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Abstract

The autacoid, adenosine, is present in the normoxic kidney and generated in the cytosol as well as 

at extracellular sites. The rate of adenosine formation is enhanced when the rate of ATP hydrolysis 

prevails over the rate of ATP synthesis during increased tubular transport work or during oxygen 

deficiency. Extracellular adenosine acts on adenosine receptor subtypes (A1, A2A, A2B, and A3) in 

the cell membranes to affect vascular and tubular functions. Adenosine lowers glomerular 

filtration rate by constricting afferent arterioles, especially in superficial nephrons, and thus lowers 

the salt load and transport work of the kidney consistent with the concept of metabolic control of 

organ function. In contrast, it leads to vasodilation in the deep cortex and the semihypoxic 

medulla, and exerts differential effects on NaCl transport along the tubular and collecting duct 

system. These vascular and tubular effects point to a prominent role of adenosine and its receptors 

in the intrarenal metabolic regulation of kidney function, and, together with its role in 

inflammatory processes, form the basis for potential therapeutic approaches in radiocontrast 

media-induced acute renal failure, ischemia reperfusion injury, and in patients with cardiorenal 

failure.
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1 Introduction

Adenosine is a tissue hormone that is locally generated in many organs and that binds to cell 

surface receptors to mediate various aspects of organ function. Many of these effects revolve 

around a role of adenosine in metabolic control of organ function, including local matching 

of blood flow with energy consumption. According to this concept, the interstitial 

concentration of adenosine rises when cells are in negative energy balance. Adenosine 

locally activates vasodilatory adenosine A2 receptor (A2AR) and adjusts blood flow to meet 

demand. The role of adenosine in the kidney is analogous but, as a consequence of the 

specific renal structural organization and function, more complicated than its role in other 

organs. We will first describe the differential effects of adenosine on the renal cortical and 

medullary vascular structures, and its role in tubuloglomerular feedback (TGF), the 

regulation of renin secretion and in transport processes in the tubular and collecting duct 
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system. These issues are subsequently discussed with regard to a potential role of adenosine 

receptors as new potential targets in the treatment of patients with radiocontrast media-

induced acute renal failure, ischemia-reperfusion injury, and in patients with acute 

decompensated heart failure or cardiorenal failure. Please see recent reviews on the 

expression of adenosine receptors in the kidney and the role of adenosine in kidney function 

in general (Vallon et al. 2006), and in acute renal failure (Osswald and Vallon 2008) and 

fluid retention in particular (Welch 2002; Modlinger and Welch 2003; Vallon et al. 2008).

2 Vascular Effects of Adenosine in Kidney Cortex and Medulla

In contrast to other organs, blood flow into the cortex of the kidney generates, via the 

formation of an ultrafiltrate, the metabolic burden for tubular electrolyte transport and thus 

the demand for energy. Hence, to recover from negative energy balance in the kidney, a 

mechanism is required that lowers glomerular filtration rate (GFR) or the ratio between 

glomerular filtration rate and cortical renal blood flow. In comparison, blood flow in the 

renal medulla is nutritive. It derives from the postglomerular circulation of deep nephrons, 

and due to the way the kidney concentrates the urine, blood flow and O2 supply are low in 

this area, although active NaCl reabsorption in the medullary thick ascending limb is 

essential for function. With regard to metabolic control, this requires a vasodilator to prevent 

hypoxic injury in the renal medulla. As outlined in the following, adenosine is a vasodilator 

in the renal medulla but induces cortical vasoconstriction and lowers GFR.

2.1 Activation of A1AR Lowers Glomerular Filtration Rate

Healthy volunteers responded to an intravenous infusion or direct application of adenosine 

into the renal artery with a reduction in GFR of 15–25% while blood pressure and renal 

blood flow were unchanged (Edlund and Sollevi 1993; Edlund et al. 1994; Balakrishnan et 

al. 1996). Adenosine infusion into the renal artery of rats or dogs reduced single-nephron 

GFR (SNGFR) in superficial nephrons to a larger extent than whole-kidney GFR, indicating 

that deep-cortical vasodilation (see below) counteracts superficial vasoconstriction (Osswald 

et al. 1978a, b; Haas and Osswald 1981). Adenosine lowers SNGFR in superficial nephrons 

due to afferent arteriolar vasoconstriction (Osswald et al. 1978b; Haas and Osswald 1981) 

(Fig. 1). Direct videometric assessment of pre- and postglomerular arteries using the “split-

hydronephrotic” rat kidney technique revealed adenosine-induced constriction of afferent 

arterioles via high-affinity A1AR and dilation via activation of both high-affinity A2AAR 

and low-affinity A2BAR (Tang et al. 1999). Whereas activation of A1AR led to the 

constriction of mainly afferent arterioles near the glomerulus, A2AR activation lead to the 

dilation of mainly postglomerular arteries (Holz and Steinhausen 1987; Dietrich and 

Steinhausen 1993; Gabriels et al. 2000). A1AR-mediated afferent arteriolar constriction 

involves a pertussis toxin-sensitive Gi protein and subsequent activation of phospholipase C, 

presumably through βγ subunits released from Gαi (Hansen et al. 2003b). A2AAR-mediated 

renal vasodilation may involve activation of ATP-regulated potassium channels (Tang et al. 

1999) and endothelial nitric oxide synthase (Hansen et al. 2005).

Oral application of the A1AR antagonist (+)-(R)-[(E)-3-(2-phenylpyrazolo [1,5-a]pyridin-3-

yl)acryloyl]-2-piperidine ethanol (FK-453) to healthy male subjects increased GFR by 
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∼20% without significantly altering effective renal plasma flow or mean arterial blood 

pressure (Balakrishnan et al. 1993), providing evidence that endogenous adenosine elicits a 

tonic suppression of GFR through the activation of A1AR. Consistent with a prominent role 

of adenosine in the regulation of afferent arteriolar tone, autoregulation of renal blood flow 

and glomerular filtration rate (i.e., their constancy in spite of changes in renal perfusion 

pressure) is dependent upon the activation of A1AR (Hashimoto et al. 2006).

2.2 Factors Modulating Adenosine-Induced Cortical Vasoconstriction

Suppression of the renin–angiotensin system by dietary salt or pharmacological means 

reduces or blocks the renal vasoconstrictive action of adenosine (Osswald et al. 1975, 1982; 

Spielman and Osswald 1979; Arend et al. 1985; Macias-Nunez et al. 1985; Dietrich et al. 

1991; Dietrich and Steinhausen 1993). In contrast, activation of the renin–angiotensin 

system potentiates adenosine-induced vasoconstriction and lowering of GFR (Osswald et al. 

1975, 1978a, 1982). Further studies identified a mutual dependency and cooperation of 

adenosine and angiotensin II in producing afferent arteriolar constriction (Weihprecht et al. 

1994; Traynor et al. 1998; Hansen et al. 2003a). Adenosine enhances angiotensin II-induced 

constriction of afferent arterioles by receptor-dependent and -independent pathways. The 

latter involves adenosine uptake and intracellular effects that increase the calcium sensitivity 

by phosphorylating the myosin light chain (Lai et al. 2006; Patzak et al. 2007). Moreover, 

inhibiting the synthesis of vasodilators like nitric oxide (NO) (Barrett and Droppleman 1993; 

Pflueger et al. 1999b) or prostaglandins (Spielman and Osswald 1978; Pflueger et al. 1999a) 

increases the sensitivity of the kidney to adenosine-induced vasoconstriction. The outlined 

interactions can be of clinical relevance.

2.3 Activation of A2AR Induces Medullary Vasodilation

Intrarenal adenosine infusion in rats initially induces vasoconstriction in all cortical zones; 

this is followed by persistent superficial cortical vasoconstriction but deep cortical 
vasodilation (Macias-Nunez et al. 1983; Miyamoto et al. 1988). While A1AR-mediated 

afferent arteriolar constriction dominates in superficial nephrons, deep cortical glomeruli, 

which supply the blood flow to the renal medulla, can respond to adenosine with A2AR-

mediated vasodilation (Inscho et al. 1991; Weihprecht et al. 1992; Inscho 1996; Yaoita et al. 

1999; Nishiyama et al. 2001). In accordance, renal interstitial infusion in rats of the A2AR 

agonist 2-[p-(2-carboxyethyl)phenethylamino]-5′-N-ethylcarboxamido adenosine 

(CGS-21680) increased medullary blood flow (Agmon et al. 1993), whereas intramedullary 

infusion of the selective A2AR antagonist 3,7-dimethyl-1-propargylxanthine (DMPX) (but 

not the A1AR antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX)) decreased 

medullary blood flow (Zou et al. 1999). This indicates that endogenous adenosine dilates 

medullary vessels and sustains medullary blood flow via activation of A2AR (Fig. 1).

2.4 Adenosine is a Mediator of Tubuloglomerular Feedback via Activation of A1AR

The mammalian kidney has a rather high GFR (∼180 l per day in humans). About 99% of 

the filtered fluid and NaCl are subsequently reabsorbed along the tubular and collecting duct 

system, such that urinary excretion closely matches intake. As a result, GFR is a significant 

determinant of renal transport work, and GFR and re-absorption have to be closely 

coordinated to avoid renal loss or retention of fluid and NaCl. The tubuloglomerular 
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feedback (TGF) is a mechanism that helps to coordinate GFR with the tubular transport 

activity or capacity. In this mechanism, specialized tubular cells, the macula densa, sense the 

tubular NaCl load at the end of the thick ascending limb (TAL; where about 85% of the 

filtered NaCl has been reabsorbed), and induce a change in afferent arteriolar tone such that 

an inverse relationship is established between the tubular NaCl load and SNGFR of the same 

nephron. This way, the TGF stabilizes the NaCl load to further distal segments, where the 

fine regulation of NaCl and fluid balance takes place under systemic neurohumoral control.

The TGF response, in other words an inverse change in SNGFR or glomerular capillary 

pressure in response to changes in the NaCl concentration at the macula densa, is inhibited 

by unselective adenosine receptor blockers like theophylline or 1,3-dipropyl-8-

sulfophenylxanthine (DPSPX) (Schnermann et al. 1977; Osswald et al. 1980; Franco et al. 

1989), as well as by selective A1AR antagonists like DPCPX, 8-(noradamantan-3-yl)-1,3-

dipropylxanthine (KW-3902, rolofylline), CVT-124 (the S-enantiomer of the highly selective 

racemic A1AR antagonist 1,3-dipropyl-8-[2-(5,6-epoxynorbornyl)] xanthine), or 6-oxo-3-(2-

phenylpyrazolo [1,5-a]pyridin-3-yl)-1(6H)-pyridazinebutanoic acid (FK838) (Franco et al. 

1989; Schnermann et al. 1990; Kawabata et al. 1998; Wilcox et al. 1999; Thomson et al. 

2000; Ren et al. 2002a). Mice with gene knockout for A1AR lack the TGF response (Brown 

et al. 2001; Sun et al. 2001; Vallon et al. 2004), and have an impaired ability to stabilize the 

Na+ delivery to the distal tubule (Vallon et al. 2004). Most importantly, an intact TGF 

response requires local concentrations of adenosine to fluctuate depending on the NaCl 

concentration in the tubular fluid at the macula densa, indicating that adenosine serves as a 

mediator of TGF (Thomson et al. 2000).

In 1980, Osswald and colleagues proposed that adenosine may be a mediator of TGF. Figure 

2 illustrates a current model. Changes in luminal concentrations of Na+, K+, and Cl− alter 

NaCl uptake by macula densa cells via the furosemide-sensitive Na–K–2Cl cotransporter in 

the luminal membrane. This triggers basolateral ATP release (Bell et al. 2003; Komlosi et al. 

2004) as well as transport-dependent hydrolysis by basolateral Na+–K+-ATPase (Lorenz et 

al. 2006) of ATP to AMP. Plasma membrane-bound ectonucleoside triphosphate 

diphosphohydrolase 1 (CD39) converts ATP and ADP to AMP (Oppermann et al. 2008) and 

ecto-5′-nucleotidase (CD73) converts extracellular AMP to adenosine (Thomson et al. 2000; 

Castrop et al. 2004; Ren et al. 2004; Huang et al. 2006). Part of the extracellular adenosine 

involved in the TGF response is generated independent of ecto-5′-nucleotidase and may 

reflect direct adenosine release from macula densa cells (Huang et al. 2006). Extracellular 

adenosine binds to A1AR at the surface of extraglomerular mesangial cells (Olivera et al. 

1989; Weaver and Reppert 1992; Toya et al. 1993; Smith et al. 2001) and increases cytosolic 

Ca2+ concentrations (Olivera et al. 1989). Gap junctions between extraglomerular mesangial 

cells and smooth muscle cells of glomerular arterioles can transmit intracellular Ca2+ 

transients to these target structures, inducing afferent arteriolar constriction (Iijima et al. 

1991; Ren et al. 2002b). Potential candidates for the formation of gap junctions in the 

juxtaglomerular apparatus include connexins 37, 40, and 43 (Wagner et al. 2007; Takenaka 

et al. 2008a, b).
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3 Activation of A1AR Inhibits Renin Secretion

Tagawa and Vander reported in 1970 that adenosine infusion into the renal artery of salt-

depleted dogs inhibited the renal secretion of renin into the venous blood (Tagawa and 

Vander 1970). This was confirmed in various species including humans (Edlund et al. 1994). 

Most notably, a single application of the A1AR antagonist FK-453 increased plasma renin 

concentrations in humans (Balakrishnan et al. 1993), indicating a tonic inhibition of renin 

secretion by A1AR activation. In accordance, knockout mice for A1AR have increased renal 

mRNA expression and content of renin (Schweda et al. 2003) as well as greater plasma renin 

activity (Brown et al. 2001; Rieg et al. 2007) compared with wild-type mice.

Jackson and coworkers proposed an extracellular cyclic adenosine monophosphate (cAMP)-

adenosine pathway in the control of renin release: the increase in intracellular cAMP in 

renin-secreting cells causes efflux of cAMP, the latter being converted to adenosine in the 

extracellular space. The generated adenosine, by acting on A1AR on the renin-secreting 

cells, then acts as a negative-feedback control on renin release (Jackson and Raghvendra 

2004). In addition, high NaCl concentrations in the tubular lumen enhance adenosine 

generation in a macula densa-dependent way, and the adenosine generated inhibits renin 

release via activation of A1AR (Itoh et al. 1985; Weihprecht et al. 1990; Lorenz et al. 1993; 

Kim et al. 2006) (Fig. 2). In contrast to A1AR stimulation, activation of A2AR can increase 

renin secretion (Churchill and Churchill 1985; Churchill and Bidani 1987). The latter may 

have contributed to the observation that the unselective adenosine receptor antagonist 

caffeine reduced plasma renin concentration in mice lacking A1AR (Rieg et al. 2007).

4 Differential Effects of Adenosine on Fluid and Electrolyte Transport

In addition to its effects on renal blood flow, GFR, and renin release, adenosine induces 

direct effects on fluid and electrolyte transport along the tubular and collecting duct system.

4.1 Activation of A1AR Increases Reabsorption in the Proximal Tubule

Endogenously formed adenosine can stimulate proximal tubular reabsorption of fluid, Na+, 

HCO3
−, and phosphate by activation of A1AR (Takeda et al. 1993; Cai et al. 1994, 1995; 

Tang and Zhou 2003). Importantly, systemic application of selective A1AR antagonists (such 

as CVT-124, DPCPX, KW-3902, or FK-453) elicits diuresis and natriuresis predominantly 

by inhibiting reabsorption in the proximal tubule in rats and humans (Mizumoto and 

Karasawa 1993; Balakrishnan et al. 1993; van-Buren et al. 1993; Knight et al. 1993b; 

Wilcox et al. 1999; Miracle et al. 2007), indicating a tonic stimulation of proximal tubular 

reabsorption via A1AR activation (Fig. 1). As a consequence, selective A1AR antagonists 

are being developed as eukaliuretic natriuretics in Na+-retaining states such as heart failure 

(see below). A1AR-mediated increases in proximal tubular reabsorption may involve 

increases of intracellular Ca2+ (Di Sole et al. 2003), reductions of intracellular cAMP levels 

(Kost Jr et al. 2000), and activation of the Na+–H+ exchanger (NHE3) (Di Sole et al. 2003).

Similar to selective A1AR blockade, systemic application or consumption of the unselective 

adenosine receptor antagonist theophylline or caffeine induces natriuretic and diuretic 

responses. These responses to theophylline and caffeine are absent in mice lacking A1AR, 
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strongly suggesting that A1AR blockade mediates the natriuresis and diuresis in response to 

these compounds (Rieg et al. 2005).

4.2 Activation of A1AR Inhibits Reabsorption in Medullary Thick Ascending Limb

In contrast to the proximal tubule, adenosine via activation of A1AR inhibits NaCl 

reabsorption in medullary TAL (Torikai 1987; Burnatowska-Hledin and Spielman 1991; 

Beach and Good 1992). Medullary TAL is a site of adenosine release, and adenosine release 

in this segment is transport dependent (Beach et al. 1991; Baudouin-Legros et al. 1995) and 

enhances significantly during hypoxic conditions (Beach et al. 1991). Studies using 

pharmacological inhibition (Zou et al. 1999) or gene knockout (Vallon et al. 2004) are 

consistent with a tonic inhibition of Na+ re-absorption in medullary TAL by A1AR 

activation (Fig. 1). This is relevant since the renal medulla has a low partial oxygen pressure 

(Brezis and Rosen 1995), and the described inhibitory effects of adenosine on transport work 

together with its A2AR-mediated renal medullary vasodilation (see above) to maintain 

metabolic balance in the renal medulla.

4.3 Effects of Adenosine on Transport in Distal Convolution and Cortical Collecting Duct

In general, natriuretics that act proximal to the aldosterone-sensitive distal nephron stimulate 

K+ secretion in the latter segment and thus increase renal K+ excretion. The natriuretic but 

eukaliuretic effect of A1AR inhibitors suggests an additional site of action in the 

aldosterone-sensitive distal nephron, but the exact site of action and the involved 

mechanisms are unclear.

A1AR activation can stimulate Mg2+ and Ca2+ uptake in the cortical collecting duct in vitro 

(Hoenderop et al. 1998, 1999; Kang et al. 2001), but the clinical relevance (e.g., during 

pharmacological inhibition of A1AR) is not known.

4.4 Activation of A1AR Counteracts Vasopressin Effects in Inner Medullary Collecting Duct

Extracellular adenosine feedback can inhibit vasopressin-induced cAMP-mediated 

stimulation of Na+ and fluid reabsorption in the inner medullary collecting duct (IMCD) 

(Yagil 1990; Yagil et al. 1994; Rieg et al. 2008) and decrease vasopressin-stimulated 

electrogenic Cl− secretion through the activation of A1AR (Moyer et al. 1995). Vasopressin-

induced adenosine may derive from the extracellular cAMP–adenosine pathway (Jackson et 

al. 2003) or follow the cellular release and breakdown of ATP (Vallon 2008). Studies on 

water transport in knockout mice indicate efficient compensation by other pathways in the 

absence of A1AR, including upregulation of ATP-sensitive P2Y2 receptors (Rieg et al. 

2008).

5 Adenosine and Metabolic Control of Kidney Function

The above outlined functions of adenosine can be integrated into the concept of metabolic 

control of renal function (Fig. 1). Adenosine-induced vasoconstriction via A1AR activation 

is predominant in the outer cortex by increasing the resistance of afferent arterioles, which 

lowers GFR and thus renal transport work. Under physiological conditions, adenosine-

induced afferent arteriolar constriction primarily derives from tonic activation of the TGF, 
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for which adenosine acts as a mediator. Adenosine via A1AR tonically stimulates NaCl 

reabsorption in the cortical proximal tubule, which is a tubular segment with a relatively 

high basal oxygen supply, thereby limiting the NaCl load to downstream medullary 

segments. In the deep cortex and medulla, adenosine induces vasodilation via A2AR 

activation, which is associated with an increase of medullary blood flow and thus increased 

medullary oxygenation. Moreover, adenosine inhibits NaCl reabsorption in medullary TAL 

and IMCD (i.e., nephron segments with relatively low oxygen delivery). In addition, the 

A2AR-mediated rise in medullary blood flow lowers medullary transport activity by washing 

out the high osmolality in the medullary interstitium (Zou et al. 1999). In accordance, 

interstitial infusion of adenosine in rat kidney decreased partial pressure of O2 in the cortex 

but increased it in the medulla, consistent with an important regulatory and protective role of 

adenosine in renal medullary O2 balance (Dinour and Brezis 1991).

6 Adenosine and Acute Renal Failure

The renal effects of adenosine fit into the concepts of acute renal failure (ARF) in as much 

as adenosine is an intrarenal metabolite that accumulates in the kidney during renal ischemia 

and that can lower GFR. In addition, ischemia or nephrotoxins can inhibit renal transport 

activity, with the resulting increase in the NaCl concentration at the macula densa further 

lowering GFR (Fig. 3). Moreover, experimental models of ARF can be associated with 

increased expression of A1AR in glomeruli, which may contribute to depressed GFR (Smith 

et al. 2000). Thus, inhibition of adenosine vasoconstrictor actions in the kidney could be 

beneficial in conditions of ARF. On the other hand, the ARF-associated reduction in GFR 

and thus in tubular NaCl load may, to some extent, protect the tubular system—especially 

the medulla—from hypoxic injury, and the body from excess NaCl loss. Moreover, 

adenosine can induce direct cytoprotective effects in renal cells. Therefore, inhibition of 

adenosine receptors in ARF could be a two-sided sword. In the following we discuss the role 

of adenosine in ARF induced by radiocontrast media and ischemia-reperfusion, respectively.

6.1 Radiocontrast Media-Induced Acute Renal Failure: Theophylline and A1AR Antagonists 
Induce Protective Effects

Application of radiocontrast media to humans can lead to an impairment of renal function, 

including a fall in GFR. Concomitant volume and NaCl depletion increases the severity and 

can result in ARF. Unselective or A1AR-selective antagonists can prevent renal impairment 

induced by radiocontrast media, as shown in dogs (Arend et al. 1987), rats (Erley et al. 

1997), mice (Lee et al. 2006), and, most importantly, in humans (Erley et al. 1994; Katholi et 

al. 1995; Kolonko et al. 1998; Kapoor et al. 2002; Huber et al. 2002, 2003). In accordance, 

mice lacking A1AR preserved kidney function better, and had lesser renal cortical 

vacuolization and enhanced survival 24 h after radiocontrast media treatment compared with 

wild-type mice (Lee et al. 2006). In comparison, dipyridamole, which increases extracellular 

adenosine concentrations, augmented the severity of renal impairment in response to radio-

contrast media in dogs (Arend et al. 1987) and humans (Katholi et al. 1995). Two studies 

indicated that the unselective adenosine receptor antagonist theophylline is as effective as 

saline hydration at preventing ARF in response to contrast media, but the benefits of the two 

maneuvers are not additive (Abizaid et al. 1999; Erley et al. 1999). Thus, use of theophylline 
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can be beneficial in patients where sufficient hydration may be impossible or in patients with 

a concomitant decrease in renal blood flow (e.g., congestive heart failure or chronic renal 

insufficiency (Erley et al. 1999; Huber et al. 2002)). A recent meta-analysis of clinical trials 

concluded that theophylline may reduce the incidence of radiocontrast media-induced 

nephropathy, and recommended a large, well-designed trial to more adequately assess the 

role of theophylline in this condition (Bagshaw and Ghali 2005). Notably, unselective or 

A1AR-selective antagonists can also prevent renal impairment in response to other 

nephrotoxic substances (Table 1).

6.2 Ischemia-Reperfusion Injury

Ischemia-reperfusion injury plays a major role in delayed graft function and long-term 

changes after kidney transplantation. It has become evident that the cellular and molecular 

mechanisms that operate during ischemia and reperfusion resemble an acute inflammatory 

response (Gueler et al. 2004). To what extent the acute cellular alterations persist and affect 

organ function later on remains unclear.

In the kidney, extracellular adenosine derives to a large extent from the extracellular 

breakdown of ATP and ADP to AMP and adenosine via ectonucleoside triphosphate 

diphosphohydrolases (ENTPDases) and CD73 (Grenz et al. 2007a, b). Using knockout 

mouse models for these ectoenzymes, Grenz et al. showed that CD39-dependent nucleotide 

phosphohydrolysis as well as CD73-dependent adenosine formation serve to protect against 

renal ischemia-reperfusion injury and to increase the ischemia tolerance of the kidney. In 

addition, the authors presented evidence that treatment with apyrase or soluble 5′-
nucleotidase to increase extracellular adenosine concentrations could serve as potential 

novel pharmacological approaches to renal diseases precipitated by limited oxygen 

availability (Grenz et al. 2007a, b).

6.2.1 Theophylline Induces Protective Effects—Different animal studies assessed the 

effect of a single application of the unselective adenosine receptor antagonist theophylline in 

ischemia-reperfusion injury. Animals were pretreated with theophylline or it was given at 

day 5 after the renal ischemic/hypoxemic event. Pretreatment with a single dose of 

theophylline in rats attenuated the reduction in renal blood flow and GFR observed during 

the initiation phase of postischemic ARF as determined 1 h after releasing a 30 or 45 min 

occlusion of the renal artery (Lin et al. 1986). Similar results were obtained with 

theophylline in the rabbit (Gouyon and Guignard 1988). In rats subjected to 60 min 

occlusion of the left renal artery, theophylline given i.v. 20 min before the release of the 

renal artery clamp in doses which antagonize the renal actions of adenosine in vivo 

improved the recovery of renal function after ischemic injury by increasing urinary flow 

rate, GFR (measured by inulin clearance), and histology, as assessed by morphometric 

quantification of tubular damage, tubular obstruction and pathologic alteration of glomeruli 

at 3 h after initiating reperfusion (Osswald et al. 1979; Helmlinger 1979). In contrast, 

pretreating rats prior to renal artery occlusion for 30 min with dipyridamole, which increases 

extracellular adenosine concentrations, intensified the fall in renal blood flow and GFR 

determined about 1 h after releasing the clamp, and this impairment was blocked by 

theophylline (Lin et al. 1987).
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Notably, single-dose pretreatment of rats with theophylline during a 30 min renal artery 

occlusion lead to increased renal blood flow and GFR during the maintenance phase of ARF 

after five days, indicating that the effects of theophylline in the acute phase affected the 

outcome in the maintenance phase. Similarly, a single dose of theophylline, given early after 

birth in asphyxiated full-term infants, has beneficial effects in reducing the renal 

involvement and fall in GFR as determined over the first five days (Bakr 2005). Finally, 

acute theophylline treatment given at five days after ischemia acutely increases renal blood 

flow and GFR in previously untreated rats, indicating that adenosine contributes to the 

suppression of renal blood flow and GFR in the maintenance phase of ischemia-reperfusion 

injury (Lin et al. 1988). These data provide strong evidence that pretreatment with 

theophylline can exert beneficial effects in the initiation and maintenance phase of ischemia-

reperfusion injury.

6.2.2 Adenosine Induces Protective Effects via A1AR and A2AR—Similar to 

theophylline, systemic intravenous infusion of adenosine (1.75 mg kg−1 min−1 ×10 min, 

intravenously) 2 min before a 45 min ischemic insult protected renal function against 

ischemia and reperfusion injury, as indicated by lower blood urea nitrogen and creatinine 

and improved renal morphology after 24 h of reperfusion. The effects of adenosine were 

proposed to be mediated by A1AR (Lee and Emala 2000), involve Gi/o proteins and protein 

kinase C activation (Lee and Emala 2001a), and include a reduction in inflammation, 

necrosis, and apoptosis (Lee et al. 2004a). Direct cytoprotective effects of endogenous 

A1AR activation in renal proximal tubules involve modulation of heat-shock protein 

(HSP)27 due to A1AR-mediated enhancement of p38 and AP2 mitogen-activated protein 

kinase activities (Lee et al. 2007). In comparison, mice lacking A1AR exhibited significantly 

higher plasma creatinines and worsened renal histology compared with wild-type mice at 24 

h after renal ischemia for 30 min (Lee et al. 2004b). Similarly, wild-type mice pretreated 

with an A1AR antagonist or agonist demonstrated worsened or improved renal function, 

respectively, after ischemia-reperfusion that was associated with increased or reduced 

markers of renal inflammation, respectively (Lee et al. 2004b) (Fig. 3). More recent work 

indicated that A1AR activation produces not only acute but also delayed renal protection; 

i.e., pretreatment with a selective A1AR agonist 24 h before renal ischemia was also 

protective against renal ischemia-reperfusion injury. Furthermore, the study showed that 

acute protection from A1AR activation is dependent on protein kinase C and Akt activation, 

whereas the delayed protection is dependent on Akt activation and induction of HSP27 (Joo 

et al. 2007).

Continuous application in the reperfusion period of 4-(3-(6-amino-9-(5-ethylcarbamoyl-3,4-

dihydroxytetrahydrofuran-2-yl)-9H-purin-2-yl)prop-2-ynyl) cyclohexanecarboxylic acid 

methyl ester (DWH-146e), a selective A2AAR agonist, protected kidneys from ischemia-

reperfusion injury, as evidenced by a lower rise in serum creatinine and blood urea nitrogen 

following 24 and 48 h of reperfusion. Histological examination revealed widespread tubular 

epithelial necrosis and vascular congestion in the outer medulla of vehicle-treated rats. 

These lesions were significantly reduced in DWH-146e-treated animals (Okusa et al. 1999). 

Similarly, systemic adenosine given after 45 min of renal ischemia but before reperfusion 

protected renal function, as indicated by lower rises in creatinine and less histologically 
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evident renal tubular damage. Pharmacological maneuvers indicated that these effects of 

adenosine were mediated by A2AAR activation (Lee and Emala 2001b). Whereas A2AAR 

activation could improve medullary hypoxia, other studies suggested that protection from 

renal ischemia-reperfusion injury by A2AR agonists or endogenous adenosine requires 

activation of A2AR expressed on bone marrow-derived cells (Day et al. 2003). Activation of 

A2AAR on macrophages was also shown to inhibit inflammation in a rat model of 

glomerulonephritis (Garcia et al. 2008). Moreover, activation of A2BAR in the renal 

vasculature contributes to the increased ischemia tolerance produced by the procedure of 

renal ischemic preconditioning (Grenz et al. 2008).

Finally, A3AR stimulation in rats deteriorated renal ischemia-reperfusion injury, whereas 

inhibition of A3AR protected renal function as efficiently as preconditioning (Lee and Emala 

2000). In accordance, mice lacking A3AR presented significant renal protection, 

functionally and morphologically, from ischemic or myoglobinuric renal failure (Lee et al. 

2003). The mechanisms of these A3AR-mediated effects are not understood at present.

In summary, beneficial effects on GFR and renal morphology beyond 3–24 h of reperfusion 

after ischemia can be induced by (1) pretreatment with the unselective adenosine receptor 

antagonist theophylline, (2) pretreatment or treatment immediately before reperfusion with 

adenosine, (3) pretreatment with A1AR agonists, (4) treatment immediately before or during 

reperfusion with A2AAR agonists, (5) treatment with A2BAR agonists, and (6) deficiency of 

A3AR. In comparison, the outcome is worsened by (1) pretreatment with A1AR antagonists 

or deficiency of A1AR, (2) pretreatment with A2BAR antagonists or deficiency of A2BAR, 

and (3) pretreatment with A3AR agonists. The findings appear contradictory because 

theophylline can inhibit both A1AR and A2AAR, and possibly acts as an agonist at A3AR 

(Ezeamuzie 2001). Further studies are necessary to resolve this issue, which may relate to 

the nature of adenosine being a double-edged sword in ARF, and the situation being further 

complicated by the role of adenosine in inflammatory responses.

7 A1AR Antagonists in the Treatment of Cardiorenal Failure

Concomitant renal dysfunction is one of the strongest risk factors for mortality in 

ambulatory heart failure patients (Dries et al. 2000; Hillege et al. 2000; Mahon et al. 2002). 

In patients hospitalized for decompensated heart failure, worsening of renal function further 

predicts an adverse outcome (Forman et al. 2004). Intravenous loop diuretics are the 

mainstay of therapy for patients with both systemic volume overload and acute pulmonary 

edema decompensated heart failure. Treatment, however, may be complicated by diuretic 

resistance and/or worsening of renal function, indicating the need for alternative approaches.

Volume overload heart failure in dogs increases myocardial adenosine release (Newman et 

al. 1984), and circulating levels of adenosine can be increased in patients with chronic heart 

failure (∼200 vs 60 nM) (Funaya et al. 1997) (Fig. 4). Whether this increases circulating 

adenosine to an extent that affects afferent arteriolar tone and thus GFR is unclear. 

Nonetheless, the renal vasculature in heart failure patients can be sensitized to the GFR-

lowering effects of adenosine by the associated activation of the renin–angiotensin system 

and/or impairment of the local formation of NO (endothelial dysfunction) or prostaglandins 
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(see above and Fig. 4). In addition, impaired renal perfusion and hypoxia enhance adenosine 

formation within the kidney (Nishiyama et al. 1999). As a consequence, the normally 

homeostatic adenosine system may become maladaptive and overshoots with regard to the 

downregulation of GFR in patients with heart failure. Fluid retention is further potentiated 

by stimulation of NaCl and fluid reabsorption in the proximal tubule, a mechanism also 

mediated by A1AR activation (see above and Fig. 4). Based on this concept, 

pharmacological blockade of A1AR could improve kidney function and fluid retention in 

heart failure. Since adenosine (through the activation of A1AR) mediates TGF, the expected 

TGF-induced reduction in GFR in response to inhibition of proximal reabsorption by A1AR 

antagonists should be blunted. In accordance, a study in rats showed that A1AR antagonism 

with KW-3902 prevented the GFR-lowering effect of the proximal diuretic benzolamide, a 

carbonic anhydrase inhibitor (Miracle et al. 2007).

7.1 Animal Studies

Lucas et al. used a pig model of systolic dysfunction and induction of chronic heart failure 

by pacer-induced tachycardia. They observed that acute application of the selective A1AR 

antagonist 1,3-dipropyl-8-[2-(5,6-epoxynorbornyl)xanthine (BG9719) (CVT-124) increased 

creatinine clearance and urinary flow rate and sodium excretion. This was associated with 

lower pulmonary capillary wedge pressure and pulmonary vascular resistance in the absence 

of significant changes in mean arterial blood pressure, heart rate or cardiac output compared 

with vehicle control (Lucas Jr et al. 2002). Similar effects were described by Jackson et al. 

in aged, lean SHHF/Mcc-fa(cp) rats, a rodent model of hypertensive dilated cardiomyopathy 

in response to the same compound (Jackson et al. 2001). The rats were pretreated for 72 h 

before experiments with the loop diuretic furosemide to mimic the clinical setting of chronic 

diuretic therapy, and were given 1% NaCl as drinking water to reduce dehydration/sodium 

depletion. Acute application of BG9719 increased GFR and urinary fluid and sodium 

excretion. In comparison, acute application of furosemide decreased renal blood flow and 

GFR and increased fractional potassium excretion. Neither drug altered afterload or left 

ventricular systolic function (+dP/dt (max)); however, furosemide, but not BG9719, 

decreased preload and attenuated diastolic function (decreased −dP/dt (max), increased tau). 

Thus, in the setting of left ventricular dysfunction, chronic salt loading and prior loop 

diuretic treatment, selective A1AR antagonists are effective diuretic/natriuretic agents that 

do not induce potassium loss and have a favorable renal hemodynamic/cardiac performance 

profile (Jackson et al. 2001).

7.2 Human Studies

Gottlieb et al. compared the acute effects of furosemide and BG9719 on renal function in 12 

patients categorized as New York Heart Association (NYHA) functional classes II, III or IV 

(Gottlieb et al. 2000). Both BG9719 and furosemide increased sodium excretion compared 

with placebo. However, only furosemide lowered GFR. Subsequently, Gottlieb et al. 

compared BG9719 and furosemide in 63 patients categorized as NYHA functional classes 

II, III or IV, which despite receiving standard therapy, including furosemide (at least 80 mg 

daily) and angiotensin-converting enzyme inhibitors, remained edematous (Gottlieb et al. 

2002). Patients received 7 h infusions of placebo or BG9719 to yield serum concentrations 

of 0.1, 0.75, or 2.5 μg ml−1. BG9719 tripled urine output without lowering GFR or inducing 
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kaliuresis. In comparison, furosemide increased urine output eightfold and increased 

potassium excretion while reducing GFR. Notably, when BG9719 was given with 

furosemide, GFR remained unaltered compared with placebo and sodium excretion 

increased further. These results indicate that A1AR antagonism can preserve renal function 

while simultaneously promoting natriuresis during acute treatment of heart failure (Gottlieb 

et al. 2002).

Similar results were more recently reported in studies using the A1AR antagonist KW-3902 

in patients with congestive heart failure and impaired renal function (Dittrich et al. 2007; 

Givertz et al. 2007). Dittrich et al. assessed baseline GFR and renal plasma flow 3 h before 

and over 8 h following the intravenous administration of furosemide along with KW-3902 

(30 mg) or placebo. After a washout period of 3–8 days (median six days), the crossover 

portion of the study was performed. KW-3902 increased GFR by 32% and renal plasma flow 

by 48% compared with placebo. Notably, subjects who initially received KW-3902 had a 

statistically significant 10 ml min−1 increase in GFR when they returned for the crossover 

phase compared with the previous baseline. Thus, the increase in GFR persisted for several 

days longer than predicted by pharmacokinetics. These findings suggest that KW-3902 reset 

the complex network that determines kidney function in these patients, and provided first 

evidence for potential longer-term benefits of using A1AR antagonists (Dittrich et al. 2007). 

Greenberg et al. assessed the effects of the selective A1AR antagonist 1,3-dipropyl-8-[1-(4-

propionate)-bicyclo-[2,2,2]octyl)]xanthine (BG9928) given orally for ten days to 50 patients 

with heart failure and left ventricular systolic dysfunction who were receiving standard 

therapy (Greenberg et al. 2007). BG9928 (3–225 mg per day) increased sodium excretion 

without causing kaliuresis or reducing GFR. Notably, these effects were maintained over the 

ten-day period. BG9928 at doses of 15, 75, or 225 mg also reduced body weight at the end 

of the study compared with placebo (Greenberg et al. 2007).

In summary, the abovedescribed acute and short-term studies employing A1AR antagonists 

in patients with heart failure yielded promising results. Since A1AR blockade may increase 

transport in the semihypoxic medullary TAL, combining A1AR antagonists with furosemide 

may potentiate natriuresis while helping to prevent transport-induced medullary hypoxia 

(Fig. 4). Whereas the presented animal and human studies were acute or short-term 
treatments, it remains to be determined whether longer-term application of A1AR 

antagonism has beneficial effects. These studies should also reveal whether a clinically 

relevant effect of A1AR blockade on renin release occurs. Consideration should also be 

given to the evidence that A1AR activation is potentially important for protection in response 

to ischemia of the kidney (see above) and the heart (Cohen and Downey 2008). Apart from 

these issues, A1AR blockade is unique in inducing natriuresis without potassium loss and 

lowering renal vascular resistance independent of all other organs. With regard to preserving 

renal function, this is an advantage over all vasodilator heart failure therapies that have been 

tried so far.
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Abbreviations

AA Afferent arteriole

ADO Adenosine

ARF Acute renal failure

AXAR Adenosine receptor subtype x

B Bowman’s capsule

BG9719 1,3-Dipropyl-8-[2-(5,6-epoxynorbornyl) xanthine

BG9928 1,3-Dipropyl-8-[1-(4-propionate)-bicyclo-[2,2,2]octyl)]xanthine

BM Basement membrane

BS Bowman’s space

cAMP Cyclic adenosine monophosphate

CD39 Ecto-nucleoside triphosphate diphosphohydrolase-1

CD73 Ecto-5′-nucleotidase

CGS21680 2-[p-(2-Carboxyethyl)phenethylamino]-5′-N-ethylcarboxamido adenosine

CVT-124 S-Enantiomer of 1,3-dipropyl-8-[2-(5,6-epoxynorbornyl)] xanthine

DMPX 3,7-Dimethyl-1-propargylxanthine

DPCPX 1,3-Dipropyl-8-cyclopentylxanthine

DPSPX 1,3-Dipropyl-8-sulfophenylxanthine

DWH 146e 4-(3-(6-Amino-9-(5-ethylcarbamoyl-3,4-dihydroxytetrahydrofuran-2-yl)-9H-

purin-2-yl)prop-2-ynyl)cyclohexanecarboxylic acid methyl ester

EA Efferent arteriole

EGM Extraglomerular mesangium

ENTPDase Ectonucleoside triphosphate diphosphohydrolase

FK-453 (+)-(R)-[(E)-3-(2-Phenylpyrazolo[1,5-a]pyridin-3-yl)acryloyl]-2-piperidine 

ethanol

FK-838 6-Oxo-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)-1(6H)-pyridazinebutanoic 

‘acid

GFR Glomerular filtration rate

HSP27 Heat-shock protein 27

IMCD Inner medullary collecting duct
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KW-3902 8-(Noradamantan-3-yl)-1,3 dipropylxanthine

MBF Medullary blood flow

MC Mesangium cells

mTAL Medullary thick ascending limb

NHE Na + − H+ exchanger

NKCC2 Na + − K+ −2Cl− cotransporter

NO Nitric oxide

NYHA New York Heart Association

pO2 Partial oxygen pressure

PT Proximal tubule

SNGFR Single nephron glomerular filtration rate

TAL Thick ascending limb

TGF Tubuloglomerular feedback

TNa Transport of sodium

VSMC Vascular smooth muscle cells
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Fig. 1. 
a–e Control of renal hemodynamics and transport by adenosine (ADO). The line plots 
illustrate the relationships between the given parameters. Small circles on these lines 

indicate ambient physiological conditions. In general, the medulla is at greater risk for 

hypoxic damage than the cortex due to a lower partial oxygen pressure (pO2). a In every 

nephron segment, an increase in reabsorption or transport of sodium (TNa) increases 

extracellular ADO. b ADO via A1AR mediates tubuloglomerular feedback (TGF) and 

constricts the afferent arteriole to lower GFR. c In the proximal tubule, ADO via A1AR 

stimulates TNa and thus lowers the Na+ load to segments residing in the semihypoxic 

medulla. d In contrast, ADO via A1AR inhibits TNa in the medulla, including medullary 

thick ascending limb (mTAL). e In addition, ADO via A2AR enhances medullary blood flow 

(MBF), which increases O2 delivery and further limits O2-consuming transport in the 

medulla (adapted from Vallon et al. 2006)
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Fig. 2. 
a–e Adenosine is a mediator of the tubuloglomerular feedback: a proposed mechanism. Left 
panel: schematic drawing illustrating the macula densa (MD) segment at the vascular pole 

with the afferent arteriole (AA) entering and the efferent arteriole (EA) leaving the 

glomerulus; extraglomerular mesangium (EGM); glomerular basement membrane (BM); 

epithelial podocytes (EP) with foot processes (F); Bowman’s capsule (B) and space (BS), 

respectively; proximal tubule (PT). (Adapted from Kriz, Nonnenmacher and Kaissling). 

Right panel: schematic enlargement of area in rectangle. An increase in concentration-

dependent uptake of Na+, K+ and Cl− via the furosemide-sensitive Na+ − K+ − 2Cl− 

cotransporter (NKCC2) a leads to transport-related, intra- and/or extracellular generation of 

adenosine (ADO) b, c. Extracellular ADO activates A1AR, triggering an increase in 

cytosolic Ca2+ in extraglomerular mesangium cells (MC) d. The intensive coupling between 

extraglomerular MC, granular renin-containing cells, and vascular smooth muscle cells 

(VSMC) of the afferent arteriole by gap junctions allows propagation of the increased Ca2+ 

signal e, resulting in afferent arteriolar vasoconstriction and inhibition of renin release 

(adapted from Vallon et al. 2006)
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Fig. 3. 
Schematic illustration of intrarenal mechanisms in acute renal failure. See text for further 

explanation (adapted from Osswald and Vallon 2008)
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Fig. 4. 
a–d Basis for a therapeutic effect of A1AR antagonism in heart failure. The basic effects of 

adenosine on renal functions are outlined in the legend to Fig. 1. a Heart failure can be 

associated with increased plasma concentrations of adenosine (ADO) and angiotensin II, and 

endothelial dysfunction can impair nitric oxide (NO) formation, all of which can enhance 

the A1AR-mediated lowering of GFR and may, in addition, stimulate proximal reabsorption. 

b A1AR antagonism induces natriuresis and diuresis by inhibiting proximal reabsorption and 

preserving or increasing GFR. c A1AR antagonism can enhance sodium transport (TNa) in 

semihypoxic medullary thick ascending limb (mTAL). This is prevented by coadministration 

of loop diuretics, and diuresis and natriuresis are potentiated. d A2AR-mediated medullary 

vasodilation is preserved (adapted from Vallon 2008)
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Table 1

Adenosine receptor antagonists improve renal function in various models of nephrotoxic acute renal failure 

(ARF)

Models of ARF Species Adenosine antagonist References

Glycerol Rat Theophylline Bidani and Churchill (1983); Bidani et al. (1987)

Injection 8-Phenyl-theophylline Bowmer et al. (1986); Yates et al. (1987)
Kellett et al. (1989); Panjehshahin et al. (1992)

DPCPX

FK-453 Ishikawa et al. (1993)

KW-3902 Suzuki et al. (1992)

Uranyl nitrate Rat Theophylline Osswald et al. (1979)

Cisplatin Rat Theophylline Heidemann et al. (1989)

Human DPCPX Knight et al. (1991)

KW-3902 Nagashima et al. (1995)

Theophylline Benoehr et al. (2005)

Contrast media Dog Theophylline Arend et al. (1987)

Human Theophylline Erley et al. (1994); Katholi et al. (1995); Kolonko et al. (1998); Kapoor et al. (2002); 
Huber et al. (2002, 2003)

Rat DPCPX, KW3902 Erley et al. (1997); Yao et al. (2001)

Endotoxin Rat DPCPX Knight et al. (1993a)

Amphotericin B Rat Theophylline Heidemann et al. (1983)

Dog Theophylline Gerkens et al. (1983)

Gentamicin Rat KW-3902 Yao et al. (1994)

8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), (+)-(R)-[(E)-3-(2-phenylpyrazolo[1,5-a]pyridin-3-yl)acryloyl]-2-piperidine ethanol (FK-453) and 8-
(noradamantan-3-yl)-1,3 dipropylxanthine (KW-3902) are A1AR-selective antagonists. Adapted from Vallon et al. (2006)
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