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BACKGROUND: OSA is a highly prevalent condition that is associated with a wide range of long-
term morbidities including metabolic, cardiovascular, and cognitive alterations, possibly via
activation of systemic inflammatory and oxidative stress pathways. Implementation of positive
airway pressure (PAP) is the first-line treatment for OSA, as well as for obesity hypoventilation
syndrome (OHS), its most severe phenotype. However, the molecular and cellular mechanisms
underlying OHS-induced morbidities and their response to PAP treatment remain unclear,
and could be mediated, in part, by OSA-induced epigenetic changes.

METHODS: Blood was collected before starting PAP treatment (PRE group), as well as 6 weeks
after PAP treatment (POST group) in 15 adult patients with OHS. DNA methylation profiles
were studied by methylated DNA immunoprecipitation coupled to microarrays (MeDIP-
chip) in six representative patients and further verified in a cohort of 15 patients by MeDIP-
quantitative PCR.

RESULTS: We identified 1,847 regions showing significant differential DNA methylation
(P < .001; model-based analysis of tiling arrays score, > 4) between the groups. Analysis of
biochemical pathways and gene networks demonstrated that differentially methylated regions
were associated with immune responses, and particularly with mechanisms governing gene
regulation by peroxisome proliferation-activated receptors (PPARs). Single-locus quantitative
PCR analysis revealed that DNA methylation was increased at the PPAR-responsive elements
(PPAREs) of eight genes in the post-treatment samples (PRE/POST fold changes:ABCA1, 3.11;
ABCG1, 1.72; CD36, 5.04; FABP4, 2.49; HMOX, 2.74; NOS2, 7.78; PEPCK, 9.27; and ADIPOQ,
1.73), suggesting that PAP treatment leads to an increase in DNA methylation at PPAREs,
possibly affecting the binding of the PPAR-g complex and downstream gene expression.

CONCLUSIONS: Our work provides initial evidence of epigenetic regulation particularly
involving metabolic pathways in patients with OHS who are responsive to PAP treatment.
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We postulate that differentially methylated regions in
blood monocytes may serve as potential biomarkers in
clinical practice for monitoring the disease and the
associated comorbidities.

The prevalence of obesity hypoventilation syndrome
(OHS) is likely to increase with high rates of severe
obesity.1 OHS is defined as daytime hypercapnia
(daytime PaCO2 $ 45 mm Hg) in an obese patient with
sleep-disordered breathing in the absence of any other
cause of hypoventilation.2 More than 90% of patients
with OHS have concomitant OSA. Approximately 9% to
20% of patients with OSA have OHS.3

Both OHS and OSA have been associated with long-term
morbidities including metabolic, cardiovascular, and
cognitive alterations, ultimately increasing mortality and
health-care costs.4 Previous studies indicated that chronic
intermittent hypoxia, a hallmark of OSA, induces
hyperlipidemia and insulin resistance as well as marked
cellular inflammatory changes that account for a substantial
proportion of OSA morbidities.5-11 Thus, improved
understanding of the cellular and molecular mechanisms
by which OSA affects physiological functions, and leads to
the development of the associated morbidities, could open
new venues for detecting, preventing, and treating them.

The current “gold standard” treatment for OSA and
OHS consists in the application of positive airway
pressure (PAP) during sleep.12-15 Indeed, there is now
ample evidence indicating the favorable impact of PAP
treatment on the outcome of nearly all of the associated
morbidities, such as neurocognitive changes,16,17

cardiovascular diseases,18,19 blood pressure,20,21 serum
lipid profiles,22 and insulin sensitivity and glucose
metabolism.23-27 However, the cellular and molecular
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mechanisms that underlie the beneficial effects of PAP
treatment remain to be determined.

Changes in epigenetic mechanisms may provide a
plausible explanation of the beneficial effects of PAP
treatment on OSA. For example, altered epigenetic
regulation has been implicated in the emergence of
metabolic dysfunction and atherosclerosis, two major
morbidities of OSA.28,29 Furthermore, considering the
prominent role of monocytes and macrophages in
OSA-induced morbidities,30-35 it is noteworthy that
monocyte/macrophage phenotype and function depend
highly on the microenvironment, and that their
activation, polarization, and inactivation involve
transcriptional regulation and chromatin remodeling.36

In this context, epigenetic mechanisms have been
implicated in the polarization of macrophages involved
in atherogenesis and tissue insulin resistance.29,37,38

Work from our laboratory has shown that exposures
to perturbations mimicking OSA in mice lead
to insulin resistance and a proinflammatory
macrophage phenotype, potentially involving
epigenetic modifications.10,36,39-41

On the basis of the aforementioned considerations
and since epigenetic signatures also hold promise as
potential biomarkers that can be translated into clinical
practice,42 we hypothesized that epigenetic changes are
present in OHS, and therefore conducted epigenomic
profiling of blood monocytes in patients with OHS
before and after PAP treatment. We identified regions
of differential DNA methylation that revealed specific
genomic loci and candidate biochemical pathways that
appear to be epigenetically dysregulated in hypercapnic
OSA and targeted by PAP treatment.
Materials and Methods
A detailed description of the materials and methods for this study is
provided as supplemental material (e-Appendix 1).

Patient Population and Sample Preparation

The patient population consisted of 15 adult patients who had received
a diagnosis of OHS. Apnea-hypopnea index (AHI) testing was done
before and 6 weeks after initiation of treatment, by overnight in-
laboratory polysomnography. All the participants provided written
informed consent and the research protocol was approved by the
research ethics board at the University of Chicago (protocol 10-702-
A-CR004). For each patient, blood was collected before starting PAP
treatment (PRE group), as well as 6 weeks after PAP treatment
(POST group). Peripheral blood mononuclear cells were isolated
by gradient centrifugation, the CD14þ monocytes fraction was
separated, and DNA was isolated.

Microarray-Based DNA Profiling

Fragmented DNA was immunoprecipitated with an antibody against
5-methylcytosine (AnaSpec, Inc.), according to the methylated DNA
immunoprecipitation (MeDIP) protocol.43 Immunoprecipitated DNA
was amplified using a adaptor-mediated PCR strategy, as described
elsewhere,44 and target was prepared and hybridized on Affymetrix
GeneChip human promoter array 1.0R (Affymetrix) and scanned.
Microarray data were processed as previously described.45 Data
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preprocessing consisted of probe sequence adjustment, robust
multichip averaging (RMA)46 background correction, quantile
normalization, and log2 transformation. Regions of differential
DNA methylation were identified using the model-based analysis of
tiling arrays47 algorithm. Networks and pathways significantly
enriched in the genes of interest were identified through Ingenuity
Pathway Analysis (IPA) (Ingenuity Systems). The significance of the
enrichment was calculated by Fisher’s exact test (right-tailed),
with a cutoff P value ¼ .05. The data set is available in the NCBI
journal.publications.chestnet.org
Gene Expression Omnibus (GEO) repository (accession number,
GSE73053).
Single-Locus Analysis

Microarray data were verified by single-locus analysis using SYBR
green-based real-time PCR analysis of the MeDIP DNA. Specific
primers for the candidate loci are provided as supplemental material
(e-Table 1).
Results

DNA Methylation Profiling

We selected a representative subgroup of six patients
with OHS who showed the largest improvements in
AHI before (PRE group) and after (POST group) PAP
treatment, out of 15 patients severely affected with OHS
and included in the study (Table 1 and e-Table 2). Mean
treatment adherence values for all patients who provided
studied samples (n ¼ 15) and for those who provided
samples selected for the microarray study (n ¼ 6) were
as follows: number of days used, 5.45 � 1.37 and
5.90 � 1.04 d/wk, respectively; percentage of days used,
88.92 � 15.32% and 97.45 � 4.09%, respectively; and
percentage of days used for more than 4 h: 67.71 �
25.04% and 81.05 � 17.64%, respectively. We assessed
DNA methylation profiles in blood monocytes by
MeDIP and interrogated large-scale profiles using
promoter arrays. All microarrays in the data set (n ¼ 12)
passed the technical quality controls and were included
in the analyses (e-Fig 1). Principal component analysis
(Fig 1A) showed two clearly independent clusters
containing the PRE (red) and POST (blue) samples. One
sample pair corresponding to the same patient (5-PRE
and 5-POST) clustered separately from the rest of the
samples. Post hoc review of demographic and clinical
records (e-Table 2) showed that this patient was the
youngest (41 years old) and the only subject among the
six subjects who had received a diagnosis of congestive
heart failure. Furthermore, one post-treatment sample
(1-POST) was clearly separated from the rest of the
samples. The patient providing this sample was the only
current cigarette smoker and was also the only patient
among those in the microarray study in whom type 2
diabetes mellitus was diagnosed. Despite the intragroup
variation, DNA methylation profiles distinguished
samples in the PRE and POST groups (Fig 1B).

We identified 1,847 significant differentially methylated
regions (DMRs) between the PRE and POST groups
(P < .001 and absolute model-based analysis of tiling
arrays score > 4; paired t test) (Fig 2A, e-Table 3).
Unsupervised clustering analysis showed that PRE and
POST group samples clustered together, based solely on
the DMRs (Fig 2B). DMRs with higher methylation in the
POST group were larger (PRE, 553.48 � 5.39 bases;
POST, 582.32 � 4.78 bases; P ¼ 6.5 � 10�5; t ¼ –4.01;
95% CI , –42.96 to –14.70; paired t test) (Fig 2C) and
contained more probes (POST, 16.09 � 0.15 probes/
region; PRE, 15.33� 0.13 probes/region; P¼ 7.4� 10�5;
t ¼ –3.97; 95% CI , –1.14 to –0.38; paired t test) (Fig 2D)
than those with higher methylation in the PRE group.We
did not detect significant differences in the distance of the
DMRs in each group to the transcription start site of the
nearest gene (mean distance: POST, 31,575.72 �
2,473.07 bp; PRE, 31,280� 2,729.61 bp; P¼ .949; t¼ 0.06;
95% CI, –8,885.27 to 9,476.06; paired t test) (Fig 2E).
Gene-Associated DMRs

DMRs located within a 2-kb range surrounding the
transcription start site are usually associated with
differences in gene expression of the cognate gene.48,49

Out of the full list of 1,847 DMRs, we selected 855 DMRs
that were located within such segments (e-Table 4). These
DMRs were associated with 3,905 annotated transcripts
(Genome Reference Consortium human genome [build
37]/human genome version 19 [GRCh37/hg19]
assembly) including 3,363 RefSeq (Reference Sequence)
genes and 542 noncoding RNAs (Fig 2F). We did not find
significant differences in the number of DMR-associated
RefSeq genes and noncoding RNAs showing higher DNA
methylation in the PRE and POST groups (P¼ .889; OR,
1.02; 95% CI, 0.84-1.22; Fisher’s exact test).

Pathways associated with retinoic acid receptor (RAR)
activation (P ¼ .015; Fisher’s exact test, right-tailed)
and biogenesis of mitochondria (P ¼ .043) were
overrepresented among DMRs with higher DNA
methylation in the PRE group (Fig 3A, e-Table 5). In
contrast, pathways related to cell cycle and proliferation,
as well as vitamin D receptor/retinoid X receptor (VDR/
RXR) activation (P¼ .015) and regulation by peroxisome
proliferation-activated receptor-a (P ¼ .033), were
overrepresented among DMRs with higher DNA
methylation in the POST group (Fig 3B, e-Table 5).
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TABLE 1 ] Characteristics of Patients Providing Samples for Full Data Set and Selected Samples for Microarray
Analysis

Characteristic Full Sample Set (n ¼ 15) Samples in Microarray Study (n ¼ 6)

Age, y 50.9 � 10.7 52.3 � 9.1

Sex 6 male/9 female 1 male/5 female

AHI, events/h TST

Pretreatment (PRE group) 85.0 � 30.9 91 � 28.5

Post-treatment (POST group) 11.3 � 11.4 3.8 � 3.3

Difference (PRE � POST) 73.6 � 31.2 87.3 � 28.2

4% ODI, events/h TST

Pretreatment (PRE group) 95.73 � 35.13 108.22 � 34.36

Post-treatment (POST group) 12.37 � 13.99 4.43 � 4.17

Difference (PRE � POST) 83.35 � 36.39 103.78 � 33.90

T90, min

Pretreatment (PRE group) 220.61 � 95.40 221.60 � 82.72

Post-treatment (POST group) 32.11 � 37.70 7.17 � 9.59

Difference (PRE � POST) 188.51 � 104.28 214.43 � 87.76

SpO2 nadir, %

Pretreatment (PRE group) 56.90 � 8.12 57.78 � 4.96

Post-treatment (POST group) 78.81 � 10.91 83.45 � 10.45

Difference (PRE � POST) 21.91 � 10.82 25.67 � 8.93

PaCO2, mm Hg

Pretreatment (PRE group) 50.91 � 7.11 48.35 � 2.48

Post-treatment (POST group) 42.82 � 6.58 41.03 � 4.74

Difference (PRE � POST) 8.09 � 4.63 7.32 � 3.20

BMI, kg/m2

Pretreatment (PRE group) 49.38 � 10.23 50.70 � 14.33

Post-treatment (POST group) 48.36 � 8.31 48.97 � 10.57

Difference (PRE � POST) 1.02 � 2.85 1.73 � 4.50

Smoking status 3 crt, 3 pst, 9 nvr 1 crt, 1 pst, 4 nvr

Hypertension 13/15 patients (86.7%) 4/6 patients (66.7%)

Type 2 diabetes mellitus 5/15 patients (33.3%) 1/6 patients (16.7%)

Congestive heart failure 6/15 patients (40.0%) 1/6 patients (16.7%)

Dyslipidemia 4/15 patients (26.7%) 1/6 patients (16.7%)

Data are shown as means � SD. crt ¼ current smoker; nvr ¼ never smoker; ODI ¼ oxygen desaturation index; POST group ¼ patients from whom blood
was collected 6 weeks after positive airway pressure treatment; PRE group ¼ patients from whom blood was collected before starting positive airway
pressure treatment; pst ¼ past smoker; SpO2 ¼ oxygen saturation as determined by pulse oximetry; T90 ¼ time spent at less than 90% oxygen saturation.
Importantly, unsupervised gene network analysis showed
that DMRs were associated with molecules with
reported roles in immune response, particularly for the
communication between immune cells (interferon-a, -b,
and -g; MHC class I and II; tumor necrosis factor family,
etc.) (Fig 3C). Furthermore, we found that several
DMRs with higher methylation in the POST group
corresponded to molecules involved in mechanisms of
gene regulation by peroxisome proliferation-activated
receptors (PPARs) and associated with cardiometabolic
diseases (Fig 3D).
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Single-Locus Analysis

Next, we assessed DNA methylation changes that occur
following PAP treatment in eight genes previously
identified as PPAR targets and that have a reported role
in inflammation and macrophage biology (e-Table 1).
We defined MeDIP-quantitative PCR-based assays for
these genes containing PPAR-responsive elements
(PPAREs) and interrogated samples from patients
studied by microarray analysis (n ¼ 6) as well as in a
second sample set (n ¼ 9) (e-Table 2). DNA methylation
[ 1 5 0 # 1 CHE S T J U L Y 2 0 1 6 ]
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Figure 1 – Differential DNA methylation profiles in PRE and POST groups. A, Principal component analysis was performed using the full microarray
data from PRE samples (red points) and POST samples (blue points). Five samples from the same group clustered together, with the exception of one
patient (Patient 5), whose PRE and POST samples clustered separately from the rest. Three principal components determine sample clustering: PC1
(10.5%, x axis), PC2 (9.92%, y axis), and PC3 (9.49%, z axis). B, Pairwise sample correlation was performed using significant DMRs (P < .001 and
MAT score > 4). Bidimensional unsupervised clustering was performed in samples from the PRE and POST groups. Correlation coefficients are shown
as a color gradient ranging from light blue (0.5) over white (0.75) to light pink (1.0). DMR ¼ differentially methylated region; MAT ¼ model-based
analysis of tiling arrays; PRE group ¼ blood samples collected from patients before starting positive airway pressure treatment; POST group ¼ blood
samples collected from patients 6 weeks after positive airway pressure treatment.
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Figure 2 – Characterization of differential DNA methylation between PRE and POST groups. A, Volcano plot of microarray data at probe level. The x
axis represents the magnitude of the difference in signal intensity between the PRE and POST groups for each probe in the microarray, expressed as fold
changes in log2 scale. Probes with increased microarray signals in POST and PRE groups had positive and negative values on the x axis, respectively.
The y axis represents the significance of the difference in signal intensity between the PRE and POST groups for each probe in the microarray, expressed
as the –log10-transformed P values. The vertical dashed red lines depict the cutoff values for the fold changes [log2(4) ¼ 2]. Probes showing significant
differences (P < .001 and fold change > 4) are shown in red. B, DNA methylation differences in the top 100 DMRs distinguished between the PRE and
POST groups. Samples belonging to the same group clustered together by unsupervised clustering based solely on the DNA methylation differences of
those 100 DMRs. Samples are accommodated in columns and DMRs in rows in the matrix. DNA methylation differences (expressed as z score) between
the groups for each DMR in each sample are represented by a color gradient ranging from blue (negative z scores, meaning higher DNA methylation in
the PRE group than in the POST group) through white (no differences) to red (positive z scores, meaning higher DNA methylation in the POST group
than in the PRE group). C and D, DMRs with higher DNA methylation in the POST group were longer (C) and contained more probes (D) than those
with higher DNA methylation in the PRE group (P < .0001, paired t test). E, Distance to TSS did not differ significantly between DMRs more highly
methylated in the POST and PRE groups (P ¼ .949; paired t test). The distance from the beginning of each region to the closest TSS is shown on the x
axis. Red and blue lines represent the PRE and POST groups, respectively. F, Association with RefSeq (yellow column portions) and ncRNAs (green
column portions) did not significantly differ between DMRs with higher DNA methylation in the POST or PRE groups (P ¼ .889; Fisher’s exact test).
ncRNAs ¼ noncoding RNAs; TSS ¼ transcription start site. See Figure 1 legend for expansion of other abbreviations.
was increased (fold changes [PRE/POST],> 1) in all genes
in the POST group in both sample sets (Fig 4), suggesting
that PAP treatment leads to an increase in DNA
methylation at PPAREs, possibly affecting the binding
of the peroxisome proliferation-activated receptor g
(PPARG) complex and downstream gene expression.

Demographic and Clinical Variables

We studied whether demographic and clinical variation
in the patients who provided our sample set influences
96 Original Research
the differential DNA methylation associated with
PAP treatment at the eight PPAREs. We evaluated
continuous variables: age, pretreatment AHI,
differences in AHI at pre- and post-PAP treatment,
PAP usage (mean of days used, percentage of days
used, and percentage of days used for more than 4 h),
and pre- and post-PAP treatment values for 4% oxygen
desaturation index, time spent at less than 90% oxygen
saturation, peripheral capillary oxygen saturation
nadir, PaCO2, and body mass index; as well as other
[ 1 5 0 # 1 CHE S T J U L Y 2 0 1 6 ]
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Figure 3 – Pathway and biological processes associated with DMRs. Biologically relevant gene interaction networks were identified by statistically
significant overrepresentation in genes associated with the DMRs. Pathways and biological processes associated with DMRs show higher DNA
methylation in the PRE group (red bars, panel A) and POST group (blue bars, panel B). Vertical orange dashed bars depicts the significance cutoff value
for the overrepresentation test [–log10(P ¼ .05) ¼ 1.3; hypergeometric test). C, DMR-associated gene networks. Genes associated with DMRs with higher
DNA methylation in POST and PRE samples are shown in red and green, respectively. Molecules with a reported function in immune response are
circled in purple. Molecules with a role in communication between immune cells are indicated with blue lines. D, Gene network corresponding to
mechanisms of gene regulation by peroxisome proliferation-activated receptors (PPARs) overrepresented in DMRs with high DNA methylation in the
POST group (shown in red). Molecules with a reported role in cardiometabolic diseases are circled in purple. Molecules associated with PPAR pathways
are indicated with blue lines. PPARA ¼ peroxisome proliferation-activated receptor a; RAR ¼ retinoic acid receptor; RefSeq ¼ Reference Sequence;
VDR/RXR ¼ vitamin D receptor/retinoid X receptor. See Figure 1 legend for expansion of other abbreviations.
discrete variables such as treatment modality, sex,
smoking status, and diagnosis of hypertension, type 2
diabetes mellitus, congestive heart failure, or
dyslipidemia.

Figure 5 illustrates the results of the correlation
analysis between the DNA methylation fold changes
(PRE/POST) and the continuous variables. We
detected a significant negative correlation (P < .05,
Spearman’s rank correlation test) at the PPARE of the
journal.publications.chestnet.org
ABCA1 gene and the initial AHI value (r ¼ �0.797,
P ¼ 1.8 � 10�3), as well as the differences in AHI at
pre- and post-PAP treatment (r ¼ –0.621, P ¼ .027).
In addition, we found a significant negative difference
at the PPARE of the FABP4 gene and the pre- and
post-PAP treatment differences in 4% oxygen
desaturation index (r ¼ –0.604, P ¼ .032) and time
spent at less than 90% oxygen saturation (r ¼ –0.576,
P ¼ .042) values, as well as a positive correlation at the
PPARE of the NOS2 gene with the pre- and post-PAP
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treatment differences in body mass index (r ¼ 0.776,
P ¼ 1.7 � 10�3).

Among discrete variables, we detected a significant
association with hypertension (HTN) at the PPARE of
the FABP4 gene. The medians of the HTN and no-HTN
groups were 1.73 and 0.02, respectively (mean ranks:
HTN ¼ 8, no HTN ¼ 4.5; U ¼ 22, Z ¼ –2.17, P ¼ .025,
r ¼ 0.61) (e-Fig 2).
Discussion
This study shows that in a cohort of patients severely
affected with OHS, extensive changes in DNA
methylation occur following implementation of PAP
therapy, and that among the PAP-responsive gene
pathways, PPAR-related genes appear to be particularly
responsive.

Before we discuss the potential implications of our
findings, several methodological considerations deserve
comment. First, we selected a cohort of patients with
particularly severe hypercapnic OSA (OHS) as opposed
to patients with eucapnic OSA, aiming to maximize
the probability of positive findings in both epigenetic
profiles and PAP-associated changes. Second, this study
did not aim to address the variability of changes in a
large population, or to identify and validate specific
biomarkers corresponding to favorable response to
treatment. Instead, the aim was to establish a proof of
concept for the presence of epigenetic changes in OHS,
whereby treatment of OSA by PAP and consequent
improvements in the severity of OSA would elicit
changes in epigenetic marks, and provide initial
98 Original Research
conceptual hypotheses that can be tested in future
studies. Third, the lack of a control group (ie, nontreated
patient sample) does not allow us to completely rule out
the possibility of other effects acting in parallel with PAP
treatment. Considering the large degree of phenotypic
variance in both the clinical presentation of OSA and the
risk for OSA-associated morbidities,50-53 the current
results would justify more detailed assessments of
specific subphenotypes to gain increased insights into
the potential pathways involved, and the role of
epigenetics in this context.

Inflammation is one of the major cellular mechanisms
affected by OSA,54 and monocyte/macrophage
polarization is clearly affected by this disease.30-35,55

Analysis of blood monocytes provides a low-invasive
approach to study cells that participate in the
inflammatory response. Previous studies have shown
that monocytes are activated in both OSA and other
sleep disorders,33,56-58 representing an appropriate
cell population to study the epigenetic regulation of
OSA-associated inflammatory responses. Further
studies are, however, needed to determine specific
epigenetic profiles in resident and bone marrow-
derived tissue macrophages and circulating monocytes,
and how each of these unique myeloid cell populations
is altered by OSA and PAP treatment.

We found that pathways associated with biogenesis of
mitochondria were overrepresented in regions with
decreased DNA methylation in the POST group,
suggesting potential activation on PAP treatment
(Fig 3A). Mitochondrial dysfunction was reported in
whole blood samples from patients with OSA, closely
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Figure 5 – Association with demographic and clinical variables. Matrix
shows the correlation coefficients with continuous variables. Spearman’s
correlation test was performed for each variable and the fold changes
(POST/PRE) for DNA methylation in each target gene. r correlation
coefficients are shown as a color gradient from red (negative correlation)
through white (no correlation) to blue (positive correlation).
AHI ¼ apnea-hypopnea index; ODI ¼ oxygen desaturation index;
PAP ¼ positive airway pressure; SpO2 ¼ oxygen saturation as deter-
mined by pulse oximetry; T90 ¼ time spent at less than 90% oxygen
saturation.
correlated with the degree of oxygen desaturation or
severity of OSA and potentially reflecting excessive
oxidative stress.59 Concordant with these findings, our
results may suggest an epigenetically mediated
mechanism by which PAP treatment attenuates the
oxidative stress levels observed in patients with OHS.30

Moreover, PPAR pathways were overrepresented in
regions with higher DNA methylation in the POST
group (Figs 3B, 3D). PPARs are ligand-activated
transcription factors that have a major role in lipid
metabolism and inflammation.60,61 In particular, the
journal.publications.chestnet.org
PPARG pathway represents one of the major molecular
and biochemical pathways leading the transition from
M2-like phenotypes to M1 in macrophages.36,62,63 Here,
we observed increased DNA methylation after PAP
treatment at PPAREs of eight PPARG-targeted genes
(Fig 4). Thus, our microarray-based and single-locus
results suggest that epigenetic (dys)regulation of PPAR
pathways in macrophages may operate as a major
component of OSA, leading to inflammation and
macrophage activation. Moreover, we report here that
PAP treatment leads to changes in the epigenetic
profiles of the genes associated with the PPAR pathways,
which may account for the reductions in inflammation
occurring in patients with OHS who received this
treatment.64 Further studies are warranted to unravel
the molecular mechanisms involved in the epigenetic
regulation of PPAR pathways in macrophages, and
how they are affected by OSA and PAP treatment.

Variation of DNA methylation profiles among the
samples within the same group was a common feature in
both the microarray-based and single-locus analyses.
Since the sample size in this study was limited, we
could not formally stratify the patients according to
clinical and demographic variables. Instead, we
sought to identify associations that can influence the
extent of variation in DNA methylation profiles on
PAP treatment. Interestingly, we found that DNA
methylation variation in only one gene (ABCA1)
correlated significantly (P < .05, Spearman’s rank test)
with initial AHI value and AHI pre/post treatment
variation (Fig 5). Whereas initial AHI represents
the severity of OSA before treatment, AHI pre-/post-
treatment is a potential measure of PAP efficacy. Even
though this is clearly beyond the scope of the present
study, we hypothesize that assessing DNA methylation
in blood monocytes may provide useful biomarker
signatures that allow prediction of the efficiency of PAP
treatment and its outcomes.53,65 Longitudinal studies
assessing DNA methylation of this and other genes in
larger populations of patients with OSA will be required
to formally discover and validate such potentially
predictive markers.

Our findings suggest that PAP may act on metabolic
function via epigenetic processes, specifically DNA
methylation at PPAREs.66-71
99
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