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ABSTRACT Conformational entropy is expected to contribute significantly to the thermodynamics of structural transitions in
intrinsically disordered proteins or regions in response to protein/ligand binding, posttranslational modifications, and environ-
mental changes. We calculated the backbone (dihedral) conformational entropy of oligoglycine ðGlyNÞ, a protein backbone
mimic and model intrinsically disordered region, as a function of chain length (N ¼ 3, 4, 5, 10, and 15) from simulations using
three different approaches. The backbone conformational entropy scales linearly with chain length with a slope consistent with
the entropy of folding of well-structured proteins. The entropic contributions of second-order dihedral correlations are predom-
inantly through intraresidue f-j pairs, suggesting that oligoglycine may be thermodynamically modeled as a system of indepen-
dent glycine residues. We find the backbone conformational entropy to be largely independent of global structural parameters,
like the end-to-end distance and radius of gyration. We introduce a framework referred to herein as ‘‘ensemble confinement’’ to
estimate the loss (gain) of conformational free energy and its entropic component when individual residues are constrained to
(released from) particular regions of the f-j map. Quantitatively, we show that our protein backbone model resists ordering/
folding with a significant, unfavorable ensemble confinement free energy because of the loss of a substantial portion of the
absolute backbone entropy. Proteins can couple this free-energy reservoir to distal binding events as a regulatory mechanism
to promote or suppress binding.
INTRODUCTION
Over the past 20 years, it has become clear that the classical
structure-function paradigm is not a universal property of the
eukaryotic proteome (1–3). Although structure dictates func-
tion for a large class of proteins like enzymes, a vast array of
proteins employ highly dynamic, intrinsically disordered
regions (IDRs) to carry out diverse functions, many of which
are involved in regulation and control of signaling networks
(1–5). Modular proteins, like nuclear transcription factors,
rely on a combination of order and disorder to function,
and a coupling between these regions provides additional
regulatory mechanisms to fine tune binding affinity and
downstream signal cascades (6–10). Mutations in IDRs can
abrogate control of signaling networks, eventually leading
to disease onset (3,11,12). A seemingly ubiquitous and func-
tionally necessary property of IDRs is their ability to undergo
structural transitions in response to a number of factors,
including protein/ligand binding, posttranslational modifica-
tions, and environmental changes (3,5,10,13–17). These
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transitions may proceed to more ordered or disordered states
but can also result in a redistribution of the disordered, struc-
tural ensemble (3,10,15,16). To successfully target drugs to
IDRs or genetically engineer IDRs with certain therapeutic
properties to treat various diseases, we need amore complete
understanding of the thermodynamics associated with IDR
conformational transitions.

IDRs directly responsible for facilitating protein interac-
tions primarily do so with relatively short, contiguous amino
acid sequences that become more ordered or structured upon
binding. These functional elements or sequence motifs have
been referred to as short linear motifs, eukaryotic linear
motifs, and molecular recognition features (MoRFs)
(3,12,18–20). Short linear motifs are typically around 3–10
amino acids (19), whereasMoRFs are longer at 10–70 amino
acids and, by definition, form secondary structures upon
binding (18). Transcription factors are enriched with these
motifs (21). p53, for example, contains multiple MoRFs
with individual MoRFs being able to bind many partners
by forming different secondary structures (22), thus allowing
it to serve as a hub protein or master regulator in signaling.

Protein, DNA, and small-molecule binding can also
induce structural transitions or a redistribution of the
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structural ensemble in regions distal to the binding interface.
For example, Amemiya et al. (23) and Zea et al. (17) found
that ligand binding increased or decreased disorder in re-
gions that were typically less than 10 amino acids long
from analyses of protein structure databases. There are
also numerous examples in which proteins use conforma-
tional transitions in IDRs (or simply disorder in general)
in an allosteric or cooperative mechanism to effect down-
stream signaling (7,10,15,24). These observations prompted
the development of new allostery models based on the
ensemble nature (i.e., structural diversity) of IDRs
(10,15,25,26). Propagation of the allosteric signal does not
necessarily require the folding or unfolding of an IDR;
rather, it can also be achieved through the remodeling of
the disordered ensemble (10).

Of particular interest is the potential thermodynamic
coupling between effector and allosteric sites facilitated
by IDR structural transitions. Conformational entropy is a
critical property to describe or understand the thermody-
namic origin of IDR structural transitions and how such
transitions can modulate protein binding at distal sites
(10,14,15). Recently, nuclear magnetic resonance methods
have been developed to probe binding-induced conforma-
tional entropy changes in structured proteins. This so-called
‘‘entropy meter’’ (27,28), which relates changes in backbone
and side-chain motions to changes in conformational en-
tropy, has highlighted the importance of conformational en-
tropy in suppressing or driving ligand binding (27,29–31).
As a result, one emerging concept is that protein structural
plasticity, or the capacity of a protein to alter its internal
structural fluctuations, provides a reservoir of entropy and
thus free energy that is available to the protein to carry
out its function (32). So we consider IDRs as significant
conformational entropy reservoirs from which free energy
may be withdrawn or deposited via structural transitions
(e.g., due to binding). With respect to protein or ligand bind-
ing, these transitions would mediate the thermodynamic
connection between allosteric and effector sites. Qualita-
tively, our understanding of how proteins can tune confor-
mational entropy to modulate IDR function continues to
improve (10,14,15), yet a complete, quantitative description
is lacking.

In this article, we are primarily interested in the thermody-
namics underlying structural transitions of short IDRs, which
we expect will provide insight into the numerous biological
processes that rely on order-disorder transitions of IDRs of
varying lengths and establish a framework to develop a
more quantitative theory of IDRs as free-energy reservoirs.
We use oligoglycine (GlyN , where N is the chain length) as
a protein backbone mimic and model IDR (33–36). IDRs
are often enriched in glycine residues (13,37); a high glycine
content has been associated with more compact IDRs (38),
and stretches of oligoglycine can be found in large disordered
domains (7,39). We begin first by calculating the conforma-
tional entropy of oligoglycine from backbone f and j dihe-
2800 Biophysical Journal 114, 2799–2810, June 19, 2018
dral angles sampled by molecular dynamics (MD) as a
function of chain length (N ¼ 3 to 15 residues) comparing
the quasi-harmonic analysis (QHA) (40,41), Boltzmann
quasi-harmonic (BQH) (42–44), and mutual information
expansion (MIE) methods (45). Because proteins containing
IDRs likely impose structural constraints on the disordered
region and order-disorder transitions may alter the global
structural properties of an IDR, we calculate the backbone
conformational entropy of Gly15 as a function of end-to-
end distance and radius of gyration. Then, we consider how
much conformational entropy is lost or gained as free energy
when oligoglycine is constrained to or released from partic-
ular conformational states.
Theory

We briefly review the theory underlying the approaches we
use to calculate the conformational entropy of various
glycine polypeptides. We refer to conformational entropy
as the contribution to the system entropy that depends
only on the spatial coordinates of the solute molecule.
Although this article primarily focuses on the dihedral angle
contributions to conformational entropy (discussed in detail
in Materials and Methods), the theories presented below are
general and may be used with any coordinate system and
any number of coordinates. Where appropriate, we refer
the reader to more detailed discussions, and for consistency,
we follow the notation of (44–46).

Solute entropy and coordinate system

The entropy of a solute can be expressed in terms of the
probability density, rðp; rÞ, of Cartesian coordinates ðrÞ
and conjugate momenta ðpÞ as follows:

Ssolute ¼ �kB

ZZ
rðp; rÞln½hsrðp; rÞ�dpdr; (1)

where kB is Boltzmann’s constant, h is Planck’s constant, and
s is the number of coordinate-momenta pairs that define solute
phase space. In Cartesian coordinates, s ¼ 3N, whereN is the
number of solute atoms. Because of independence, rðp; rÞ
can be factored into marginal distributions of p and r, which
upon expanding Eq. 1 gives the following:

Ssolute ¼ �kB

Z
rðpÞln½hsrðpÞ�dp� kB

Z
rðrÞln½rðrÞ�dr

¼ Sp þ Sr;

(2)

with Sp and Sr being the momentum and conformational
contributions to Ssolute, respectively. By separating Ssolute,
neither Sp nor Sr is correctly dimensioned because of the
factor hs, and only upon their addition or considering
changes in entropy will Ssolute have the correct units (46).
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It is often more convenient or appropriate to describe the
conformation of a protein or polypeptide in an internal
coordinate system, for example, using bonds, angles, and
torsions (i.e., BAT coordinates) (47–49). Under a transfor-
mation of Cartesian coordinates to internal coordinates
ðqÞ, the conformational entropy becomes

Sr ¼ Sint þ Sext þ kBlnhJi; (3)

where Sint is the conformational entropy associated with the
3N � 6 internal coordinates that specify the relative atomic
positions and is given by

Sint ¼ �kB

Z
rðqÞln rðqÞdq: (4)

Sext is the entropic contribution of the remaining six
coordinates associated with the overall translation and
rotation of the molecule that specify the absolute positions
of the atoms. hJi is the ensemble average of the Jacobian
of the coordinate transformation, r/q. Expressions for
Sext and the Jacobian in the BAT coordinate system can
be found in (46). In BAT coordinates, the ‘‘hard’’ bond
and angle coordinates may be treated essentially indepen-
dent of or separable from the ‘‘soft’’ torsions/dihedrals
(47,48,50), and therefore, their contributions to Sint are
additive. Depending on the system, it may be reasonable
to assume that an isothermal process (e.g., protein bind-
ing) does not significantly perturb the bond and
angle vibrations, which may be approximated at their
equilibrium positions. Then, from Eqs. 2 to 4, the change
in solute entropy can be approximated as DSsolute ¼
DSrzDSintzDSdihed.
A number of methods have been developed to estimate

Sint or DSint (44,51). Below, we briefly sketch the QHA
(40,41), BQH (42–44), and MIE (45) methods used in this
article.
QHA and BQH analysis

In the QHA method, the distribution of internal coordinates,
rðqÞ, around an average conformation is assumed to be
multivariate Gaussian. This allows the entropy integral in
Eq. 4 to be evaluated analytically, giving

SintzSQHA ¼ 1

2
kBln½ð2peÞsjs j �; (5)

where js j is the determinant of the variance-covariance ma-
trix of q about hqi, and s ¼ 3N � 6 is the number of internal
coordinates or perhaps some subset of coordinates. Equation
5 can be expressed in terms of a correlation matrix, C, by
factoring out the diagonal terms from s (42–44) as follows:

SQHA ¼ 1

2
kB

Xs

i¼ 1

lnð2pesiÞ þ 1

2
kBlnjC j : (6)
The first term involves a sum over the variance ðsihsiiÞ
of each internal coordinate, whereas the second term
accounts for correlations among coordinates through the
determinant, jC j . Each element of the s� s matrix C is
sij=

ffiffiffiffiffiffiffiffi
sisj

p
, where sij is the covariance of coordinates i and

j. Coordinate variances and the correlation matrix can be
calculated from the trajectories of atomic positions from
an MD simulation.

Assuming Gaussian distributions of q can produce a poor
approximation of Sint when, for example, BAT coordinates
are used because torsion/dihedral angle probability distribu-
tions are typically multimodal (52). To improve estimates of
Sint and account for non-Gaussian distributions, Di Nola
et al. (42) proposed replacing the first term in Eq. 6 with
the Boltzmann entropy, such that

SintzSBQH ¼ �kB
Xs

i¼ 1

Z
rðqiÞlnrðqiÞdqi þ 1

2
kBlnjC j ;

(7)

where i indexes one of the internal coordinates ðqiÞ. The
probability distribution, rðqiÞ, and associated entropy inte-
gral (Eq. 4) can be numerically approximated from one-
dimensional histograms collected over an MD trajectory.
In QHA and BQH, the first terms in Eqs. 6 and 7 represent
a first-order approximation of conformational entropy under
the assumption of independent coordinates, whereas the
second term contributes a negative correction because of
second-order correlations among coordinates.

MIE

MIE (45) is a nonparametric approach that approximates the
probability density of all coordinates in terms of a set of
lower-order density distributions using the generalized Kirk-
wood superposition approximation from liquid theory. As a
simple example, the second-order approximation of a three-
dimensional density function of coordinates q1, q2, and q3 is

rð2Þðq1; q2; q3Þ ¼ r2ðq1; q2Þr2ðq1; q3Þr2ðq2; q3Þ
r1ðq1Þr1ðq2Þr1ðq3Þ

; (8)

where the numerator includes joint distributions ðr2Þ of all
possible pairs of coordinates, and the denominator includes
the marginal distributions ðr1Þ of each coordinate. Unlike
liquid theory, the marginal and joint distributions are treated
as unique and depend on the coordinates or coordinate pairs,
respectively. Substituting Eq. 8 into Eq. 4 and expanding the
logarithm gives the second-order MIE approximation of Sint:

SintzSMIE
2 ¼ S1ðq1Þ þ S1ðq2Þ þ S1ðq3Þ � I2ðq1; q2Þ

� I2ðq1; q3Þ � I2ðq2; q3Þ; (9)

where the mutual information (MI) term is defined as I2ðqi;
qjÞ ¼ S1ðqiÞþ S1ðqjÞ� S2ðqi; qjÞ. The general functional
Biophysical Journal 114, 2799–2810, June 19, 2018 2801
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forms of S1 and S2 are given by Eq. 4 but with their sub-
scripts indicating that the entropy integral is over a marginal
or joint distribution, respectively. Note that the sum over the
S1 terms in Eq. 9, which we will refer to as SMIE

1 , is equiva-
lent to the first term in Eq. 7. Whereas the QHA and BQH
methods account for correlations among coordinates via a
harmonic approximation, MIE estimates the entropic contri-
bution to Sint due to correlations directly from the joint
distributions that define the MI terms. For a more complete
discussion of MIE, its application to a number of molecular
systems, and its generalization to higher-order approxima-
tions with any number of internal coordinates, we refer to
(45). In this article, we will at most consider a third-order
approximation of rðqÞ with the corresponding estimate of
Sint given by

SintzSMIE
3 ¼ SMIE

2 þ I3ðq1; q2; q3Þ: (10)

For a system with more internal coordinates, Eq. 10 will
include an I3 term for each coordinate triplet. The various
marginal and joint distributions of internal coordinates can
be estimated by constructing the necessary histograms
from MD simulation trajectories. Although in principle
rðqÞ may be approximated at higher orders, practically it
may become computationally prohibitive to achieve the
necessary conformational sampling required to converge
estimates of SMIE

3 even for small systems because of the
sparseness of the three-dimensional histograms. This prob-
lem may be mitigated to a certain extent by using coarser
histogram bins or alternative binning strategies.

We next present a general framework to estimate the
change in free energy and conformational entropy when
an ensemble of disordered polypeptide structures is
restricted or confined to particular conformational states.
We use this process, hereafter referred to as ensemble
confinement, to study the backbone contributions to the
thermodynamics associated with order-disorder transitions
of short IDRs.
Ensemble confinement free energy

We start by assuming that there areM states defined through
a partition of conformation space. The probability of
observing a conformation in state j is pj. Each state has an
internal energy ðUjÞ and intrastate entropy ðSintraj Þ, with the
latter accounting for the degeneracy of state j. The confor-
mational entropy, or entropy of the ensemble excluding
rotation and translation, may be decomposed into two terms
(53,54) as follows:

Sens ¼
XM
j¼ 1

pjS
intra
j � kB

XM
j¼ 1

pjlnpj ¼ Sintra þ Sstate; (11)

where Sstate is the entropy arising from the partition of
conformation space into the M predefined states. The free
2802 Biophysical Journal 114, 2799–2810, June 19, 2018
energy of restricting or confining the ensemble to a single
state i is DAi ¼ DUi � TDSi, where DUi ¼ Ui � hUi and
DSi ¼ Sintrai � Sens. Substituting Eq. 11 into the expression
for DAi and rearranging the terms gives the following:

DAi ¼ Ui � TSintrai þ
XM
j¼ 1

pj

�
� Uj þ TSintraj � kBTlnpj

�
(12)

Using the fact that

pj ¼ eS
intra
j =kB�bUj

Z
; (13)

where Z is the partition function that normalizes pj, Eq. 12
simplifies to

DAi ¼ �kBTlnpi: (14)

Equation 14 indicates that the (ensemble) confinement
free energy, DAi, is almost always positive or unfavorable
because pi%1. The average confinement free energy across
the possible states is

hDAi ¼
XM
i¼ 1

piDAi ¼ �kBT
XM
i¼ 1

pilnpi ¼ TSstate; (15)

which highlights the entropic nature of the confinement free
energy. Although any collective variable may be used to
define state i, we follow the approaches of (54,55) by
defining the conformational state of oligoglycine in terms
of backbone dihedral angles. As detailed in the Materials
and Methods, we calculate the dihedral angle contribution
to the conformational entropy ðSintÞ of successively longer
oligoglycines using the QHA, BQH, and MIE approaches,
and using the framework presented above, we quantify the
extent of conformational entropy lost or free energy gained
upon confining the ensemble of oligoglycine structures to
particular conformational states.
MATERIALS AND METHODS

We use oligoglycine as a model to study the backbone contributions to the

thermodynamics associated with order-disorder transitions of short IDRs.

Oligoglycine (GlyN , where N is the number of residues or chain length)

is a protein backbone mimic and model disordered polypeptide

(33,35,36,56–58). Tracts of oligoglycine can be found in IDRs (59), and

high glycine content has been associated with compact IDRs (38). Using

MD simulations, we sample the structural ensemble of successively longer

oligoglycines and calculate the dihedral angle contributions to the absolute

conformational entropy as a function of chain length. Units of entropy (eu)

are cal/mol/K. Because a protein containing an IDR may impose some

structural constraints on the disordered region, we consider these entropy

estimates as a function of end-to-end distance and radius of gyration. Using

the ensemble confinement framework presented in Theory, we determine

the extent of backbone entropy lost or gained when oligoglycine is con-

strained to or released from particular conformational states. Below, we
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provide details on the oligoglycine model, MD simulation parameters/

protocol, and the application of the various methods discussed in Theory

to calculate the backbone dihedral conformational entropy. Data, analysis

scripts, and simulation input files are available upon request.
System and simulations

Gly3, Gly4, Gly5, Gly10, and Gly15 were built in an extended conformation

with neutral acetyl and N-methylamide caps using XLeap in AmberTools

(60). Each oligoglycine was solvated in a box of transferable intermolecular

potential with three points water molecules with at least a 10 Å padding to

the walls of the box. Simulations were performed with nanoscale molecular

dynamics 2.9 and 2.10 (61) with Amber (Assisted Model Building with En-

ergy Refinement) ff12SB (60) at constant temperature (300 K) and pressure

(1 atm). MD trajectories of Gly3 and Gly10 were taken from a previous

study (62), and the same parameters were used here to simulate the remain-

ing oligoglycines. Briefly, a steepest descent minimization was performed

for each system followed by production simulations with a 2 fs time step

using the velocity Verlet algorithm. A Langevin thermostat and barostat

were used to maintain temperature and pressure, respectively. A cutoff of

12 Å was used for nonbonded interactions, and the van der Waals interac-

tions were attenuated with a switching function beginning at 10 Å. Full

electrostatic interactions were calculated every two steps using particle

mesh Ewald method with a 1 Å grid spacing. To be consistent with Amber’s

nonbonded exclusion policy, the 1–4 scaling was set to 0.8333. Bonds

involving hydrogen atoms were fixed with SHAKE. Gly3, Gly4, Gly5,

Gly10, and Gly15 were simulated for 300, 550, 995, 950, and 1150 ns,

respectively, after dropping at least 20 ns for equilibration. Coordinates

were saved for analysis every 1 ps.
Dihedral angle conformational entropy

From simulations of each oligoglycine, we construct trajectories of the

f and j backbone dihedral angles, neglecting the nearly rigid u angles,

and calculate the backbone conformational entropy (Theory). We refer to

the entropy estimates from QHA, BQH, and MIE as SQHA, SBQH, and
SMIE, respectively. By considering only dihedral angles, we are assuming

that they, as a set, contribute to the conformational entropy, Sint (Eq. 4), in-

dependent of the bonds and angles that define the BAT coordinate system.

That is, we assume any changes in the entropic contributions of dihedral-

bond and dihedral-angle correlations are negligible. SQHA, SBQH, and

SMIE were calculated as a function of oligoglycine length.

To calculate SQHA and SBQH using Eqs. 6 and 7, dihedral angles were

represented on the unit circle in the complex plane, which is convenient

for constructing the variance-covariance ðsÞ matrix and subsequently the

correlation matrix ðCÞ for angular coordinates (63). Each element of s is

computed as sij ¼ hZiZ�
j i� hZiihZ�

j i, where Z is the complex representa-

tion of dihedral i or j, and Z� is the complex conjugate. The diagonal terms

were factored out of s to give C (see Theory), which can then be directly

used in Eqs. 6 and 7 to calculate SQHA and SBQH, respectively. For SBQH, his-

tograms of each dihedral angle were constructed on the range ½�p;p� using
180 bins to evaluate the exact Boltzmann entropy expression in Eq. 7. Note

that the summations in Eqs. 6 and 7 are over the 2Nres dihedral angles,

where Nres is the number of glycine residues, and that the correlation matrix

has dimensions of 2Nres � 2Nres.

With Eqs. 9 and 10, the second- ðSMIE
2 Þ and third- ðSMIE

3 Þ order MIE ap-

proximations of the full entropy were calculated from the marginal and joint

distributions of the 2Nres dihedral angles using the program Algorithm for

Computing Configurational ENTropy (45). Marginal and two-dimensional

probability distributions were approximated with histograms using 120 bins

over the range ½ � p;p�. An analysis of SMIE
2 versus bin size suggested that

120 bins in each dimension were sufficient to converge SMIE
2 to within

� 1–2 eu of those calculated with 110 and 130 bins for all oligoglycines.

However, SMIE
3 is much more sensitive with respect to the number of
bins, and due to the sparseness of the 3D histograms, 20 bins were used

in each dimension to calculate SMIE
3 . We also explored the use of an alter-

native, second-order MIE truncation strategy in which each residue in

oligoglycine is assumed independent of one another. Here, SMIE
res is calcu-

lated using only the MI terms for the f and j angles within each residue

and ignoring those terms that include dihedrals from different residues.

SMIE
res will always be greater than or equal to SMIE

2 because the latter includes

more MI terms that may potentially reduce SMIE
res . Equality is achieved only

when each residue represents an independent subsystem. However, depend-

ing on the strength of correlated dihedral motions and the desired accuracy,

SMIE
res may be a reasonable and less computationally demanding approxima-

tion of SMIE
2 because histograms of all pairs of dihedrals are not needed. In a

similar fashion, if no third or higher-order correlations exist between dihe-

drals, then SMIE
2 ¼ SMIE

3 and so on.

To assess convergence, all entropy estimates were monitored as a func-

tion of simulation time. SMIE
2 and to a greater extent SMIE

3 showed poorer

convergence than SQHA, SBQH, and SMIE
res , especially for Gly10 and Gly15.

To improve accuracy, functions of SMIE
2 and SMIE

3 with respect to time (t)

were individually fit to a hyperbolic function, f ðtÞ ¼ a� b=t, for all oligo-

glycines in a manner similar to the approaches of (45,64). The asymptotes

(a) were used as an additional approximation of SMIE
2 and SMIE

3 and are

referred to as SMIE;fit
2 and SMIE;fit

3 , respectively. To estimate statistical uncer-

tainty, simulation trajectories for each oligoglycine were split into five

contiguous blocks, and the various entropy estimates were calculated for

each block with the exception of the third-order MIE entropy estimates,

which showed poor convergence. We take the SD of each entropy estimate

across the blocks as a conservative error estimate. This approach was simi-

larly taken for subsequent thermodynamic analyses.
Effects of structural constraints on entropy
estimates

A preliminary analysis of the Gly10 and Gly15 MD trajectories suggested

that constraints on the end-to-end distance (R), which is defined between

carbons in the acetyl and N-methylamide caps, and on the radius of gyration

ðRgÞ only weakly affected the dihedral angle populations and therefore

likely the dihedral conformational entropy. Because of a lack of conforma-

tional sampling from the explicit solvent MD simulation, particularly at

values of R and Rg far from average, eight implicit solvent simulations of

Gly15 were performed with end-to-end distances restrained to 5, 10, 15,

20, 25, 30, 35, and 40 Å using a harmonic bias potential and the Amber

ff12SB force field. Simulations were conducted at constant temperature

(300 K) and volume with nanoscale molecular dynamics 2.11 (61) using

the default Generalized Born implicit solvent model (65,66) and a descre-

ening cutoff of 12 Å.

A force constant of 25 kcal/mol/Å2 was used for the harmonic bias po-

tential to restrain R. Simulations were run for 1 ms each with 10 ns dropped

for equilibration. The trajectories were further partitioned by selecting con-

formations with an Rg centered at 6, 7, 8, 9, 10, 11, 12, and 1350:5 Å. SMIE
res ,

SMIE;fit
2 and SMIE;fit

3 were calculated as a function of R and Rg. Additionally,

we compute the one-dimensional entropy ðSMIE
1 Þ from the marginal distri-

butions of each dihedral angle (i.e.,
P2Nres

i¼1 S1ðqiÞ in Eq. 9).
Ensemble confinement free energy

We use the ensemble confinement framework presented in Theory to

estimate the change in free energy ðDAiÞ upon limiting the ensemble of

oligoglycine structures to some conformational state, i. To define the refer-

ence state, we follow an approach similar to that in (54,55,67). We begin by

partitioning the two-dimensional f-j map (Fig. 1) of a glycine residue

into six regions, labeled 1–6, that correspond to a high-energy region

(1), b-sheet (2), right (3) and left (4) ppII, and right (5) and left (6) a-helix

regions. For a given oligoglycine conformation sampled from an

MD simulation, each residue, j˛½1.Nres�, is assigned to one of these six
Biophysical Journal 114, 2799–2810, June 19, 2018 2803



FIGURE 1 f-j free-energy map. For illustrative purposes, a two-dimen-

sional histogram of f,j dihedral angles was constructed across all residues

from an MD trajectory of Gly15. The histogram was converted to a free-en-

ergy map relative to the most populated bin. Regions with values greater

than 3.5 kcal/mol are colored white. The map is partitioned into six regions

that are used to define a conformational state of oligoglycine. States 2, 3, 4,

5, and 6 correspond to the b, ppIIR, ppIIL, aR, and aL regions, respectively.

State 1 corresponds to a high-energy region (Hi).
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regions given its f-j pair. The conformational state (i) is then defined as i ¼
fd1; d2; .; dNres

g, where dj takes on values of 1–6. The free-energy

change of confining oligoglycine to state i is calculated using Eq. 14 as

DAi ¼ � kBTlnpi. For Gly3�5, pi was calculated as pi ¼ hi=nf , where hi
is the number of times oligoglycine visited conformational state i, and nf
is the total number of observations or simulation frames.

Although pi may be accurately estimated for the short oligoglycines, it is

much more challenging to obtain a statistically meaningful or physically

representative estimate of pi for long oligoglycines because, for example,

there are 615 possible conformational states of Gly15, most of which are

transiently populated. Therefore, we treated Gly10 and Gly15 as being

composed of two and three independent yet connected systems of Gly5,

respectively. pi can then be factored into joint probability distributions of

the Gly5 blocks, and approximated as follows:

piz~pi ¼
�

pðfd1�5gÞpðfd6�10gÞ; for Gly10
pðfd1�5gÞpðfd6�10gÞpðfd11�15gÞ for Gly15:

For Gly10 and Gly15,DAi is evaluated using the approximate distribution,epi , with Eq. 14. The average confinement free energy over all observed

conformational states is given by Eq. 15 as hDAi ¼ PM
i¼1piDAi. Although

~pi was used to estimate DAi for Gly10 and Gly15, we use the observed prob-

abilities, pi ¼ hi=nf , to calculate the weighted average, hDAi, in Eq. 15 to

limit any systematic error introduced by assuming that they can be decom-

posed into independent blocks of Gly5. Additionally, to study the effects of

interresidue correlations, we computed hDAi for all oligoglycines assuming

each residue is independent of the others [i.e., pizpðd1Þpðd2Þ/pðdNres
Þ].

We refer to these estimates as hDAires and those based on the joint-proba-

bility distributions ðpi or ~piÞ as hDAioligo.
FIGURE 2 Backbone conformational entropy scaling with oligoglycine

chain length or number of glycine residues. Superscripts indicate the

method used. For the MIE entropy estimates, subscripts denote the order

of approximation or truncation strategy. SMIE;fit
2 and SMIE;fit

3 are taken as

the asymptotes of hyperbolic fits of SMIE
2 and SMIE

3 , respectively, as func-

tions of time (see Materials and Methods for more details).
RESULTS

We wish to better understand the thermodynamics associ-
ated with conformational transitions of short IDRs and in
particular the free energy afforded to such transitions in
the form of backbone conformational entropy. We begin
by calculating the dihedral angle contribution to the abso-
lute conformational entropy (hereafter simply referred to
2804 Biophysical Journal 114, 2799–2810, June 19, 2018
as conformational entropy) of successively longer oligogly-
cine polypeptides (Gly3�5, Gly10, and Gly15). Comparing
the QHA, BQH, and MIE methods, we calculated the
conformational entropy (S) from the f and j backbone dihe-
dral angles sampled from MD simulations. Superscripts are
used to denote the method used to calculate the conforma-
tional entropy, and for the MIE approach, subscripts indicate
the order of approximation or truncation strategy (see Mate-
rials and Methods). Entropy units (eu) are cal/mol/K. Then,
we investigate the conformational entropy as a function of
end-to-end distance (R) and radius of gyration ðRgÞ of
Gly15 using restrained, implicit solvent simulations because
IDR-containing proteins likely impose global, structural
constraints on the disordered region, and order-disorder
transitions may alter R and Rg. Lastly, we consider the extent
of conformational entropy lost or gained as free energy
when oligoglycine is constrained to or released from partic-
ular conformational states.
Conformational entropy scaling with chain length

Fig. 2 shows the scaling of SQHA, SBQH, SMIE
res , SMIE;fit

2 , and
SMIE;fit
3 as a function of oligoglycine chain length. SMIE;fit

2

and SMIE;fit
3 are taken as the asymptotes of hyperbolic fits

of SMIE
2 and SMIE

3 , respectively, as functions of simulation
time for each oligoglycine individually. As discussed in
Materials and Methods, SMIE

res is an alternative, second-order
MIE approximation in which each glycine residue is treated
as independent of the others by ignoring MI terms that
include dihedrals from two different residues. The data
plotted in Fig. 2 are provided in Table S1. The various en-
tropy estimates in Fig. 2 all scale linearly with the number
of residues or chain length, with slopes ranging from
3:86--5:57 eu/res or 1:16--1:67 kcal/mol/res at 300 K. Slopes
were estimated from least-square fits, all of which yielded
values of R2R0:99.

The difference or range in slopes can be attributed to the
assumptions or approximations underlying each method
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used to calculate conformational entropy (Theory). Here,
SQHA provides an upper bound on the true conformational
entropy, as it effectively merges conformational states
(52). As expected, SQHA >SBQH >SMIE

res >SMIE;fit
2 >SMIE;fit

3

across chain lengths because each method in the given order
more accurately captures the multimodal distributions of
and/or correlations among dihedral angles than those pre-
ceding. With respect to the MIE approach, MI terms may
effectively reduce the entropy if there are substantial corre-
lations among dihedrals along the oligoglycine backbone.
We find that differences among SMIE

res , SMIE;fit
2 , and SMIE;fit

3

are at most � 1:1 eu for Gly3, Gly4, and Gly5, suggesting
that the most significant correlations exist between f and
j dihedrals within each residue and that SMIE

res largely ac-
counts for the entropic contributions of these correlations.
For Gly10 and Gly15, differences between SMIE

res and SMIE;fit
2

increase slightly to � 2 eu, whereas a much greater differ-
ence is observed between SMIE;fit

2 and SMIE;fit
3 . This large dif-

ference between the latter two is likely due to insufficient
conformational sampling and the large bin widths required
to estimate SMIE

3 . All second-order MI terms or entropies
were less than 0.02 eu for pairs of dihedrals separated by
two or more residues in Gly15, suggesting that long-range
correlations are minimal in GlyN systems even at this longer
chain length (data not shown). That significant correlations
do not span multiple glycine residues is consistent with
various estimates of the persistence length being on the
order of 1–2 residues for denatured or unfolded proteins
(34,68–70). When excluding SMIE;fit

3 for Gly15, linear fits
of SMIE

res , SMIE;fit
2 , and SMIE;fit

3 yielded slopes of 4.73, 4.52,
and 4.11 eu/res, respectively.

For the oligoglycine systems considered here, we find that

SQHA, SBQH, and SMIE
res converge considerably faster with

respect to time than SMIE
2 and, to a greater extent, SMIE

3 . As
an example, Fig. 3 shows the trajectories of these entropy
estimates for Gly15. We also provide trajectories of the
MIE entropies for all oligoglycines in Fig. S1. Hyperbolic

fits of SMIE
2 and SMIE

3 with respect to simulation time yielded
FIGURE 3 Trajectories of Gly15 conformational entropy estimates with

respect to simulation time. The dashed lines indicate the asymptotes,

SMIE;fit
2 and SMIE;fit

3 , of the hyperbolic fits of SMIE
2 and SMIE

3 , respectively,

and are colored accordingly.
R2R0:99 for all oligoglycines, allowing us to probe the
convergence properties of these entropy estimates. For

Gly3�5, sampling was sufficient to converge SMIE
2 and SMIE

3

to within less than 1 eu of their asymptotic values (SMIE;fit
2

and SMIE;fit
3 , respectively). However, for Gly15, we estimate

that it would take � 5:9 and � 34:6 ms of simulation time

to converge SMIE
2 and SMIE

3 to within 1 eu of their asymptotes

(Table S1). The hyperbolic nature of the SMIE
2 and SMIE

3 tra-
jectories may only be relevant for the oligoglycine systems
considered here, in which the residues are highly uncoupled.

However, future work is warranted to determine if SMIE
2 and

SMIE
3 follow hyperbolic trajectories for other short, disor-

dered polypeptides, as relatively short simulations could
be run to establish the initial scaling of the hyperbola after
which a least-square fit could be performed to conveniently

extract the asymptotes of SMIE
2 and SMIE

3 . Error estimates of

SQHA, SBQH, and the various first- and second-order MIE en-

tropies were all less than 1 eu with the exception of SMIE;fit
2

for Gly15 which was � 2 eu (Table S1).
Effects of structural constraints on dihedral
conformational entropy

To determine if structural transitions altering the end-to-end
distance (R) or radius of gyration ðRgÞ of an IDR elicit a

significant entropic change, we performed microsecond im-
plicit solvent simulations of Gly15 constrained to eight
different values of R. We further partitioned conformations
by Rg as described in Materials and Methods. Then, we

calculated the conformational entropy using the MIE

approach as a function of R and Rg. We find that SMIE
1

(one-dimensional entropy), SMIE
res , SMIE;fit

2 , and SMIE;fit
3 are

largely independent of R and Rg (Fig. 4; Tables S2 and

S3) with the greatest effects observed at their extreme
values. Furthermore, these entropy estimates are also very
consistent with those obtained from the unconstrained,
explicit solvent simulations (Table S1). It appears, then,
that global, structural changes in R or Rg produce only a

minimal change in backbone entropy when compared to
the absolute conformational entropy that could potentially
be lost or gained up such structural transitions. In the
following section, we explore the extent of conformational
entropy lost as free energy when individual residues are con-
strained to particular regions of the f-j map (i.e., local
versus global constraints).
Ensemble confinement free energy

The ensemble confinement free energy ðDAiÞ presented in
Theory and Materials and Methods estimates the gain
(loss) of conformational free energy when oligoglycine is
constrained to (released from) a conformational state (i),
which is defined by assigning each glycine residue to one
Biophysical Journal 114, 2799–2810, June 19, 2018 2805



FIGURE 4 MIE conformational entropy estimates of Gly15 as a function of end-to-end distance (left) and radius of gyration (right). Implicit solvent sim-

ulations of Gly15 were performed with the distance between terminal carbons constrained to eight different values with a harmonic bias potential. Trajectories

were then partitioned by radius of gyration. The first-order MIE approximation is given as
P2Nres

i¼1 S1ðqiÞ (i.e., the sum over one-dimensional terms in Eq. 9).

Probability distributions of end-to-end distance and radius of gyration from explicit solvent simulations of Gly15 are shaded in gray.
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of six regions of the f-j map (Fig. 1). Equation 14 gives
DAi ¼ � kBTlnpi, where pi is the probability of observing
oligoglycine in state i. For Gly3�5, pi is calculated directly
from the observed frequencies of state i from simulation,
whereas for Gly10 and Gly15, pi is approximated by assuming
that they are composed of two and three independent, contig-
uous blocks of Gly5, respectively. DAi calculated in this
manner is denoted as DAoligo

i . Additionally, to study the ef-
fects of correlations among residues, we calculate DAi by
factorizing pi as the product of the probabilities of each res-
idue being in one of the six predefined regions of the f-j
map. These estimates carry the superscript ‘‘res.’’ An
ensemble average of DAoligo

i and DAres
i across observed

conformational states (Eq. 15) gives hDAioligo ¼ TSstateoligo and
hDAires ¼ TSstateres , respectively, where Sstate is the entropy
related to the number of possible oligoglycine conformers.

We find that both hDAioligo and hDAires scale linearly with
oligoglycine chain length (Table 1). Least-square fits of
TABLE 1 Average Confinement Free Energy and

Corresponding Conformational Entropy as a Function of

Oligoglycine Chain Length

Gly hDAioligo hDAires Sstateoligo Sstateres

3 2:87 ð0:01Þ 2:89 ð0:02Þ 9.57 9.63

4 3:80 ð0:02Þ 3:85 ð0:03Þ 12.67 12.83

5 4:72 ð0:01Þ 4:82 ð0:02Þ 15.73 16.07

10 9:44 ð0:03Þ 9:74 ð0:03Þ 31.47 32.47

15 14:20 ð0:11Þ 14:70 ð0:04Þ 47.33 49.00

Slope 0.95 0.99 3.15 3.28

R2 0.99 0.99

Free energies are reported in kcal/mol and entropy is measured in

cal/mol/K. Slopes were estimated from linear least-squares fit. For

Gly3�5, hDAioligo was calculated from the joint distributions of f-j dihedral

state assignments across residues, whereas those for Gly10 and Gly15 were

approximated using the joint distributions of two and three consecutive seg-

ments of Gly5, respectively. hDAires is estimated from the product of the

marginal distributions of the per residue state assignments (see Materials

and Methods). Errors in the ensemble confinement free energy were

approximated as the SD of hDAioligo or hDAires calculated from five equally

sized blocks of the MD trajectory. These are provided in parentheses. Sstateoligo

and Sstateres are calculated from hDAioligo and hDAires, respectively, with
Eq. 15.
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hDAioligo and hDAires yielded similar slopes of 0.95 and
0.99 kcal/mol/res, respectively. The corresponding slopes
of Sstateoligo and Sstateres are 3.15 and 3.28 eu/res, which represent
a significant fraction of the absolute conformational entropy
per residue (Table S1). In other words, a large portion of the
conformational entropy, on average, is lost as free energy
when the structural ensemble is confined to particular states.
For example, the slope of Sstateres is roughly 69% of that esti-
mated for SMIE

res , and the remaining entropy can be attributed
to the internal entropy within the conformational states,
which is often referred to as vibrational entropy (53,54).
The slope of Sstateoligo is 85% of that measured for SMIE;fit

3 and
80% when excluding Gly15. Whereas for well-structured
proteins the loss of backbone vibrational entropy upon bind-
ing may dominate that associated with the loss of the num-
ber of rotamers, the opposite may be true for IDRs. That
hDAioligo and hDAires exhibit similar scaling profiles with
respect to oligoglycine length again suggests that oligogly-
cine can be reasonably modeled as a system of uncoupled
glycine residues over the length scale considered here.
These results were also independently confirmed using the
program CENCALC (71).

Next, we provide more detail on the results for Gly15.
Over the � 1:1 ms simulation, Gly15 visited roughly
400,000 unique conformational states. Fig. 5 (left) shows a
plot of DAoligo

i across the visited states, i, which are arbi-
trarily numbered and ordered by increasing values of
DAoligo

i . DAoligo
i is large and unfavorable and spans a range

of � 10–20 kcal/mol, corresponding to the most and least
energetically favorable or probable states, respectively.
The characteristic sigmoidal shape of DAoligo

i shows that
there are a large number of somewhat energetically degen-
erate conformational states with very similar values of
DAoligo

i . Conformational states with the lowest values of
DAoligo

i are characterized by a higher polyproline II content
(Fig. 5, right), whereas those states with the highest values
are composed of residues more equally proportioned across
the six major regions of the f-j map (Fig. 1). Interestingly,
the confinement free energy is insensitive to a-helical
content.



FIGURE 5 (Left) Gly15 confinement free energy

as a function of conformational states (i). The ver-

tical bar chart is a histogram of DAoligo
i values.

(Right) A fraction of residues falling within the

six partitions of the f-jmap (see Fig. 1) are shown

as a function of the average confinement free en-

ergy ðDAÞ taken over a sliding, nonoverlapping

window of 100 conformational states, ordered by

increasing values of DAoligo
i . Awindowing average

was taken to reduce noise and is different than the

weighted average, hDAioligo, which is taken across

all conformations.
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DISCUSSION

The ability of an IDR to undergo structural transitions
is key to disorder-mediated recognition and allostery
(10,14,15). Toward providing bounds on the thermody-
namics associated with such transitions, we consider the
conformational entropy and free energy of oligoglycine, a
model IDR and protein backbone model. We began first
by calculating the absolute backbone conformational en-
tropy of oligoglycine as a function of chain length over a
biologically relevant range using the QHA, BQH, and
MIE methods. The conformational entropy is significant,
and all methods consistently report a linear scaling of back-
bone conformational entropy with chain length (Fig. 2), yet
with different slopes. Recently, Towse et al. observed a
linear scaling of backbone conformational entropy with
chain length (up to�400 residues), albeit with considerable
spread, from a large-scale analysis of 807 structured pro-
teins in the Dynameomics MD data set (72), suggesting
that this linear relationship may be robust with respect to
chain length and sequence space. We find that SMIE

res , which
scales at � 1:4 kcal/mol/res, captures the most significant
entropic contributions from pairwise dihedral correlations
along the oligoglycine backbone.

Disorder-to-order transitions, commonly observed in
short IDRs on the order of � 10 amino acids that bind
target proteins, necessitate a significant loss of conforma-
tional entropy (or gain of free energy). We estimate the
loss of conformational entropy ðDSÞ from the absolute
conformational entropy scaling profiles in Fig. 2. The
MIE estimates yield TDS ¼ 1:16–1.42 kcal/mol/res at
300 K, which is consistent with the loss of entropy upon
folding of well-structured proteins reported from a number
of different experimental and computational studies
(67,72,73). The ensemble confinement free energies,
hDAires and hDAioligo, which implicitly account for intra-
chain and chain-solvent enthalpic interactions, also scale
linearly with chain length with slopes of 0.94 and
0.99 kcal/mol/res, respectively. Although of similar magni-
tude, these slopes are slightly less than those based on the
absolute backbone entropy because, by definition, each
conformational state retains internal entropy. From an anal-
ysis of 103 polypeptide-protein complexes, London et al.
(74) found that polypeptide-protein interfaces use signifi-
cantly more main-chain/main-chain hydrogen bonds than
larger protein-protein interfaces. The protein backbone ap-
pears equipped to provide, at least partially, compensating
enthalpic interactions to promote folding upon binding or
recognition.

Conversely, order-to-disorder transitions, which occur
in response to allosteric effector binding and environ-
mental changes (13,16,17,23), permit the protein back-
bone access to the disordered ensemble with a
concomitant, substantial increase in conformational en-
tropy (�hDAioligoz� 14 kcal/mol for Gly15) and change
in functional state. The entropic expansion of conforma-
tion space resulting from local protein unfolding has
been proposed as a general allosteric mechanism
(10,15,16,75) and a possible mode of targeting IDRs
with small molecules (76). Lastly, protein/ligand binding
and changes in cellular environment can remodel the
disordered structural ensemble of an IDR (10) (e.g.,
extended versus collapsed disorder). We found that the
conformational entropy of Gly15 is largely independent
of end-to-end distance and radius of gyration, suggesting
that backbone conformational entropy does not oppose
ensemble remodeling—a property that may be necessary
for certain types of disorder-mediated allostery.

IDRs as entropic reservoirs

Wand and co-workers proposed that the residual conforma-
tional entropy of proteins provides an entropic reservoir that
may be energetically coupled to ligand binding (32,77).
Evidence continues to mount that supports this idea
(29–32,77). Changes in conformational entropy primarily
attributed to changes in side-chain dynamics or fluctuations
have been shown to promote or suppress the binding of
structured proteins to their targets. The ability of zinc to
allosterically inhibit homodimeric CzrA (chromosomal
zinc-regulated repressor) binding to DNA is a particularly
interesting example (30). Upon binding DNA, there is an
increase in side-chain motion in CzrA that was estimated
to be a significant contribution to the total favorable change
in entropy. When bound, zinc appears to prevent this favor-
able change in entropy by preventing an increase in side-
chain dynamics when binding to DNA, thus decreasing
CzrA:DNA binding affinity.
Biophysical Journal 114, 2799–2810, June 19, 2018 2807
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In well-structured proteins, the protein backbone may not
have the structural plasticity or capacity to alter its dynamics
to the extent observed for side chains (31,77). That is, in
well-structured proteins, side chains may represent an
entropic (energetic) reservoir. Analogously, extending this
concept to IDRs, we may consider the protein backbone
as an entropic reservoir from which free energy may be
extracted or deposited through IDR order-disorder transi-
tions that alter the backbone conformational entropy.

To illustrate, we consider an idealized, disorder-mediated
model of allostery (Fig. 6) that parallels the zinc-binding
negative regulation of CzrA discussed above. In this
example, a transcription factor (TF) composed of a DNA-
binding domain and a regulatory domain (RD) binds to
DNA, resulting in an order-to-disorder transition in the
RD. The entropic expansion associated with the unfolding
of RD contributes favorably to binding ðDA1Þ. A cofactor
(CF) can decrease the affinity of the transcription factor
for DNA (i.e., DDA ¼ DA3 � DA1 ¼ DA4 � DA2 > 0)
either by binding to and stabilizing the RD ðDA2Þ, thus pre-
venting the entropically favorable structural transition of
RD, or by destabilizing the TF:DNA complex by reducing
the conformational entropy of RD ðDA4Þ. In either
case, the increase in the free energy or chemical potential
of the CF:TF:DNA complex shifts the equilibrium to favor
the state in which the transcription factor is not bound
to DNA (Fig. 6, bottom left) in a manner dependent on
the concentration of CF. Taking Gly15 as a model for
RD, we can approximate a bound on the decrease in the af-
finity across the possible confined states of Gly15, as
0<DDA< hAioligo ¼ TSstateoligoz� 14 kcal/mol (Eq. 15).
Although we have clearly neglected a number of (compen-
satory) thermodynamic contributions needed for a more
physically representative model, our goal with this example
FIGURE 6 Thermodynamic cycle of an idealized transcription factor

composed of a DNA-binding domain and regulatory domain (RD), exhibit-

ing disorder-mediated, negative allostery. Upon binding DNA, the RD un-

dergoes an order-to-disorder transition that entropically promotes binding.

A cofactor may bind to the RD and prevent the favorable increase in confor-

mational entropy (bottom right), thus decreasing the binding affinity of the

transcription factor for its target DNA sequence. To see this figure in color,

go online.
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is to illustrate the concept of the protein backbone as a free-
energy reservoir and the potentially significant energetic/
entropic contribution of IDR order-disorder transitions to
binding.
CONCLUSIONS

In this article, our goal is to illustrate that the conformational
entropy of the protein backbone represents a significant
source of free energy that proteins may exploit through
conformational transitions of IDRs as a means to regulate
protein binding and, ultimately, function. We believe that
our oligoglycine model provides an upper bound on the
amount of conformational entropy potentially gained or
lost as free energy when folding or unfolding of IDRs is
coupled to binding. Lastly, we note that the development
of force fields for simulations of intrinsically disordered pro-
teins is an active field, as such systems continue to challenge
the accuracy of existing force fields (78). Previously, we
found that the solvation thermodynamics of Gly2�5 calcu-
lated from simulations with the CHARMM (Chemistry at
Harvard Macromolecular Mechanics) 36 (79) and Amber
ff12SB (60) force fields were very consistent (62) despite
the two generating markedly different structural ensembles.
In the future, we plan to investigate whether the conforma-
tional entropy estimates studied in this article are similarly
insensitive to differences or perturbations in the structural
ensemble of the same disordered polypeptide model.
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71. Suárez, E., N. Dı́az, J. M�endez, and D. Suárez.ba. 2013. CENCALC: a
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