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Abstract

N,N ′-diarylureas have recently emerged as a new antischistosomal chemotype. We now describe 

physicochemical profiling, in vitro ADME, plasma exposure, and ex vivo and in vivo activities 

against Schistosoma mansoni for twenty new N,N′-diarylureas designed primarily to increase 

aqueous solubility, but also to maximize structural diversity. Replacement of one of the 4-fluoro-3-

trifluoromethylphenyl substructures of lead N,N′-diarylurea 1 with azaheterocycles and benzoic 

acids, benzamides, or benzonitriles decreased lipophilicity, and in most cases, increased aqueous 

solubility. There was no clear relationship between lipophilicity and metabolic stability, although 

all compounds with 3-trifluoromethyl-4-pyridyl substructures were metabolically stable. N,N′-
diaryl ureas containing 4-fluoro-3-trifluoromethylphenyl, 3-trifluoromethyl-4-pyridyl, 2,2-

difluorobenzodioxole, or 4-benzonitrile substructures had high activity against ex vivo S. mansoni 
and relatively low cytotoxicity. N,N-diaryl ureas with 3-trifluoromethyl-4-pyridyl and 2,2-

difluorobenzodioxole substructures had the highest exposures whereas those with 4-fluoro-3-

trifluoromethylphenyl substructures had the best in vivo antischistosomal activities. There was no 

direct correlation between compound exposure and in vivo activity.
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Schistosomiasis is a widespread tropical parasitic disease1; Schistosoma mansoni, S. 
haematobium and S. japonicum are the predominant pathogenic species.2–4 Praziquantel is 

the only drug used for treatment of schistosomiasis. Even so, praziquantel drug resistance is 

not yet widespread.4–7 We thus have a window of opportunity to identify a new 

antischistosomal drug. In this regard, several antischistosomal lead compounds have recently 

been identified by phenotypic screening of drug and chemical compound libraries.8–11 One 

of these was the symmetrical N,N′-diaryl urea MMV665582,9 a structural analog of 

triclocarban,12,13 an antibacterial agent used in detergents, cosmetics, and other products 

(Figure 1).

With an IC50 of 0.8 μM, MMV665852 is only 4-fold less potent than praziquantel against ex 
vivo S. mansoni and has a 64-fold in vitro selectivity index. A single 400 mg/kg oral dose of 

MMV665852 administered to S. mansoni-infected mice reduced worm burden by 53%. In 

an initial pharmacokinetic investigation of MMV665852, this symmetrical N,N′-diarylurea 

was characterized by a half-life of 4.7 h and Cmax of 4.4 μM M at a 46.3 mg/kg oral dose.9 

Thus, this very simple compound offers intriguing possibilities for further optimization, 

although this is tempered by its high Log P of 5.2, and the low aqueous solubility14 and 

potential pharmacological promiscuity12,13,15,16 of this compound class. Following the 

discovery of MMV665852, two subsequent studies17,18 established an initial SAR for this 

compound series: 1) substitution at positions 3 and 4 of the phenyl rings with H, F, Cl, CN, 

and CF3 groups was optimal; 2) substitution at positions 3 and 4 of the phenyl rings with 

OCH3, NH2 and other electron-donating groups diminished activity; 3) replacement of one 

of the phenyl rings with alkyl substituents diminished or abolished activity; 4) cyclization of 

the urea to imidazoline-2-ones abolished activity; and 5) replacement of the urea with 

carbamates, thioureas, sulfonamides, or oxalamides diminished or abolished activity. 

Concurrent with this work, we found that the symmetrical N,N′-diarylurea 1,19 a side-

reaction product formed in the synthesis of aryl hydantoins,20 had promising 

antischistosomal activity, better than that of MMV665582. We now describe 

physicochemical profiling, in vitro ADME, plasma exposure, and ex vivo and in vivo 
activities against S. mansoni for a number of analogs of 1 (2–20, Table 1) designed primarily 

to increase aqueous solubility, but also to maximize structural diversity.

Target N,N′-diarylureas 2 and 6–20 were prepared (Supporting Information) by reactions of 

phenyl isocyanates (Table 1 Ar = a, d, l, n) with the requisite anilines under three slightly 

different reaction conditions (Scheme 1). Phenyl isocyanates were prepared in situ by 

treatment of the precursor anilines with triphosgene. Target N,N′-diarylureas 3,21 4,22 and 5 
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were prepared by treatment of the corresponding anilines with 1,1′-carbonyldiimidazole 

(CDI) (Scheme 1).

We first consider the physicochemical and in vitro ADME properties of these analogs of 1 
(Table 1). The calculated polar surface area (PSA) values of between 41 and 93 Å2 indicate 

that the polarity of these compounds is unlikely to be a rate-limiting factor for membrane 

permeability and oral bioavailability.23 Symmetrical N,N-diaryl urea 1 had a high LogD7.4 

of 4.5, similar to that of 5.2 for MMV665852,9 and its kinetic solubility was very poor (<1.6 

μg/mL). The symmetrical azaheterocycle N,N-diaryl ureas 2, 3, and 4 were considerably 

more polar and more soluble at both pH 2 and 6.5 compared to 1. In contrast, the 

symmetrical 2,2-difluorobenzodioxole N,N-diaryl urea 5 had a similar LogD7.4 to that of 1 
and was not more soluble.

Substitution of one of the 4-fluoro-3-trifluromethylphenyl substructures of 1 with 

azaheterocycles 6–10 decreased lipophilicity, and with the exception of 8 and 9, increased 

solubility significantly. Replacing one of the 4-fluoro-3-trifluromethylphenyl substructures 

of 1 with benzoic acids (11, 12), benzamides (13, 14), a benzonitrile (15) or an 

acetophenone (16) decreased lipophilicity, and with the exception of 14, 15, and 16, all were 

more soluble than 1. Compounds where one of the 4-fluoro substituents were replaced with 

pyridine nitrogen atoms (18 vs. 1, 20 vs. 17, 19 vs. 15) were less lipophilic and marginally 

more soluble.

Twelve of twenty N,N-diaryl ureas (Table 1) had low intrinsic clearance values in human 

and mouse liver microsomes and three of these (1, 5, 17) were the most lipophilic of the 

series, possibly reflecting high protein binding in the microsomal test system. The eight 

N,N-diaryl ureas with intermediate to high intrinsic clearance contained either pyridine 

nitrogen atoms (4, 6–10) or primary carboxamide functional groups (13, 14). Notably, N,N-

diaryl ureas with 3-trifluoromethyl-4-pyridyl substructures (2, 18–20) were metabolically 

stable.

As a gatekeeping assessment of antischistosomal activity, the N,N′-diaryl ureas were tested 

against newly transformed schistosomula (NTS)24 (Table 2). At 10 μM, 9 out of 20 of the 

compounds killed the NTS. A subsequent concentration titration revealed NTS IC50 values 

ranging from 0.15 to 5.6 μM. Further assessment indicated that these compounds killed adult 

S. mansoni at a similar IC50 range of 0.18 to 3.3 μM. The aryl substructures (Table 1) in the 

active N,N′-diaryl ureas were 4-fluoro-3-trifluoromethylphenyl = 3-trifluoromethyl-4-

pyridyl > 2,2-difluorobenzodioxole > 4-benzonitrile. Notably, none of the new N,N′-diaryl 

ureas were more potent than 1 ex vivo.

To assess host cell cytotoxicity, the active N,N′-diaryl ureas were tested for growth 

inhibition of four human cell lines: human foreskin fibroblast (HFF), kidney (HEK293), 

hepatocyte (HC04), and B lymphocyte (RAJI) (Table 2). The HFF cell line was inhibited by 

6 out of 8 of the compounds with IC50 values ranging from 57 to 80 μM; the remaining cell 

lines were unaffected at compound concentrations up to 100 μM. Thus, these compounds 

appeared to have high antischistosomal selectivity, although the six compounds that 
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inhibited the HFF cell line were also among the most potent against ex vivo S. mansoni with 

IC50 values < 1 μM.

Single 100 mg/kg oral doses of the most active N,N′-diaryl ureas were administered to non-

infected mice to assess exposure (Table 3). For logistical reasons, we made the assumption 

that exposure profiles generated in non-infected mice give a reasonable estimation of 

exposure in S. mansoni-infected mice. Plasma concentrations of 1 increased until 2 h post-

dose after which they remained above 1 μM up to at least 48 h (Figure 2A). Similarly, 

plasma concentrations of 2 and 18 increased until about 4 h post-dose and then remained 

high for the duration of the 48 h post-dose sampling period. Based on the AUC values up to 

the last measured concentration, the overall systemic exposures of 2 and 18 were 

approximately 2–4-fold higher than that of 1. Absorption of 15 and 19 resulted in similar 

Tmax and Cmax values compared to 1, 2, and 18 (Table 1), however concentrations declined 

with a much shorter half-life than seen for either 1, 2, or 18 and were well below 1 μM by 

~18 h post-dose. Based on in vitro studies with liver microsomes, both 15 and 19 were not 

highly susceptible to cytochrome P450-mediated metabolism, so alternative in vivo 
degradation/clearance pathways are likely for these benzonitriles. Unfortunately, the basis 

for these differences in half-life cannot be determined based only on the oral exposure data 

and additional studies with intravenous dosing would be needed to differentiate between 

absorption, distribution, and clearance-related differences.

Following oral administration, 5, 17, and 20 were each very slowly absorbed and exhibited 

relatively flat profiles precluding the assessment of Tmax (Figure 2B). The shape of these 

profiles likely reflects the high dose and very poor aqueous solubility leading to very 

prolonged absorption. For these three 2,2-difluorobenzodioxole-containing N,N-diaryl ureas, 

plasma concentrations remained above ~5 μM during the entire 48 h sampling period. Based 

on AUC0-last values ranging from 679 to 2273 μM.h, the exposure of 5, 17, and 20 was much 

higher than that of 1 (394 μM.h) but comparable to that for 2 and 18 (953 and 1486 μM.h). 

From these data, we see a trend that N,N-diaryl ureas containing 3-trifluoromethyl-4-pyridyl 

and 2,2-difluorobenzodioxole substructures had the highest plasma exposures of the 

compounds tested.

In vivo antischistosomal activity was determined by measuring worm burden reduction 

(WBR) values following administration of single 100 mg/kg oral doses to S. mansoni-
infected mice (Table 3). None of the compounds tested showed high in vivo activity, but the 

three (1, 15, and 18) with moderate WBR values (37–50%) contained a 4-fluoro-3-

trifluoromethylphenyl substructure. We also found that at this same 100 mg/kg dose, 

MMV665852 had no activity (0% WBR). There was no direct correlation between plasma 

exposure and in vivo activity. For example, even though all compounds had Cmax levels an 

order-of-magnitude greater than their S. mansoni IC50 values, and with the exception of 15 
and 19, maintained high plasma concentrations for extended periods, their overall in vivo 
efficacy was weak to moderate with only 1 and 18 having WBR values of 40–50%. When 18 
was administered as four consecutive 80 mg/kg oral doses, the WBR of 53% was no better 

than that of 50% obtained with a single 100 mg/kg dose. Given that most of the compounds 

in this series are quite lipophilic (Log D >3), the disappointing in vivo efficacy despite high 

plasma exposure could be a reflection of high plasma protein binding and low unbound 
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concentrations with insufficient concentrations reaching the site of action within the worms 

to achieve the desired killing effect. Additional pharmacokinetic and pharmacodynamic 

studies are needed to better understand the relationship between plasma and/or tissue 

exposure and in vivo activity for this series of compounds. Even though none of the N,N-

diaryl ureas had high in vivo activity, it is useful to note that at this same 100 mg/kg dose, 

praziquantel also has a low WBR value of only 15%;25 however, a higher 400 mg/kg dose of 

praziquantel reduces worm burden by 96%.26

In summary, replacement of one of the 4-fluoro-3-trifluoromethylphenyl substructures of 1 
with azaheterocycles and benzoic acids, benzamides, or benzonitriles decreased lipophilicity, 

and in most cases, increased aqueous solubility. There was no clear relationship between 

lipophilicity and metabolic stability, although all N,N-diaryl ureas with 3-trifluoromethyl-4-

pyridyl substructures were metabolically stable. N,N′-diaryl ureas containing 4-fluoro-3-

trifluoromethylphenyl, 3-trifluoromethyl-4-pyridyl, 2,2-difluorobenzodioxole, or 4-

benzonitrile substructures had high activity against ex vivo S. mansoni and relatively low 

cytotoxicity. N,N-diaryl ureas with 3-trifluoromethyl-4-pyridyl and 2,2-

difluorobenzodioxole substructures had the highest exposures whereas those with 4-

fluoro-3-trifluoromethylphenyl substructures had the best in vivo antischistosomal activities. 

Finally, there was no direct correlation between compound exposure and in vivo activity.
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Highlights

• Expansion of antischistosomal N,N′-diaryl urea SAR.

• 3-Trifluoromethyl-4-pyridyl and 2,2-difluorobenzodioxole improve exposure.

• 4-Fluoro-3-trifluoromethylphenyl required for best antischistosomal activity.

Wu et al. Page 8

Bioorg Med Chem Lett. Author manuscript; available in PMC 2019 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
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Figure 2. 
Plasma concentration versus time profiles following oral administration of 100 mg/kg to 

non-infected male Swiss outbred mice. Symbols represent the mean of n=2 mice at each 

time point. Panel A shows the profiles for 1, 2, 15, 18, and 19. Panel B shows the profiles for 

5, 17, and 20.
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Scheme 1. 
Reagents and conditions: (a) N,N-diisopropylethylamine, CH2Cl2, rt, 12 h (2, 17, 18); (b) 

THF, 25–80 °C; 12 h (6–9, 19, 20); (c) CH3CN, 80 °C, 12 h (10–16); (d) CDI, THF, rt, 48 h 

(3, 4); (e) CDI, 1,2-dimethoxyethane, reflux, 16 h (5).
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