Skip to main content
. 2018 May 21;12(7):1047–1060. doi: 10.1002/1878-0261.12309

Table 3.

The confusion matrix of Bayesian network classification. Each row of the matrix represents the instances in a predicted cluster, and each column represents the instances in an actual cluster. C1–C9 are the logograms for clusters 1–9

C1 C2 C3 C4 C5 C6 C7 C8 C9
C1 52 0 0 0 2 0 0 0 0
C2 2 51 0 0 0 0 0 1 0
C3 0 0 26 3 3 0 1 1 0
C4 0 0 0 33 0 0 1 0 1
C5 2 4 2 0 78 0 0 2 0
C6 1 1 0 0 0 17 0 0 0
C7 0 0 0 0 0 0 13 1 0
C8 0 0 0 0 0 1 0 24 0
C9 0 0 0 0 0 0 0 1 8

The bold text in the table represent the numbers of instances in each class that have the same prediction cluster and actual cluster.