuts, leading to increased chance performance. Right, ratio between the performance using 

both pathways and either dSPNs (red) or iSPNs (green) alone.
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Figure 4. Sequence-dependent syllable representations in DLS
A. Schematic of an example syllable sequence. Throughout all panels in this figure, 

waveforms are aligned to syllable B (starred) and then sorted based on the likelihood of 

either the incoming transition, or both the incoming and outgoing transitions.

B. Grand average photometry waveforms (red colors, dSPNs; green colors, iSPNs; n = 8 

mice) for all syllables, separated by high or low probability of expression (here defined as 

above or below the 50th percentile probability, respectively). Top, waveforms sorted based 

upon the summed probability of incoming and outgoing syllables. Bottom, waveforms 

sorted based upon the probability of the incoming syllable.
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C and D. Same as B but controlling for the 3D velocity of the incoming syllable (n = 8 

mice). Velocities were grouped by whether they were above or below the 50th percentile of 

average velocity prior to syllable onset. Syllables were sorted by either high or low incoming 

velocity, and the associated neural waveforms were then sorted by either high or low 

probability of combined (C) or incoming (D) syllable expression.

E. Individual syllables analyzed using the same scheme shown in A.

Markowitz et al. Page 34

Cell. Author manuscript; available in PMC 2019 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Direct and indirect pathway neural ensembles encode syllable identity
A. Example miniscope field of view (FOV) from a mouse with both dSPNs and iSPNs 

labeled. Scale bar = 100 µm.

B. Normalized fluorescence of individual neurons extracted using CNMF-e (top, see 

Methods) aligned to behavioral syllables (bottom, each syllable uniquely color coded).

C. Proportion of active direct (red), indirect (green), and both pathway (yellow) neurons 

aligned to syllable onset (see Methods). Time-shuffled data is shown in gray (95% 

confidence interval). Shading indicates bootstrap SEM.
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D. Left columns, peak-normalized fluorescence averaged across all instances of the same 

syllable, in this case a “rear up.” All neurons from all mice are included in this 

representation. Cells with positive peaks were sorted from earliest to latest, then cells with 

negative-going peaks were sorted from latest to earliest. Single trials (all other columns) are 

shown for all neurons, merged across mice (see Methods). In each panel here (and in E) 

cellular traces are normalized individually to emphasize responses.

E. Top, peak-normalized fluorescence traces for five different syllables aligned to syllable 

onset, with human annotations above. Cells are sorted as in D. Bottom, proportion of dSPNs 

(red) and iSPNs (green) active aligned to syllable onset (defined as exceeding two SDs 

above the mean ΔF/F0). Shading indicates 95% bootstrap confidence interval.

F. Left, cumulative distribution function of ensemble correlations, computed using different 

examples of the same syllable (black) or examples of different syllables (gray) for the direct 

pathway (top), indirect pathway (middle), or both (bottom). Right, histogram of the 

average within syllable correlation after shuffling syllable identities.

G. Histogram of correlations between neural activity distance and Moseq-defined behavioral 

distance for dSPNs (red), iSPNs (green), or both cell types (yellow).

H. Left, Decoding accuracy along different cuts of the behavioral hierarchy for dSPNs (red), 

iSPNs (green), and both cell types (yellow) (as in Figure 3F, syllables are clustered into 

larger groups moving from cut 1 to cut 6). Right, decoding accuracy for individual syllables 

as a function of the number of neurons provided to the decoder. Shading indicates 99% 

bootstrap confidence interval. Chance performance increased at higher hierarchical cuts 

given fewer classes to decode.

I, Left, Distribution of single neuron modulation with respect to syllable sequence 

frequency. Lower indices indicate higher activity for low probability transitions, while 

higher indices indicate higher activity for high probability transitions (see Methods). Cells 

significantly modulated relative to a shuffle control (gray line) are highlighted in dark and 

light gray. Middle, Each pair of dots indicates the proportion of trials a given neuron was 

active across all syllables for high (HiP) and low (LoP) transition probabilities. Shown are 

neurons that increase activity for high transition probability examples (left, light gray) and 

low transition probability examples (middle, dark gray) from Left.
J. Percent of cells that have a significant modulation index (p<.05 relative to shuffle 

controls) reveals a greater number of inhibited than activated neurons during high 

probability sequences.
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Figure 6. Simultaneous imaging of dSPNs and iSPNs reveals pathway decorrelations
A. Average cross-correlations compared to the average cross-correlation of cell-type-

identity-shuffled traces when the animal’s 3D velocity exceeded the 50th percentile. For all 

comparisons between the observed correlations and identity-shuffled traces, p<.01.

B. Left, similar to Figure 5F, cumulative distribution function of ensemble correlations for 

separate examples of the same syllable (black, within syllable) and examples of different 

syllables (gray, between syllable). Right, histogram of average within syllable correlation 

after shuffling syllable identities. Red line shows the observed average correlation before 

shuffling.

C. Top, decoding accuracy of all syllables in psuedopopulations of separately recorded 

iSPNs (green) and dSPNs (red) as a function of neuron number. Decoding performance 

using both iSPNs and dSPNs shown in yellow. Middle, decoding accuracy using 

psudopopulations of simultaneously recorded iSPNs and dSPNs (see Methods). Bottom, 

example decoding accuracy using simultaneously recorded iSPNs and dSPNs from the same 

mouse (orange), and from a pseudopopulation of iSPNs and dSPNs where both the iSPNs 

and the dSPNs used were from a single animal (yellow).

D. Left, performance of a classifier predicting pathway identity of separately recorded 

dSPNs and iSPNs (see Methods) using MoSeq (blue dashed line), scalars (blue dotted line), 

or both combined (blue solid line), as a function of the confidence criterion for the classifier 

(percent of neurons meeting criterion shown in red, see Methods). Right, same as left, 

except predicting the class of simultaneously recorded dSPNs and iSPNs. Note that the noise 

in percent correct is due to finite size effects (i.e. there are fewer neurons to classify in the 

test set).
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Figure 7. Excitotoxic lesions of the DLS alter the expression and sequencing (but not number or 
content) of behavioral syllables
A. Coronal schematic of NMDA and saline injection sites. Scale bar = 1 mm.

B. Syllables expressed in saline and DLS lesioned mice, ordered by differential usage, sorted 

with the most “lesion-downregulated” syllables on the left and “lesion-enriched” syllables 

on the right (asterisks = p < 0.05, two-sample t-test corrected for false discovery rate.

C. Average distance between the 3D pose dynamics that define each syllable (behavioral 

distance) for each instance of the same syllable within a condition (i.e., sham or lesion), for 
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each syllable instance in both conditions, and for all instances of a given syllable and for all 

other syllables in both conditions (see Methods). Each circle indicates a different syllable.

D. Statemap depiction of syllables (as nodes) and transition probabilities (as edges, here 

weighted by bigram probability, the probability of one syllable occurring after the other) 

from control (sham, left, n = 3 mice) injections. Heatmap depiction of the difference (red = 

upregulated transition, blue = downregulated transition) between this control statemap and 

the DLS lesion statemap shown on right (n = 5 lesioned mice).

E. The first-order transition entropy rate between syllables in sham and lesioned cases, 

demonstrating that DLS lesioned mice exhibit less predictable behavioral sequences (p < 

0.01 ranksum, z = −2.79; n = 24 lesion trials; n = 15 sham trials). Each circle represents a 

trial.

F. Top, average occupancy heatmap for sham mice during a session without odor (left), 
during an odor presentation session (middle), and the difference between these two sessions 

(right). Bottom, same as top but for lesioned mice. Gray circles mark the approximate 

location of the odor source.

G. The difference in the amount of time spent within 10 cm of the odor source (dot in F), 

between pre-odor and odor trials for sham and lesioned mice (p < 0.01 ranksum; ranksum 

value 16; n = 5 sham trials; n = 8 lesion trials).
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Table 1

Key Resources Table

REAGENT or RESOURCE SOURCE IDENTIFIER

Chicken Anti-GFAP abcam Cat# ab4674

Alexa Fluor 488, Donkey Anti-Chicken IgY Jackson Laboratory Cat# 703-545-155

Rabbit Anti-NeuN abcam Cat# ab104225

Alex Fluor 555, Donkey Anti-Rabbit IgG Thermo-Fisher Cat# A-31572

Bacterial and Virus Strains

AAV9-CBA-do(Fas)-GCaMP6s UNC Vector Core N/A

AAV9-CBA-DIO-jRCaMP1b UNC Vector Core N/A

AAV1.Syn.Flex.GCaMP6f.WPRE.SV40 Penn Vector Core Cat# AV-1-PV2819

AAV1.EF1α.DIO.GCaMP6s.P2A.NLS.dTomato Addgene Cat# 51082

Chemicals, Peptides, and Recombinant Proteins

N-Methyl-D-aspartic acid Sigma-Aldrich Cat# M3262-250MG

Experimental Models: Organisms/Strains

Mouse: B6.FVB(Cg)-Tg(Drd1-cre)EY262Gsat/Mmucd MMRRC-UCD MMRRC Stock# 030989-UCD

Mouse: B6.FVB(Cg)-Tg(Adora2a-cre) KG139Gsat/Mmucd MMRRC-UCD MMRRC Stock# 036158-UCD

Mouse: C57BL/6J Jackson Laboratory Jax stock #000664

Mouse: B6;129S-Pdyntm1.1(cre)Mjkr/LowlJ Jackson Laboratory Jax stock #027958

Recombinant DNA

pAAV-CBA-DIO-jRCaMP1b This paper Addgene ID 110134

pAAV-CBA-do(Fas)-GCaMP6s This paper Addgene ID 110135

Software and Algorithms

MoSeq (Wiltschko et al., 
2015)

N/A

MATLAB The MathWorks https://www.mathworks.com/products/matlab.html

Constrained Non-negative Matrix Factorization for 
microendoscope data (CNMF-E)

(Zhou et al., 2018) N/A

Mosaic version 1.2.0 Inscopix https://www.inscopix.com

Intan Recording System Software Intan Technologies http://intantech.com/downloads.html

Other

Kinect for Xbox One (Kinect 2) Microsoft https://www.xbox.com/en-US/xboxone/accessories/kinect

Xbox One S Kinect Adapter Microsoft https://www.xbox.com/en-US/xboxone/accessories/kinect/kinect-adapter

Shallow tank US Plastic Cat# 14317
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