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Abstract

Cancer screening can detect cancer that would not have been detected in a patient’s lifetime 

without screening. Standard methods for analyzing screening data do not explicitly account for the 

possibility that a fraction of tumors may remain latent indefinitely. We extend these methods by 

representing cancers as a mixture of those that progress to symptoms (progressive) and those that 

remain latent (indolent). Given sensitivity of the screening test, we derive likelihood expressions to 

simultaneously estimate (1) the rate of onset of preclinical cancer, (2) the average preclinical 

duration of progressive cancers, and (3) the fraction of preclinical cancers that are indolent. 

Simulations demonstrate satisfactory performance of the estimation approach to identify model 

parameters subject to precise specifications of input parameters and adequate numbers of interval 

cancers. In application to four breast cancer screening trials, the estimated indolent fraction among 

preclinical cancers varies between 2% and 35% when assuming 80% test sensitivity and varying 

specifications for the earliest time that participants could plausibly have developed cancer. We 

conclude that standard methods for analyzing screening data can be extended to allow some 

indolent cancers, but accurate estimation depends on correctly specifying key inputs that may be 

difficult to determine precisely in practice.
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INTRODUCTION

In recent years, overdiagnosis due to cancer screening has become a focus of attention and 

controversy. Overdiagnosis occurs when screening detects a cancer that would not have 

produced symptoms or have been diagnosed in the absence of screening. If a cancer is 

overdiagnosed, then treatment cannot be beneficial; in this case, it is considered 

overtreatment.

Some studies have suggested that overdiagnosis may account for as many as 31% of breast 

cancers detected,1 but there is a great deal of uncertainty about the magnitude of the problem 

due to different definitions and measures of overdiagnosis and different assumptions 

imposed across studies.2

Understanding overdiagnosis requires understanding the natural history of cancer and its 

heterogeneity. Of prime importance are the distributions of the preclinical sojourn time (i.e., 

the time from onset of a preclinical tumor to clinical diagnosis in the absence of screening) 

and the associated lead time (i.e., the time by which screening advances the date of 

diagnosis). The sojourn time distribution is a direct determinant of the likelihood of 

overdiagnosis since overdiagnosis occurs whenever the sojourn time is longer than the time 

from screen detection to other-cause death. Thus, overdiagnosis may be thought of as arising 

from a process of competition between clinical diagnosis and other-cause death.

There is extensive literature on the estimation of sojourn and lead times using data from 

screening trials. The most common approach is based on maximum likelihood estimation of 

the sojourn time while accounting for interval censoring of the times to onset and times from 

onset to clinical diagnosis. Day and Walter3 and Shen and Zelen4, 5 used this approach 

assuming a parametric progressive disease model with an exponential distribution for 

sojourn time. Louis et al.6 and Etzioni and Shen7 explored methods for this problem that did 

not require a parametric specification for the sojourn-time distribution. Shen and Zelen8 and 

Shen and Huang8 developed a robust version of this approach.

The aforementioned methods all rely on a progressive disease assumption, which is most 

often expressed as a single-component distribution (commonly exponential) for the sojourn 

time. In this case, overdiagnosis arises from competing mortality together with potentially 

slow-growing but progressive disease. However, it has been suggested that breast and other 

cancers may consist of a mixture of progressive and indolent cancers.9 In this setting, 

overdiagnosis can arise from indolent cancers in addition to competing mortality for 

progressive cancers. Etzioni and Gulati10 recently showed that ignoring the indolent 

component could lead to underestimation of the fraction of cancers overdiagnosed, 

particularly under short-term follow-up. Few studies of overdiagnosis in breast cancer 

explicitly account for an indolent fraction. However, even among those that have done so,
11–14 estimation methods tend to be highly customized.

Most published studies of cancer overdiagnosis do not even attempt to estimate natural 

history. Rather, they use excess incidence in screened versus non-screened groups as a proxy 

for overdiagnosis.1, 15 However, this method has been shown to be systematically 
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biased16, 17 even in randomized trials, and is prone to overestimation except under fairly 

specific circumstances.18

In this paper, we extend the probability modeling framework of Shen and Zelen4 to estimate 

natural history comprised of a mixture of progressive and indolent cancers using data from 

screening trials. This extension estimates the risk of developing preclinical cancer, the mean 

sojourn time for progressive cancers, and the fraction of preclinical cancers that are indolent. 

We demonstrate the framework using data from four breast cancer screening trials. Our 

extension of established methods for estimating cancer natural history is a necessary 

precursor to estimating the frequency of overdiagnosis under any specified screening 

protocol.

METHODS

Data and Notation

Consider a cohort of asymptomatic individuals enrolled in a screening program with regular 

(e.g., annual) screening exams. In Shen and Zelen,4 the natural history of the disease is 

modeled as transitions from a healthy or cancer-free state (S0) to a preclinical state (Sp) to a 

clinical state (Sc) (Figure 1A). An underlying assumption is that all individuals would 

eventually transition out of the preclinical state and into the clinical state given sufficient 

follow-up. We generalize this assumption by assuming that a fraction of patients develop 

tumors that will remain in the preclinical state (Sp′) indefinitely (Figure 1B).

In our motivating breast cancer screening trials, asymptomatic participants in the screening 

arm were invited to receive regular screening exams. The observed data were grouped by 

screening rounds as follows. Let t1 < ⋯ < tk−1 represent the k − 1 scheduled exams and let tk 

denote the follow-up time after the last exam. For i = 1, …, k − 1, let ni be the number of 

individuals at the ti exam, si the number of cancers detected at the ti exam, and ri the number 

of so-called “interval cancers” diagnosed in the interval between the ti and ti+1 exams. Thus, 

the data associated with the ith screening round are (ni, si, ri).

To estimate the underlying cancer development and progression when all cancers are 

progressive, let w denote the annual probability of latent disease onset. As shown in Figure 

1, let U denote the sojourn time measured from onset of preclinical state (Sp) to clinical state 

(Sc), and let q(t) and Q(t) = Pr(U > t) denote the corresponding probability density and 

survivor functions, respectively, with parameter λ. Finally, let β be the sensitivity of the 

screening exam to detect latent cancer; we assume the test sensitivity is the same for 

progressive and indolent cancers. Then the unknown parameters are θ = (w, λ, β).

To allow a fraction of individuals with indolent cancers, we consider a distribution of 

sojourn times that is a mixture as follows:

Q(t) = (1 − ψ) Pr (U > t ∣ U < ∞ ) + ψ = (1 − ψ)Q1(t) + ψ , ,

where Q1(t) is a proper survivor function representing progressive sojourn times and ψ is the 

fraction of cancers with infinite sojourn times (i.e., indolent cancers). If λ is the parameter 
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associated with Q1(t) or the associated probability density function q1(t), the unknown 

parameters are θ = (w, λ, ψ, β).

Estimation and Inference from the Likelihood

The proposed estimation procedure extends previous work by Shen and Zelen,4 who 

developed a maximum likelihood procedure to fit to the observed screen-detected and 

clinically diagnosed cancer data in a prospective screening study. Estimating the parameters 

of a mixture of cancers can be done using an approach that is similar to the one for 

estimating the parameters when all cancers are progressive.4 Briefly, the data available for a 

given individual consist of a screening history with screening test results and time of 

diagnosis or last follow-up. In the case of a screen-detected cancer, the final screening test is 

positive. In the case of an interval cancer, the final screening test is negative and diagnosis 

occurs at a known date thereafter. In each case, the screening history and diagnosis status 

provide information about the natural history.

For example, a case where a first screening test is negative and a second screening test is 

positive with disease diagnosis occurring at the time of this test provides the following 

information: (a) preclinical onset must have occurred before the time of diagnosis; (b) the 

sojourn time must be at least as long as the interval from preclinical onset to the second 

screening test; (c) if preclinical onset occurred before the first screening test, then the 

individual had one false negative test; and (d) the individual had one true positive test. There 

are several natural histories that are consistent with this information, and all possible 

histories could apply to a progressive cancer or to an indolent cancer (Figure 2A). In 

contrast, an interval cancer must be progressive (Figure 2B). In general, the likelihood 

comprises probabilities of diagnosis at and after each screening test expressed in terms of 

parameters θ = (w, λ, ψ, β) and fits these within a multinomial framework given the 

observed numbers of cancers detected at and after each test.

Let Di(θ) be the probability that cancer is detected at the ith exam and Ii(θ) be the 

probability of an interval diagnosis in the ith interval. To derive expressions for these 

probabilities, first note that prevalence of latent disease at the first exam can be written:

P0(t1) = w∫t0

t1
Q(t1 − u) du,

where t0 is the earliest time before the start of the trial at which any prevalent cancers among 

trial participants could plausibly have developed. Let Δ0 = t1 − t0. The probability of screen 

detection at the first exam is D1(θ) = βP0(t1).

Because latent cancer detected at a given exam either only became detectable after the 

previous exam or was missed during one or more previous exams, the general expression for 

the probability of a latent cancer being screen detected at exam tj (j = 2, …, k − 1) is:
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D j(θ) = β ∑
l = 1

j
w(1 − β) j − l∫tl − 1

tl
Q t j − u du .

Similarly, a cancer diagnosed in an interval between screens either only became detectable 

after the previous exam or was latent and missed by one or more previous exams. The 

probability of an interval diagnosis between exams t1 and t2 is:

I1(θ) = w(1 − ψ)∫t1

t2
(1 − β)∫t0

t1
q1(t − u)du + ∫t1

t
q1 (t − u)du dt .

The general expression for an interval diagnosis between tj and tj+1 (j = 2, …, k − 1) is:

I j(θ) = w(1 − ψ)∫t j

t j + 1 ∑
l = 0

j − 1
(1 − β) j − l∫tl

tl + 1
q1(t − u)du + ∫t j

t
q1 (t − u)du dt .

It is intuitive that indolent cancers can only be detected by screening and thus only 

contribute to Dj(θ). In contrast, progressive cancers can be detected by screening and 

contribute to Dj(θ) or be interval diagnosed and contribute to Ij(θ). The associated trinomial 

log-likelihood function is:

l(θ) ∝ ∑
j = 1

k
s j log D j(θ) + r j log I j(θ) + (n j − s j − r j) log 1 − D j(θ) − I j(θ) .

Due to concerns about identifiability of all model parameters, we consider the test sensitivity 

parameter (β) known and estimate the annual probability of preclinical onset (w), the mean 

sojourn time among progressive cancers (λ), and the fraction of indolent cancers (ψ). We 

use external data to provide an estimate of β based on prior studies.4, 5, 19 Although long-

term follow-up after the final screening test helps to identify the parameters,10 this may not 

be available in practice20; thus, we focus on the case where we have only short-term follow-

up (equal to the inter-screening interval) after the last screening test as in the motivating 

screening trials.

Under this model, one focus of interest is to test the null hypothesis ψ = 0, i.e., the lower 

boundary of the parameter space [0,1). Therefore, the asymptotic distribution of the 

likelihood ratio test has a nonstandard form in a discontinuous way, which should be 

properly adjusted.21

Simulation Study

We conducted a simulation study to assess the performance of the proposed estimation 

method. The assumptions and parameter settings in the simulation were motivated by 

published studies of breast cancer natural history.4 We specified a constant annual preclinical 

onset probability and indolent cancer frequency starting Δ0 = 20 years before entry to the 
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trial. We used an exponential distribution for the sojourn time among progressive cancers 

and a constant annual latent incidence corresponding to a 1-year net cumulative incidence of 

3 per 1 000 women. We set the inter-screening interval to be 1 year, test sensitivity to be 

70%, 80%, or 90%, mean sojourn time for progressive cancers to be 1.5 or 2.5 years, and the 

indolent fraction to be 0%, 5%, and 15%. Under each scenario, we examined the bias of our 

parameter estimates, standard errors (SEs), and the power of the likelihood ratio test of the 

hypothesis that ψ = 0. We generated a cohort of 50 000 individuals undergoing 4 exams with 

follow-up after the last exam equal to the inter-screening interval. We repeated the 

simulations 2 000 times for each scenario.

Based on the simulation results (Table 2), estimates of the indolent fraction (ψ̂) and the 

mean sojourn time among progressive cancers (λ̂) were virtually unbiased for the setting 

with short preclinical sojourn times among progressive cancers (λ = 1.5 years) and a low 

frequency of indolent cancers (ψ ≤ 0.05). Under a higher frequency of indolent cancers, the 

estimated indolent fraction was somewhat higher than its true value and the mean sojourn 

time among progressive cancers was underestimated. When the indolent fraction and the 

progressive mean sojourn time were at their highest settings, the model was least able to 

differentiate between indolent tumors and progressive tumors with longer sojourn times.

In an extended simulation study, we varied the first time a latent cancer can develop across 

Δ0 = 20, 10, and 5 years before entry to the trial, set the inter-screening interval to Δ = 1 or 2 

years, and varied the indolent fraction across 0%, 5%, 10%, and 25% (see Supplementary 

Materials). With a longer screening interval (Δ = 2), the estimates were less biased, which is 

likely due to the increased frequency of interval cancers. Indeed, interval cancers are more 

informative about sojourn times than screen-detected cancers. In all scenarios, the rate of 

onset of preclinical cancer was estimated accurately. When preclinical cancer can develop Δ0 

= 20 years before entry, estimates of the mean sojourn time were negatively biased, and 

estimates of the indolent fraction were positively biased, especially for larger values of the 

indolent fraction. When preclinical cancer can only develop closer to entry into the trial (Δ0 

= 5 or 10 years), the bias in both estimates was larger in magnitude but less sensitive to the 

value of the indolent fraction.

To assess the robustness of the estimators against misspecification of the test sensitivity, we 

fixed the true value at β = 0.80 and specified values above or below this value (β̃ = 0.70 and 

0.90). When β̃ = 0.70, the estimated fraction of indolent cancers and the mean sojourn time 

for progressive cancers were overestimated, but the estimates generally differed only 

modestly from their true values (not shown). In contrast, when β̃ = 0.90, the estimate of the 

indolent fraction tended to be nearly unbiased but the mean sojourn time for progressive 

cancers was underestimated. These results are reasonable because, when the true test 

sensitivity is underestimated, the estimation procedure compensates by identifying 

parameters that yield increased latent prevalence at screening tests; conversely, when the true 

test sensitivity is overestimated, the estimation procedure identifies parameters that yield 

reduced latent prevalence at screening tests.
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Analysis of Breast Cancer Screening Clinical Trials

We analyzed data from the Health Insurance Plan (HIP) of New York study22, 23, the 

Canadian National Breast Screening Study (CNBSS)24, 25, and the Swedish Two-county 

Trial26, 27 to estimate the frequency of indolent cancers among preclinical breast cancers. In 

these trials, participants in the screening arm were invited to receive an initial screening test 

and 2–3 additional screening tests.

The HIP study was the first randomized trial designed to determine the efficacy of breast 

cancer screening with mammography and clinical breast exam (CBE) in reducing mortality 

from breast cancer.22, 23, 28 More than 63 000 women aged 40–64 with at least one year of 

membership in the insurance plan were eligible. After excluding women who had breast 

cancer, about 62 000 women were randomized. About 65% (n=20 166) of the women in the 

screening group appeared for their initial examination; high proportions of these women 

(75%) participated in the subsequent re-examinations.

The CNBSS was designed to evaluate the efficacy of annual mammography plus CBE 

relative to CBE alone. CNBSS-I enrolled women aged 40–49 years and CNBSS-II women 

aged 50–59 years who had no history of breast cancer and no mammograms in the previous 

12 months.24, 25 In CNBSS-I, 25 214 women were randomized to the screening group 

underwent the first screening exam. In CNBSS-II, 19 711 women underwent the first 

screening exam.

The Swedish Two-county Trial examined efficacy of screening mammography relative to no 

screening.26, 27 This trial enrolled 77 080 women aged 40–74 years in the screening arm and 

invited women aged 40–49 to screening exams every 2 years and women aged 50–74 to 

screening exams every 33 months, so the average screening interval was 2.6 years for the 

total screening cohort.12 Some 68 770 women underwent the first screening exam.

Breast cancers detected by screening exam and interval cancers are summarized in Table 1. 

Only data from the first 3 exams are shown for the Swedish Two-county Trial because this 

trial was closed and the control arm was invited to screening at this time. Test sensitivity 

pertains to screening mammography plus CBE in the HIP and CNBSS studies and to 

screening mammography alone in the Swedish Two-country study. Given external estimates 

of test sensitivity, which range from 0.70 to 0.90 from eight randomized breast cancer 

screening trials,4, 5, 19 we estimate the unknown model parameters and test whether the 

indolent fraction is zero using a likelihood ratio test. We use the bootstrap method to 

estimate standard deviations of the parameter estimates with 300 re-samplings. For the HIP, 

CNBSS-II, and the Swedish Two-county trials, we set Δ0 to be 4 years, and for the CNBSS-I 

trial, which enrolled younger women (age 40–49 at entry), we set Δ0 to be 2 years. Since the 

value of Δ0 is not known, we also examine results for Δ0 ranging from 1 to 5 years as well as 

an extreme value of 10 years while varying values of the test sensitivity from 0.70 to 0.90 in 

the sensitivity analyses.

Results from the HIP Trial

The estimated parameters and their standard errors are summarized in Table 3. Depending 

on the assumed sensitivity of screening mammography plus CBE between 0.70 and 0.90, the 
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estimated rate of preclinical onset was 2.1–2.3 women per 1 000 person-years, which is 

similar to published detection rates of histologically confirmed breast cancer of 2.1 in the 

screening arm.23 The estimated mean sojourn time for progressive cancers varied from 1.2 to 

1.7 years, which is somewhat lower than previous estimates of 1.7 to 2.5 years when the 

possibility of indolent cancers was ignored.3, 5 The estimated indolent fraction varied from 

32% if test sensitivity was 0.70 to 0% if test sensitivity was 0.90.

Our sensitivity analysis revealed that convergence to the lower boundary (0%) for the 

indolent fraction occurred for either higher assumed test sensitivity or for a greater number 

of years at which onset could occur before the start of the trial (Figure 3); this was 

particularly the case for Δ0 = 10 years, where the estimated indolent fraction converged to 

0% under all settings for sensitivity. Both of these settings increase the prevalent pool at the 

first screening test and, in accordance, with the simulation studies, we find that the 

estimation algorithm yields a correspondingly reduced estimate of the indolent fraction.

Results from the CNBSS Trials

As shown in Table 3, the estimated mean sojourn time for progressive cancers is comparable 

in CNBSS-I (2.7–3.6 years) and CNBSS-II (2.3–3.5 years) to previous estimates in Shen and 

Zelen.5 Further, the estimated indolent fraction varies from 48% if test sensitivity is 0.70 to 

0% if test sensitivity is 0.90.

Figure 3 illustrates sensitivity of the parameter estimates to test sensitivity (β ranging from 

0.70 to 0.90) and the latent onset time origin (Δ0 ranging from 1 to 5 years). The figure 

shows that estimates of λ and ψ are quite sensitive to these inputs, whereas the estimate of 

w is more robust. Estimates of ψ are most sensitive to the test sensitivity β and the latent 

onset time origin Δ0, with higher β settings leading to generally lower estimates of the 

indolent fraction and the 10-year setting for Δ0 leading to an indolent fraction estimate that 

converged to 0% under all settings for sensitivity in CNBSS-I and under all but β = 0.70 in 

CNBSS-II. As noted above, a higher setting for β or Δ0 enables the likelihood to explain the 

observed screen-detected prevalence without having to account for a high fraction of 

indolent cancers.

Results from the Swedish Two-county Trial

For test sensitivity 0.70 or 0.80, the estimated mean sojourn time for progressive cancers 

(2.9–3.0 years) is between corresponding estimates from the CNBSS-I and CNBSS-II (Table 

3). For test sensitivity 0.90, the estimated mean sojourn time converged to the lower 

boundary (1.0) allowed in the estimation procedure. The estimated indolent fraction varies 

from 48% if test sensitivity is 0.70 to 0% if test sensitivity is 0.90.

Our sensitivity analysis shows similar dependence of estimates of λ and ψ on the test 

sensitivity β and the latent onset time origin Δ0 (Figure 3), though all estimates are more 

precise than those from the other trials due to the larger number of women in this trial.
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DISCUSSION

Overdiagnosis is the primary potential harm of cancer screening, but uncertainty about the 

frequency of overdiagnosis in breast cancer screening persists. To date there is no consensus 

regarding how best to estimate overdiagnosis, and different approaches yield varying results. 

In practice, overdiagnosed breast cancer cases may be comprised of a mixture of (a) women 

with indolent breast cancer whose disease does not progress beyond the preclinical state and 

(b) women whose disease would progress in the absence of other-cause death but who die 

before the disease becomes clinically apparent. Our modeling approach yields estimates of 

first type, expressed as the indolent fraction among women with preclinical onset. This is a 

necessary precursor to estimating the total frequency of overdiagnosis.

Prior studies that estimate the natural history of breast cancer from screening data have 

generally not acknowledged the potential mixture nature of breast cancers. This weakness 

has been cited in critiques of modeling studies and lead time estimation as precursor to 

estimating overdiagnosis.9 This article extends an established statistical modeling approach 

to accommodate a mixture of sojourn times with an unknown fraction of indolent breast 

cancers within a stable disease model.4 The approach inherits the simplifications of the most 

commonly used framework in the literature on estimation of natural history for screening 

trial data. Results provide insights regarding the limits of what can be learned about mixture 

natural histories from commonly used models for screening trial data and have implications 

for more complex models involving mixtures, which may be subject to even greater 

identifiability challenges.

Strictly speaking, the indolent fraction reflects a lower bound on the risk of overdiagnosis 

among women with preclinical cancer. Estimating the risk of overdiagnosis requires 

incorporating the risk of mortality from other causes for women with progressive cancers 

using long-term follow-up data.29 We note that screen-detected women in these trials were 

young and relatively healthy, and their mortality due to competing risks given a sojourn time 

for progressive cancers with mean 2–3 years was unlikely. It is technically straightforward to 

add a post-estimation step to incorporate the competing risk when screened subjects are 

older or the mean progressive sojourn time is longer.

Our simulation results indicate that the mixture modeling approach is most likely to provide 

reliable results when the mean sojourn time among progressive cancers is short and the 

indolent fraction is small to moderate. Further, accuracy is likely to be improved if the inter-

screening interval is wide enough to allow for adequate numbers of interval cancers since 

these are the cancers that are more informative about the sojourn time. However, screening 

intervals that are too wide may result in a net loss of information in the grouped data setting 

considered here.

When assuming test sensitivity is 80%, our estimates of the indolent fractions for HIP and 

CNBSS-I are 8% and 2%, respectively, which are close to the estimated overdiagnosis rates 

of 1–5% for two Swedish breast screening trials,12 but our estimates for CNBSS-II and the 

Swedish Two-county Trial were considerably higher (35% and 33%, respectively). In the 

absence of age-specific data, the estimators of the mean sojourn time and indolent fraction 
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imply an average over the given age group for each trial. Further work is needed to 

determine the reasons for this heterogeneity in results, which may be due to differences in 

the screened populations or to clinical practices affecting the sojourn time distribution.

As shown in our simulation study and in the trial results, the model estimates of the indolent 

fraction tend to be subject to a high degree of uncertainty. In addition, the assumed 

sensitivity of the screening exam significantly impacts results. If the test sensitivity is too 

low, the model compensates with a surplus of indolent cancers. In other words, to fit the 

observed number of screen-detected preclinical cancers, the model tends to overestimate the 

indolent fraction. That the reliability of our estimates is conditional on a reasonable 

assessment of the test sensitivity is a key limitation of the analysis. However, analytic 

methods that aim to extract information about mixtures of natural histories from prospective 

screening data must inevitably constrain the estimation procedure to avoid a non-

identifiability problem, which occurs when different sets of parameters corresponding to a 

specified natural history model are equally consistent with an observed dataset. We chose to 

fix test sensitivity and considered values for this parameter within a range informed by the 

results of prior studies.4, 5, 19 We assumed similar test sensitivities for progressive and 

indolent cancers since disease-type-specific test sensitivities are not identifiable from 

grouped screening trial data. The same problem is likely to manifest in more complex 

models of mixture natural histories, such as models of in-situ and invasive breast cancers 

with non-progressive potential. If the difference in test sensitivity between indolent and 

progressive tumors was known, then the model could be adapted in a straightforward manner 

to allow for differential test sensitivity while still retaining a single sensitivity parameter. 

However, there are no existing estimates of how test sensitivities might differ for progressive 

versus indolent breast cancers. Some studies have suggested that test sensitivity might differ 

for in-situ and invasive breast cancers,30, 31 but the definition of sensitivity in those studies 

(screen-detected cancers divided by screen-detected plus interval cancers) is different from 

the definition of sensitivity in our study (screen-detected cancers divided by latent cancers). 

Moreover, even though in-situ tumors are more likely to be indolent than invasive tumors, 

the categorization of tumors as in-situ versus invasive is not the same as indolent versus 

progressive.

In conclusion, this work shows that, in principle, the methods originally developed by 

Zelen32 and Shen and Zelen4 may be extended to account for a mixture of indolent and 

progressive cancers. However, the results will depend critically on specifications for test 

sensitivity and the interval prior to the start of the trial during which latent cancers among 

trial participants could plausibly have developed. Consequently, reliability of the extended 

method will rest on being able to identify defensible values for these inputs. We note that 

estimation of the indolent fraction via the mixture model is only a precursor to estimating 

overdiagnosis frequencies, which will depend on the time by which diagnosis is advanced by 

the screening protocol and on the risk of other-cause mortality. Further research is needed to 

investigate whether more precise estimation of the indolent fraction may be possible using 

individual-level data, including age-specific screening histories and diagnoses from a 

prospective screening program.
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Figure 1. 
Standard and generalized multi-state models of cancer natural history. In either model, an 

individual begins in a healthy or cancer-free state (S0), can enter the preclinical state (Sp), 

and can progress to the clinical state (Sc). A) All cancers progress to the clinical state. B) 

Cancers can progress to the clinical state or remain indolent indefinitely (Sp′).

Shen et al. Page 13

Stat Methods Med Res. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Possible clinical histories for cancers detected A) by a screening exam or B) between 

screening exams. Shaded bands represent preclinical durations. Screening exams can detect 

(true positive) or miss (false negative) progressive or indolent preclinical cancer. However, 

only cancers that progress to a clinical state can present in the interval between screening 

exams.
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Figure 3. 
Sensitivity Analyses: Parameter Estimates to Assumed Test Sensitivity and Number of Years 

of Onset before the First Screening Exam.
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Table 1

Summary Results of Screening Arms in Four Breast Cancer Screening Trials

Screening exam

First Second Third Fourth

HIP

 Total participants 20 166 15 936 13 679 11 971

 No. of screen-detected cancers 55 32 18 27

 No. of interval cancers 13 8 10 10

CNBSS-I

 Total participants 25 214 22 424 22 066 21 839

 No. of screen-detected cancers 98 39 44 52

 No. of interval cancers 19 16 8 10

CNBSS-II

 Total participants 19 711 17 669 17 347 17 193

 No. of screen-detected cancers 142 66 43 54

 No. of interval cancers 15 10 8 9

Swedish Two-county

 Total participants 68 770 58 601 43 320

 No. of screen-detected cancers 384 214 173

 No. of interval cancers 123 78 89
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