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Abstract

We present Interactome INSIDER, a tool to link genomic variant information with structural 

protein-protein interactomes. Underlying this tool is the application of machine learning to predict 

protein interaction interfaces for 185,957 protein interactions with previously unresolved 

interfaces, in human and 7 model organisms, including the entire experimentally determined 

human binary interactome. Predicted interfaces exhibit similar functional properties as known 

interfaces, including enrichment for disease mutations and recurrent cancer mutations. Through 

2,164 de novo mutagenesis experiments, we show that mutations of predicted and known interface 

residues disrupt interactions at a similar rate, and much more frequently than mutations outside of 

predicted interfaces. To spur functional genomic studies, Interactome INSIDER (http://

interactomeinsider.yulab.org) enables users to identify whether variants or disease mutations are 

enriched in known and predicted interaction interfaces at various resolutions. Users may explore 

known population variants, disease mutations, and somatic cancer mutations, or upload their own 

set of mutations for this purpose.
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INTRODUCTION

Protein-protein interactions facilitate much of known cellular function. Recent efforts to 

experimentally determine protein interactomes in human1 and model organisms2–4, in 

addition to literature curation of small-scale interaction assays5, have dramatically increased 

the scale of known interactome networks. Studies of these interactomes have allowed 

researchers to elucidate how modes of evolution affect the functional fates of paralogs4 and 

to examine, on a genomic scale, network interconnectivities that determine cellular functions 

and disease states6.

While simply knowing which proteins interact with each other provides valuable 

information to spur functional studies, far more specific hypotheses can be tested if the 

spatial contacts of interacting proteins are known7. In the study of human disease, it has 

been demonstrated that mutations tend to localize to interaction interfaces and mutations on 

the same protein may cause clinically distinct diseases by disrupting interactions with 

different partners6,8. However, the binding topologies of interacting proteins can only be 

determined at atomic resolution through X-ray crystallography, NMR, and more recently 

cryo-EM9 experiments, limiting the number of interactions with resolved interaction 

interfaces.

To study protein function on a genomic scale, especially as it relates to human disease, a 

large-scale set of protein interaction interfaces is needed. Thus far, computational methods, 

such as docking10 and homology modeling11, have been employed to predict the atomic-

level bound conformations of interactions whose experimental structures have not yet been 

determined. However, But docked models are not yet available on a large scale, and while 

homology modeling has been used to produce models at scale12, it is only amenable to 

interactions with structural templates (<5% of known interactions). Together, co-crystal 

structures and homology models comprise the currently available pre-calculated sources of 

structural interactomes, covering only ~6% of all known interactions (Fig. 1a–b).

Here, we present Interactome INSIDER (INtegrated Structural Interactome and genomic 

Data browsER), a tool for functional exploration of human disease on a genomic scale 

(http://interactomeinsider.yulab.org). Interactome INSIDER is based on a structurally-

resolved, proteome-wide human interactome. We assembled this resource by building an 

interactome-wide set of protein interaction interfaces at the highest resolution possible for 

each interaction. We compiled structural interactomes by calculating interfaces in 

experimental co-crystal structures and homology models, when available. For the remaining 

~94% of interactions, we applied a machine learning framework to predict partner-specific 

interfaces by applying recent advances in co-evolution- and docking-based feature 

construction13,14. Interactome INSIDER combines predicted interaction interfaces for 

185,957 previously un-resolved interactions (including the full human interactome and 7 

commonly studied model organisms) with disease mutations and functional annotations in 

an interactive toolbox designed to spur functional genomics research. It allows users to find 

enrichment of disease mutations at different scales: in protein interaction domains, in 

residues, and through atomic 3D clustering in protein interfaces.
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RESULTS

To build Interactome INSIDER, we first constructed an interactome-wide set of protein 

interaction interfaces. While there are well-established methods for predicting whether or 

not two proteins interact15,16, we focused on interactions that have been experimentally 

determined, but whose interfaces are unknown (Supplementary Note 1). For this task, there 

is a rich literature exploring the potential of many structural, evolutionary, and docking-

based methods to predict protein interaction interfaces. However, so far, none of these 

methods have been used to produce a whole-interactome dataset of protein interaction 

interfaces (Supplementary Note 2).

We used ECLAIR (Ensemble Classifier Learning Algorithm to predict Interface Residues), 

a unified machine learning framework, to predict the interface of protein interactions. 

ECLAIR leverages several complementary and proven classification features, including 

sequence-based biophysical features, structural features, and recently proposed features for 

predicting binding partner-specific interfaces, including co-evolutionary17,18 and docking-

based metrics14 (Supplementary Note 3, Supplementary Figs. 1–2). Unfortunately, many 

protein-protein interactions have missing features (especially structural features). In fact, this 

type of non-random missing-feature problem is present in many biological prediction 

studies, and cannot be adequately resolved by commonly-used imputation methods. To 

address this issue, ECLAIR is structured as an ensemble of 8 independent classifiers, each 

covering a common case of feature availability. This unique structure of ECLAIR enables it 

to be applied to any interaction, while using the most informative subset of available features 

for that interaction (Supplementary Note 4–5, Supplementary Figs. 3–4).

We comprehensively optimized hyperparameters for ECLAIR using a recently published 

Bayesian method, the tree-structured Parzen estimator approach (TPE)19, which allowed us 

to simultaneously tune up to 8 hyperparameters for each sub-classifier (Supplementary Note 

4). We trained and tested each ECLAIR sub-classifier using a set of known protein 

interaction interfaces, and observed that interfaces can be predicted by the single, top-

performing sub-classifier available for each residue (Supplementary Note 4, Supplementary 

Fig. 5). Sub-classifier performance increases with the number of features used. We observe 

an area under the ROC curve (AUROC) of 0.64 for our top sequence-only sub-classifier and 

AUROC of 0.80 for our top sub-classifier using both sequence and structural features. In 

total, we used ECLAIR to predict the interfaces of 185,957 interactions with previously 

unknown interfaces, including for 115,576 human interactions (Supplementary Fig. 5). 

Specifically, residues classified by ECLAIR with a High or Very High interface potential 

have a precision of 0.69, and >90% of all 115,576 human interactions with predicted 

interfaces in Interactome INSIDER have 1 or more residues that fall into these categories. 

We supplemented known structural interfaces from co-crystalized proteins and homology 

models with our predictions to create structural interactomes at both the atomic and residue 

levels (Fig. 2a) in 7 model organisms and human (including all 122,647 human 

experimentally-determined binary interactions reported in major databases; see Online 

Methods). We used this resource to explore human disease with Interactome INSIDER.
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Comprehensive evaluation of predicted interfaces

We established that our predictions are of high quality through both machine learning and 

biological evaluation. We first evaluated the trade-offs between false positive rate and true 

positive rate, and between precision and recall for each of the 8 independent sub-classifiers 

that compose ECLAIR. As expected, we find that as more informative features are added to 

subsequent classifiers, the areas under the ROC and precision-recall curves increase, 

justifying the use of classifiers trained on more features for residues where this information 

is available (Supplementary Fig. 6).

We next compared ECLAIR to several other prediction methods through two independent 

validations. First, we used several readily available predictors20–24 to predict interfaces for 

interactions in our testing set. We find that for the set of interactions for which all classifiers 

can predict, ECLAIR performs as well or slightly better than these methods by measures of 

precision, recall, true positive rate and false positive rate (Fig. 2b, Supplementary Fig. 7). 

Finally, we applied ECLAIR to a standard external benchmark set of protein interaction 

interfaces25 which has been used to evaluate the performance of 10 other interface prediction 

methods26. We find that ECLAIR outperforms all benchmarked methods in accuracy, and is 

comparable to the top performers in all other metrics (Supplementary Table 1). Furthermore, 

ECLAIR is applicable to any interaction, while methods in this benchmark rely on single-

protein structure inputs, making them much less applicable to genome-wide studies. In fact, 

86.1% of interactions without structural features contain at least 1 predicted interface residue 

at a ECLAIR score corresponding to a precision ≥ 0.6.

We also performed >2,000 mutagenesis experiments to measure the rate at which population 

variants in our predicted interfaces disrupt interactions compared to variants within known 

co-crystal interfaces and non-interfaces (see Material and Methods). Using our high-

throughput yeast two-hybrid assay27, we find that mutations in our predicted interfaces 

break their corresponding interactions at a significantly higher rate than those known to be 

away from the interface and at similar rates to mutations in known interfaces. Since it is 

known that mutations at protein interfaces are more likely to break interactions6,27, our 

experimental results indicate that there is rich functional signal in our ECLAIR predictions 

(Fig. 2c).

Functional annotation of disease mutations in structural interactomes

Interactome INSIDER is a tool for identifying functionally enriched areas of protein 

interactomes, and for browsing our multi-scale structural interactome networks: 198,503 

protein interactions whose interfaces have been either experimentally determined, homology 

modeled, or predicted using ECLAIR. Interactome INSIDER also includes 56,159 disease 

mutations from HGMD28 and ClinVar29, and 1,300,352 somatic cancer mutations from 

COSMIC30 with their per-disease, pre-calculated enrichment in protein interaction interfaces 

at the residue level, domain level, and through atomic clustering. The site includes 

information on >600,000 population variants from the Exome Sequencing Project31, 1000 

Genomes Project32 and more33 (see Online Methods). Users can search Interactome 

INSIDER by protein to retrieve all interaction partners and their interfaces, or by disease to 

retrieve all interaction interfaces that are enriched for mutations of that disease. Additionally, 
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users can upload their own set of mutations to find how they are distributed in the 

interactome and whether they are enriched in any protein interaction interfaces at the 

residue, domain, and atomic levels (Fig. 3).

We demonstrate the utility of Interactome INSIDER and the validity of its underlying 

database by investigating the functional and biological properties of our predicted interaction 

interfaces. We measured functional properties of our in silico predicted interfaces (those 

without prior experimental evidence) and compared these measurements to those of known 

interfaces from co-crystal structures. We find that disease mutations preferentially occur in 

our predicted interfaces at similar rates to known interface residues in PDB co-crystal 

structures (Fig. 4a), indicating the viability of using predicted interfaces to study molecular 

disease mechanisms. Furthermore, each higher-confidence bin of predicted interface 

residues is more likely to contain disease mutations than the previous, showing that ECLAIR 

prediction scores are correlated with true protein function. We looked at the locations of 

somatic cancer mutations from COSMIC in our interface-resolved human interactome. We 

specifically focused on recurrent cancer mutations as these are known to be more likely to be 

functional drivers34,35. We find a marked enrichment of recurrent cancer mutations in our 

predicted interfaces compared to outside these interfaces (Fig. 4b). The same trend is 

observed inside and outside of known interfaces from co-crystal structures, suggesting that 

the functional links between cancer and the potential disruption of protein interactions can 

be observed within the entire Interactome INSIDER human interface dataset. We also looked 

at the distribution of population variants, and show that their placement in and out of 

predicted interfaces matches that of known interfaces, with rarer mutations showing an 

enrichment in protein interfaces (Fig. 4c). Furthermore, population variants in our predicted 

interfaces are more likely to be damaging to protein function than variants outside of 

predicted interfaces, as predicted by PolyPhen-236 (Fig. 4d) and EVmutation37 (Fig. 4e), 

matching the established trend for experimentally determined interfaces38. We validated 

many of these biological trends for interactions lacking structural features (Supplementary 

Figs. 8–10, Supplementary Note 6), suggesting the utility of Interactome INSIDER even in 

feature-poor interactions and across different resolution scales.

We used Interactome INSIDER to search for sub-networks in the human interactome that are 

enriched for mutations associated with a single disease, by calculating the enrichment of 

disease mutations in interaction interfaces interactome-wide. This identified the TGF-

β/BMP signaling pathway, which is known to be involved in juvenile polyposis syndrome 

(JPS)39, and contains multiple proteins harboring JPS mutations (Fig. 5a). We focused on a 

specific group of mutations in the SMAD4-SMAD8 interface, which can be found using 3D 

atomic clustering. Using our mutagenesis Y2H assay, we were able to test a JPS mutation 

(SMAD4 Y353S)40, which is at the interface of SMAD4-SMAD8, and show that it breaks 

this interaction, implicating SMAD8 in JPS (Fig. 5a, Supplementary Fig 11). Although 

SMAD8 (also known as SMAD9) has not been reported to harbor JPS mutations in 

HGMD28, its involvement in the disease has been suggested41, showing the ability of 

Interactome INSIDER to implicate new proteins in disease. Y353S is not predicted by 

ECLAIR to be at the interface of SMAD4 and another of its binding partners, RASSF5. 

Indeed, through our Y2H experiment, Y353S does not break this interaction, demonstrating 

Meyer et al. Page 5

Nat Methods. Author manuscript; available in PMC 2018 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the functional insight Interactome INSIDER can provide about differential interfaces and 

how they might be relevant to understanding the molecular mechanisms of disease.

Disease etiology revealed by partner-specific interfaces

Interactome INSIDER enables interrogation of different interfaces for the same protein, 

dependent upon its binding partner (Fig. 5b). For the study of protein function and disease, 

this is especially important as a protein may maintain different functional pathways through 

different interfaces, and disruption of one interface may leave others intact4,8. To test this on 

a large-scale, we looked at pairs of disease mutations in the human interactome that appear 

at interaction interfaces, as predicted by ECLAIR. Similar to previous reports8, we observed 

that mutation pairs in the interface of two interacting proteins are much more likely to cause 

the same disease than mutation pairs in other interfaces of the same proteins that do not 

mediate the given interaction (Fig. 5c). We also find that mutation pairs on the same protein, 

but in separate interfaces with different binding partners tend to cause different diseases 

(Fig. 5d). This trend is observed in both known and predicted interfaces. These results 

indicate that Interactome INSIDER can be used to form functional hypotheses about the 

specificity of mutations to specific interactions and molecular pathways.

We next used Interactome INSIDER to find sub-networks in the human interactome 

enriched for mutations associated with a single disease. We uncovered a set of interacting 

proteins known to harbor mutations causal for hypertrophic cardiomyopathy (HCM)42 and 

thereby recapitulated the core constituents of a known KEGG pathway related to the same 

disease (Fig. 6). These proteins were identified by enrichment of disease mutations in their 

shared interaction interfaces and, in the case of TNNI3-TNNC1, using cross-interface 

atomic clustering of disease mutation positions in 3D (features available via the Interactome 

INSDIER website). In addition to identifying known members of the HCM pathway, 

Interactome INSIDER also identified several additional proteins, including CSRP3, 

MYOM1, ANKRD and TCAP, which are not part of the known KEGG pathway, but carry 

HCM mutations enriched at their respective interaction interfaces with members of the 

pathway. We also identify a protein, TNNT1, which, although it contains no HCM mutations 

of its own, can be implicated in HCM through its interactions with two proteins TPM1 and 

TNNC1, which are enriched for HCM mutations at their interfaces with TNNT1. Finally, we 

note that Interactome INSIDER reveals cases of partner-specific interfaces in this pathway. 

For instance, the known HCM pathway protein TTN’s interface with ACTA1 is enriched for 

HCM mutations, and ACTA1 mutations are increasingly linked to HCM43. On the other 

hand, a separate interface of ACTA1 with its binding partner dystrophin is enriched with 

mutations causing a distinct disorder, actin myopathy44. This shows how ACTA1 can play 

roles in two different diseases through separate interaction interfaces with TTN and 

dystrophin, and demonstrates Interactome INSIDER’s unique ability to discover such cases 

of differential function mirroring differential interfaces.

DISCUSSION

We anticipate Interactome INSIDER will help to bridge the divide between genomic-scale 

datasets and structural proteomic analyses. Now that large-scale sequencing data from many 
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contexts are readily available, for instance from whole-genome/whole-exome population 

variant studies31,45 and cancer studies46,47, researchers have become increasingly interested 

in ways to assess the potential functional consequences of variants on a genomic scale48,49. 

Recently we and others have developed methods to predict functional cancer driver 

mutations by finding hotspots of mutations in the structural proteome35,50. With the 

comprehensive map of protein interfaces presented, we can now go a step further to predict 

specific etiologies of cancer and disease based on induced biophysical effects51,52 that may 

break interactions. Because our interface map is partner-specific, it can also be applied to 

predict pleiotropic effects, wherein several mutations in a single protein may affect different 

pathways depending upon which binding interfaces are mutated8. This could be the basis for 

designing new therapeutics and for rational drug design to selectively target specific protein 

functional sites53.

We have shown that hyperparameter optimization, which is surprisingly lacking in much of 

the current literature, can drastically improve the performance of classifiers for biological 

classification studies. The tiered ensemble form of the ECLAIR classifier represents a 

broadly applicable paradigm in practical machine learning that could be readily applied to 

solving other problems with large amounts of non-uniformly missing data, which very 

frequently occur in biology due to study biases.

With future increases to the scale of biological databases from which we derive features, we 

expect that Interactome INSIDER will come to encompass even higher confidence 

predictions for many more interactions, thereby becoming increasingly applicable to 

functional studies. This may also address some limitations of structural databases today. For 

instance, the PDB is depleted of disordered proteins54, and it has been shown that disordered 

regions can form interfaces55. Since ECLAIR has not been trained on disordered interfaces, 

it is unlikely to predict new disordered interfaces. However, the ensemble classifier structure 

of ECLAIR uniquely positions it to incorporate all newly-available evidence into interface 

predictions without sacrificing quality or scale, ensuring a high quality map of interaction 

interfaces now and in the future. Furthermore, the addition of new variants, especially cancer 

mutations and population variants from large-scale sequencing studies, will only increase the 

value of performing systems-level explorations with Interactome INSIDER.

ONLINE METHODS

Interaction datasets

We compiled binary protein interactions available for H. sapiens, D. melanogaster, S. 
cerevisiae, C. elegans, A. thaliana, E. coli, S. pombe, and M. musculus from 7 primary 

interaction databases. These databases include IMEx56 partners DIP57, IntAct58, and 

MINT59, IMEx observer BioGRID60, and additional sources iRefWeb61, HPRD62, and 

MIPS63. Furthermore, iRefWeb combines interaction data from BIND64, CORUM65, 

MPact66, OPHID67, and MPPI68. We filtered these interactions using the PSI-MI69 evidence 

codes of assays that can determine experimental binary interactions (Supplementary Table 

2), as these are interactions where proteins are known to share a direct binding interface that 

we can then predict5. In total, we curated 198,503 interactions in these 8 species including 

the full experimentally determined binary interactome in human (122,647 interactions) 
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(Supplementary Note 1). Those interactions with known interface residues based on 

available co-crystal structures in the Protein Data Bank (PDB)70 were set aside for use in 

training and testing the classifier. Interactions without known interface residues comprise the 

set for which we make predictions.

Testing and training sets for interface residue prediction

For those interactions with known co-crystal structures in the PDB, we calculate interface 

residues for their specific binding partners. To identify UniProt protein sequences in the 

PDB, we use SIFTS71, which provides a mapping of PDB-indexed residues to UniProt-

indexed residues33. For each interaction and representative co-crystal structure, interface 

residues are calculated by assessing the change in solvent accessible surface area of the 

proteins in complex and apart using NACCESS72. Any residue that is at the surface of a 

protein (≥15% exposed surface) and whose solvent accessible surface area (SASA) 

decreases by ≥1.0 Å2 in complex is considered to be at the interface. We aggregate interface 

residues across all available structures in the PDB for a given interaction, wherein a residue 

is considered to be at the interface of the interaction if it has been calculated to be at the 

interface in one or more co-crystal structures of that interaction (all other residues are 

considered to be away from the interface). In building our final training and testing sets, we 

only consider interactions for which aggregated co-crystal structures have combined to cover 

at least 50% of UniProt residues for both interacting proteins.

The training and testing sets each include a random selection of 400 interactions with known 

co-crystal structures, of which 200 are heterodimers and 200 are homodimers 

(Supplementary Table 3). To ensure an unbiased performance evaluation, we disallowed any 

homologous interactions (i.e. interactions whose structures could be used as templates for 

homology modeling) between the training and testing set. We also disallowed repeated 

proteins between the two sets to avoid simply reporting a remembered shared interface 

between a protein and multiple binding partners, thereby artificially elevating the 

performance of our classifier on the testing set.

Hyperparameter optimization with TPE

To train our ensemble of classifiers that comprise ECLAIR, we used the tree-structured 

Parzen estimator approach (TPE)19, a Bayesian method for optimizing hyperparameters for 

machine learning algorithms. TPE models the probability distribution p(x|y) of 

hyperparameters given evaluated loss from a defined objective function, L(x). We selected 

the following loss function to minimize based on classical hyperparameter inputs and 

residue window sizes:

L(θ, w) = 1 − min
n ∈ {1, 2, 3} AUROCθ, w, n

where x is comprised of θ, a set of hyperparameters, and w, a set of residue window sizes. 

The evaluation metric, AUROCn, is the area under the roc curve for the nth left-out 

evaluation fold in a three-fold cross-validation scheme. We then used TPE to randomly 

sample an initial uniform distribution of each of our hyperparameters and window sizes and 
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evaluate the loss function for each random set of inputs. TPE then replaces this initial 

distribution with a new distribution built on the results from regions of the sampled 

distribution that minimize L(x):

p(x ∣ y) = l(x) i f y < y∗

g(x) i f y ≤ y∗

where y* is a quantile γ of the observed y values so that p(y < y*) = γ. Importantly, y* is 

guaranteed to be greater than the minimum observed loss, so that some points are used to 

build l(x). TPE then chooses candidate hyperparameters to sample as those representing the 

greatest expected improvement, EI, according to the expression:

EI
y∗(x) =

γy∗l(x) − l(x)∫ −∞
y∗

yp(y)dy

γl(x) + (1 − γ)g(x) ∝ γ + g(x)
l(x) (1 − γ)

−1

To maximize EI, the algorithm picks points x with high probability under l(x) and low 

probability under g(x). Each iteration of the algorithm returns x*, the next set of 

hyperparameters to sample, with the greatest EI based on previously sampled points.

Training the classifier

The ECLAIR classifier was trained in three stages, using a custom wrapper of the scikit-

learn73 random forest74 classifier to allow for use of TPE to search both algorithm 

hyperparameters and residue window sizes simultaneously. In all cross-validations 

performed, we allowed TPE to search the following hyperparameters, beginning with 

uniform distributions of the indicated ranges: (1) minimum samples per leaf (0–1000), (2) 

maximum fraction of features per tree (0–1), and (3) split criterion (entropy or gini diversity 

index). The number of estimators (decision trees) in each random forest was fixed at either 

200 for training the feature selection classifiers, or 500 for training the full ensemble. We 

also allowed TPE to search over residue window sizes (± 0–5 residues for a total window of 

up to 11 residues, centered on the residue of interest). This was achieved by allowing extra 

features for neighboring residues to be included at the time of algorithm initialization.

In the first stage of training, cross-validation using TPE was performed on classifiers trained 

using only features from 1 of the 5 feature categories. The feature or set of features from 

each category with the minimum loss was selected to represent that category in building the 

ensemble classifier (Supplementary Table 4). In the second stage, the ensemble classifier 

was built of 8 random forest classifiers, each trained on different subsets of feature 

categories, and hyperparameters and window sizes were again chosen using cross-validation 

and TPE (Supplementary Table 5). In the final stage, following performance measurement 

on the testing set, the 8 sub-classifiers were retrained using the full set of 3,447 interactions 

with at least 50% UniProt residue coverage in the PDB, using the same hyperparameters and 

window sizes found in the previous step.
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Evaluating the ensemble

After training and optimizing using only the training set, we predicted interface residues in a 

completely orthogonal testing set. For each sub-classifier of the ensemble, all residues in the 

testing set that could be predicted (given the full set of necessary features or a superset) were 

ranked according to their raw prediction scores to produce ROC and precision-recall plots.

Benchmarking against other methods

Interfaces for interactions in our testing set were computed using several popular interface 

prediction methods20–24. We compiled a set of representative protein structures from the 

PDB for each protein in our testing set, selecting the structure with the highest UniProt 

residue content based on SIFTS and excluding any PDB structures of interacting protein 

pairs from our testing set. We then evaluated the precision, recall, and false positive rate for 

proteins that were able to be classified by all methods. These represent point estimates of 

these metrics for the external methods with binary prediction scores.

We also compared ECLAIR to 10 popular methods for interface prediction by predicting 

interfaces in a standard benchmark set of protein complexes25 (Supplementary Table 1). 

Here, we followed the experimental procedures laid out by Maheshwari et al.26, and 

excluded complexes in which the receptor is <50 or >600 amino acids, where the interface is 

made up of <20 residues, or where multiple interfaces are present.

Predicting new interfaces

We retrained the ensemble using all available co-crystal structures, including those from 

both testing and training sets, a standard machine learning practice that makes maximal use 

of labeled data75. Using this fully trained ensemble of classifiers, we predicted interface 

residues for the remaining 185,957 interactions not resolved by either PDB structures or 

homology models. Sub-classifiers were ordered based on the number and information 

content of features used in their training. Each residue was then predicted by only the top 

ranking classifier of the ensemble trained on the full set or a subset of available features for 

that residue.

Interface enrichment and 3D atomic clustering

Interface domain enrichment, residue enrichment, and 3D atomic clustering can be 

calculated through the Interactome INSIDER web interface. For enrichments presented in 

this study, we accessed all disease mutations from the Human Gene Mutation Database 

(HGMD)28 and ClinVar29, recurrent cancer mutations appearing ge; 6 times in COSMIC30, 

and population variants from the Exome Sequencing Project31 to compute the log odds ratio:

LOR = ln

p1
1 − p1

p2
1 − p2
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where p1 is the probability of a mutation or variant being at the interface and p2 is the 

probability of any residue being at the interface. We computed the log odds ratio for residues 

in each of the interface prediction potential categories. We also computed the log odds ratio 

for interactions with known interfaces from PDB co-crystal structures, defined as all known 

interface residues from NACCESS calculations and all residues in Pfam76 domains with ≥ 5 

interface residues. For the disease mutation enrichment analysis (Fig. 4a, we used all disease 

mutations available from HGMD, and the following numbers of mutations occurred in each 

category: 10,196 Very Low, 10,547 Low, 2,970 Medium, 1,135 High, and 305 Very High. 

We also computed enrichment of 18,638 mutations in known interfaces and 17,760 

mutations in known non-interfaces (from co-crystal structure evidence).

To perform 3D atomic clustering of amino acid loci of interest, we used an established 

method35 for clustering and empirical p-value calculation and applied it to multi-protein 

clustering, wherein clusters can occur across an interaction interface. Here, we perform 

complete-linkage clustering77 in the shared 3D space of both proteins, and iteratively, and 

randomly rearrange mutations in each protein to produce an empirical null distribution of 

cluster sizes.

Mutagenesis validation experiments

We performed mutagenesis experiments in which we introduced random human population 

variants from the Exome Sequencing Project31 into known and predicted interfaces. We 

randomly selected mutations of predicted interface residues in each of the top four ECLAIR 

categories (Low – Very High). As positive and negative controls, we also selected random 

mutations of known interface and non-interface residues in co-crystal structures in the PDB. 

The selected mutations were then introduced into the proteins according to our previously 

published Clone-seq pipeline27 and their impact (either disrupting or maintaining the 

interaction) was assessed using our yeast two-hybrid assay (Supplementary Note 7). In this 

manner, we tested the impact of 2,164 mutations: 1,664 in our predicted interfaces and 500 

in known interface and non-interface residues from co-crystal structures. In Figure 2c, we 

report the fraction of tested interface residue mutations that caused a disruption of the given 

interaction for each of the interface residue bins.

Web server

Interactome INSIDER is deployed as an interactive web server (http://

interactomeinsider.yulab.org) containing known and predicted interfaces for 198,503 protein 

interactions in 8 species, as well as variants and functional annotations mapped relative to 

the residues in the human proteome. For each interaction, the most reliable, high-resolution 

model is presented, i.e. co-crystal structures are always displayed in lieu of homology 

models, and all remaining unresolved interactions are predicted by our ECLAIR classifier. 

Co-crystal structures are derived from the PDB, with extraneous chains removed for each 

interaction, and homology models are computed by MODELLER11 and downloaded from 

Interactome3D12. For both types of structural model, we computed all residues at the 

interface over all available models, and allow users to view any model from which a unique 

interface residue has been calculated. For predicted interfaces, a non-redundant set of single 

protein models are shown when available, with locations of predicted interface residues 
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indicated. In total, the resource contains 7,135 interactions with co-crystal structures, 5,411 

with homology models, and 185,957 with predicted interfaces.

Interactome INSIDER also includes pre-calculated enrichment of mutations derived from 

several sources: 56,159 disease mutations from HGMD28 and ClinVar29 and 1,300,352 

somatic cancer mutations from COSMIC30. It also includes 194,396 population variants 

from the 1000 Genomes Project32, 425,115 from the Exome Sequencing Project31, and 

54,165 catalogued by UniProt33. Predictions of deleteriousness for all variants and any user-

submitted variants within the curated interactomes are obtained from PolyPhen-236 and 

SIFT78, and biophysical property change guides (i.e. polar to non-polar, hydrophobic to 

hydrophilic) are also displayed for convenience. Mutation and variant enrichment analyses 

can be triggered by the user for existing variants or for user-submitted sets within interacting 

protein domains, residues, and 3D clustering using the atomic coordinates of structures 

when available.

Downloads of known and predicted interface residues on a per-interaction basis are available 

as plain text and as .bed files that can be visualized alongside other genomic landmarks in 

the UCSC genome browser79. Per-protein visualization tracks, with interface residues of all 

interaction partners are also available on the “Downloads” page, along with bulk downloads 

of interfaces for entire species.

Statistics

Statistical analyses were performed using a two-sided Z test or a two-sided Mann-Whitney 

U test, as indicated in the figure captions. Exact P values are provided for all compared 

groups, and comparisons with a two-side P value > 0.05 are considered not significant, with 

all others considered not significant (n.s.).

Code and data availability

Custom code used in this study is freely available at https://github.com/hyulab/ECLAIR and 

as Supplementary Software. Data produced by this study is available for browsing and bulk 

download at http://interactomeinsider.yulab.org. Additional information is available in the 

Life Sciences Reporting Summary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The current size of structural interactomes. (a) The plot shows the coverage (number of 

protein interactions) of known high quality binary interactomes with pre-computed co-

complexed protein structures. (b) The number of interactions from the 8 largest interactomes 

with experimentally solved structures.
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Figure 2. 
ECLAIR prediction results. (a) Workflow for classifying interfaces for all interactions in 8 

species. Interactions without experimentally determined or homology modeled interfaces are 

classified by ECLAIR. (b) ROC and precision-recall curves comparing ECLAIR with the 

indicated interface residue prediction methods. (c) Fraction of interactions disrupted by the 

introduction of random population variants in known and predicted interfaces. (Significance 

determined by two-sided Z-test; n.s. denotes not significant)
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Figure 3. 
Workflow for calculating mutation and variant enrichment using Interactome INSIDER 

(http://interactomeinsider.yulab.org). Users may submit mutations or select sets of known 

disease and cancer mutations to assess their enrichment in interface domains and residues, or 

may compute 3D atomic clusters of mutations in proteins and across interfaces.

Meyer et al. Page 19

Nat Methods. Author manuscript; available in PMC 2018 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://interactomeinsider.yulab.org


Figure 4. 
Functional properties of predicted interfaces. (a) Enrichment of disease mutations in 

predicted and known interfaces. In a–c, enrichment (log odds ratio) is the odds of mutations 

and variants to appear in and outside of predicted and known interfaces compared to the 

odds of any residues to exist in these categories. (b) Enrichment of recurrent cancer 

mutations in predicted and known interfaces. (c) Enrichment of rare and common population 

variants in predicted and known interfaces. (d, e) Predicted deleteriousness of population 

variants in known and predicted interfaces using PolyPhen-2 (d) or EVmutation (e). (In b, 

significance determined by two-sided Z-test. In d-e, significance determined by a two-sided 

U-test. IRES=interface residues)
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Figure 5. 
Interaction partner-specific interface prediction. (a) The top schematic depicts the TGF-

β/BMP signaling pathway. The bottom schematic illustrates that atomic clustering reveals a 

mutation hotspot for juvenile polyposis syndrome at the interface of SMAD8 and SMAD4. 

At right, yeast two-hybrid experiments test the interactions of one of the SMAD4 mutations 

(Y353S) with SMAD8 and RASSF5. The mutation is not predicted by ECLAIR to be at the 

SMAD4-RASS5 interface. (b) Superimposed docking results of two different interaction 

partners with TK1. The differentially predicted interfaces of TK1 with each of its partners 

correspond with the orientation of the docked poses. (c) The plot shows the fraction of 

disease mutation pairs in known (blue) or predicted (orange) interfaces that cause the same 

disease when mutations are within a given interaction interface compared to when mutations 
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are not within an interaction interface. (d) The plot shows the fraction of disease mutation 

pairs in known (blue) or predicted (orange) interfaces that cause different diseases when 

mutations are in the same interaction interface compared to in different interaction interfaces 

(interaction with other proteins is not shown). (Significance determined by two-sided Z-test)
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Figure 6. 
The hypertrophic cardiomyopathy (HCM) pathway. The schematic on the left shows the 

interaction of proteins in the HGM KEGG pathway (hsa04510). On the right is shown a 

network of KEGG pathway proteins and their structurally-resolved interactions from 

Interactome INSIDER. Proteins that harbor HCM mutations are colored in red. Interfaces 

are noted for their enrichment of HCM mutations.
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