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Abstract

Purpose—High throughput profiling of metabolic status (metabolomics) allows for the 

assessment of small-molecule metabolites that may participate in exercise-induced biochemical 

pathways and corresponding cardiometabolic risk modification. We sought to describe the changes 

in a diverse set of plasma metabolite profiles in patients undergoing chronic exercise training and 

assess the relationship between metabolites and cardiometabolic response to exercise.

Methods—secondary analysis was performed in 216 middle-aged abdominally obese men and 

women ([mean (SD)], 52.4 (8.0) years) randomized into one of four groups varying in exercise 

amount and intensity for 6 months duration: high amount high intensity, high amount low 

intensity, low amount low intensity, and control. 147 metabolites were profiled by liquid 

chromatography-tandem mass spectrometry.

Results—No significant differences in metabolite changes between specific exercise groups were 

observed; therefore, subsequent analyses were collapsed across exercise groups. There were no 

significant differences in metabolite changes between the exercise and control groups after 24 

weeks at a Bonferroni-adjusted statistical significance (p < 3.0 × 10-4). Seven metabolites changed 

in the exercise group compared to the control group at p < 0.05. Changes in several metabolites 

from distinct metabolic pathways were associated with change in cardiometabolic risk traits, and 

three baseline metabolite levels predicted changes in cardiometabolic risk traits.

Conclusion—Metabolomic profiling revealed no significant plasma metabolite changes between 

exercise compared to control after 24-weeks at Bonferroni significance. However, we identified 

circulating biomarkers that were predictive or reflective of improvements in cardiometabolic traits 

in the exercise group.
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Introduction

Increased physical activity and improved cardiorespiratory fitness (CRF) are associated with 

improvements in individual cardiometabolic risk factors as well as global cardiovascular 

disease risk (1-5), however the molecular mechanisms underlying the salutary effects of 

exercise remain unclear. Substantial heterogeneity exists in the individual response to 

exercise training (6-8) thus, insight into the biochemical pathways involved in exercise offers 

promise towards early detection of cardiometabolic disease (9) and tailoring exercise 

“prescriptions” to the individual level (10).

Metabolites are substrates and by-products of metabolism with a diverse set of biochemical 

actions that serve as both biomarkers and effectors of disease states (11, 12). The 

metabolome’s interface between gene-protein functional state and phenotype, and its 

dynamic response to environmental stimuli makes it well suited for the study of physiologic 

perturbations such as exercise. Advancements in high-throughput platforms have enabled the 

systematic assessment of large numbers of small-molecule metabolites in tissue and plasma 

samples that may participate in exercise-induced biochemical pathways (12, 13).

Work by our group and others have characterized changes in plasma metabolites following a 

single aerobic exercise session using advanced metabolite profiling technologies (13-15). 

Findings from these studies demonstrate exercise-induced changes in several key 

metabolites involved in glycolysis, lipolysis, glycogenolysis, the citric acid (TCA) cycle, and 

amino acid metabolism, and identified differential substrate utilization among more and less 

fit individuals. By contrast, far less is known about the metabolic response to prolonged 

exercise training. Huffman et al (16) examined the change in 69 plasma metabolites after six 

months of chronic exercise training in a small (n=53) cohort of sedentary, middle-aged, 

overweight or mildly obese men and women, and found significant changes in leptin, 

monocyte chemoattractant protein (MCP-1) and arachidoyl carnitine (C20) compared to the 

inactive control group. Notably, this study focused on free fatty acids, acylcarnitines and a 

subset of amino acids. More recently, the same group employed a larger, targeted 

metabolomics platform in skeletal muscle biopsies in an expanded sample, and found that a 

high amount of vigorous intensity aerobic exercise significantly increased concentrations of 

even-, medium-, and long-chain acylcarnitines, while resistance training and a low-amount 

of vigorous intensity aerobic exercise preferentially increased short- and medium-chain 

acylcarnitines (17).

The purpose of this study was to characterize the impact of a prolonged exercise intervention 

on a diverse set of circulating plasma metabolites. We employed a targeted liquid 

chromatography tandem mass spectrometry (LC-MS/MS) platform in peripheral blood 

samples before and after participation in a six-month randomized controlled exercise trial 

among 216 middle-aged, abdominally obese men and women. We tested whether metabolite 
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changes differed between groups, and if metabolites were associated with changes in 

cardiometabolic traits.

Methods

The study was approved by the Queen’s University Health Sciences Research Ethics Board 

and all participants provided written informed consent. Details of the study design and 

methods have been published previously (18). Briefly, the 24-week exercise intervention 

randomized 300 inactive, abdominally obese (waist circumference (WC) >102 cm for men, 

88 cm for women) participants into one of four exercise groups: control (no exercise), low 

amount low intensity (LALI; 180 and 300 kcal/session for women and men, respectively, at 

50% VO2peak), high amount low intensity (HALI; 360 and 600 kcal/session, respectively, at 

50% VO2peak), and high amount high intensity (HAHI; 360 and 600 kcal/session, 

respectively, at 75% VO2peak). Cardiorespiratory fitness was assessed using standard open-

circuit spirometry during a maximal graded exercise test. Waist circumference (WC) and 

blood pressure were measured at baseline, 16 and 24 weeks. Fasting insulin (pmol/L), 

homeostatic model assessment insulin resistance (HOMA-IR), 2-hour glucose (mmol/L) and 

insulin area under the curve (AUC) were derived from a 2-hour, 75-g oral glucose tolerance 

test (OGTT) at baseline, 16 and 24 weeks.

In the current analysis, participants from the original trial were excluded if they did not 

complete the 24-week intervention (n=84), which resulted in a study sample of 216 

participants (Control, n=53; HAHI, n=47; HALI, n=60; LALI, n=56).

Plasma Sampling and Metabolite Profiling

Fasting plasma samples were acquired via the antecubital vein at baseline prior to the OGTT 

and again 48 hours after the last exercise session at 16 and 24 weeks. The plasma was 

immediately separated by centrifugation (10 minutes at 4250 rpm) and stored at -80°C.

We used two distinct, LC-MS/MS based methods to profile 147 analytes including amino 

acids, organic acids, bile acids, indoles, nucleotides and sugars. These platforms have been 

previously used to characterize a diverse set of biochemical pathways implicated in 

metabolic status (19, 20). Briefly, fasting plasma samples (EDTA, 10μL and 30μL for 

positive and negative ion modes, respectively) were deproteinized using extraction solvent 

containing stable isotope labeled internal standards. Samples were vortexed and centrifuged, 

and aliquots were transferred to 2mL autosampler vials with glass inserts for LC-MS 

analysis. In positive mode, normal phase hydrophilic interaction chromatography (HILIC) 

using a 2.1×150mm 3μm Atlantis column (Waters) was coupled to a 4000 QTrap triple 

quadrupole mass spectrometer (Applied Biosystems/Sciex) equipped with an electrospray 

ionization source for targeted detection of 78 metabolites using a dynamic multiple reaction 

monitoring (dMRM) mechanism. In negative mode, HILIC chromatography using a 

2.1×100mm 3.5 μm Xbridge Amide column (Waters) was coupled to an Agilent 6490 triple 

quadrupole mass spectrometer equipped with an electrospray ionization source for targeted 

detection of 69 metabolites using dMRM. Metabolite peak areas were integrated using Sciex 

MultiQuant software (positive mode) or Agilent Masshunter Quantitative software (negative 

mode). All metabolite peaks were manually reviewed for peak quality in a blinded manner. 
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In addition, pooled plasma samples were interspersed within each analytic run at 

standardized intervals, enabling the monitoring and correction for temporal drift in MS 

performance. The median coefficient of variation (CV) in metabolites was 5.88% in positive 

mode and 5.23% in negative mode.

Statistical Analysis

All metabolites were log-transformed to approximate a normal distribution and analyses 

were adjusted for age and sex. Repeated measures ANOVA was used to compare metabolite 

changes within and between the control, LALI, HALI, and HAHI groups. In secondary 

analyses, principal component analysis (PCA) was used to reduce dimensionality of the 

metabolite dataset at baseline. Thirty-seven main principal factors were derived after 

orthogonal Varimax rotation (Table 1). Factors were retained if they had an eigenvalue >1 

and individual metabolites with a factor load >|0.4| for a given PCA-derived factor were 

included. Scores were calculated for each participant based on standardized scoring 

coefficients. Cross-sectional associations between PCA factor scores and cardiometabolic 

risk traits (body weight, BMI, WC, 2-hour glucose, fasting insulin, insulin AUC, HOMA-IR, 

systolic blood pressure (SBP), diastolic blood pressure (DBP)) were assessed with multiple 

linear regression adjusted for age and sex. Additionally, multiple linear regression was used 

to determine cross-sectional associations between individual metabolites and 

cardiometabolic risk traits, baseline and change in metabolite concentrations, and change in 

cardiometabolic traits. All analyses were performed using SPSS Statistics (Version 23) and 

statistical significance was determined at the Bonferroni-corrected p-value < 3.0×10-4 

(0.05/147). Nominal significance was set at p < 0.05.

Results

Participant characteristics

Participant characteristics pre- and post-treatment are summarized in Table 2. Briefly, 

participants were abdominally obese, inactive, middle-aged adults with a relatively healthy 

metabolic profile. Significant reductions in body weight, WC, fasting insulin, HOMA-IR 

and insulin AUC, and increases in CRF were observed in exercise groups compared to 

control (p < 0.05).

Baseline associations between metabolites and cardiometabolic traits

PCA was used to reduce the large number of circulating metabolites into fewer factors 

containing highly correlated metabolites that are biologically related (Table 1). We detected 

strong associations between several principal factors, cardiometabolic risk factors and CRF 

prior to the initiation of exercise (Table 3). Both PCA factor and individual metabolite 

associations revealed several well-established relationships between metabolic pathways and 

clinical traits, including body mass (tryptophan derivatives, aromatic amino acids, glutamate, 

uric acid and adenine catabolism products) and glucose and insulin homeostasis (branched 

chain amino acids, aromatic amino acids, tryptophan derivatives, and glutamate) (21-23). 

The hexosamine end-product, UDP-N-acetylglucosamine (UDP-GlcNac), was also strongly 

and positively related to baseline levels of fasting and 2-hour insulin, insulin AUC, and 

HOMA-IR. Additionally, we identified novel inverse relationships between the aromatic 
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amino acid, tyrosine (p = 2.9×10-4); tryptophan precursor, anthranilic acid (p = 1.5×10-4); 

and the adenine nucleotide catabolism product, inosine (p = 2.1×10-4); and directly 

measured cardiorespiratory fitness.

Change in metabolites at 24 weeks

There were no significant metabolite changes between exercise and control groups after 24 

weeks at the Bonferroni-adjusted threshold (p < 3.0 × 10-4). When exercise arms were 

collapsed to create a single exercise group (N = 163), we found 7 metabolites that changed 

at nominal significance (p < 0.05) compared to the control group. These included tryptophan 

metabolites [(indoxylsulfate (increased) and indole-3-lactic acid (increased)]; metabolites 

derived from energy metabolism pathways [(aconitic acid (decreased), pyruvic acid 

(decreased), ATP (increased), malonic acid (increased)]; and the purine degradation product 

xanthine (decreased). Changes in indole-3-lactic acid, indoxylsulfate, pyruvic acid and 

xanthine appear to be driven by the high amount exercise groups upon examination of 

within-group changes. We further identified several metabolites that changed from baseline 

levels within exercise groups at the Bonferroni-adjusted level of significance Products of 

adenine nucleotide metabolism (cyclic AMP, inosine, xanthine, and xanthosine); lipolysis 

(glycerol); the nucleotide sugar, UDP-GlcNac; and non-polar amino acids and intermediates 

(alanine and homogentisic acid) decreased, whereas serine and acetoacetic acid, a fatty-acid 

intermediate, both increased in HALI. Xanthine and indole-3-lactic acid also decreased and 

increased in LALI and HAHI, respectively.

Metabolite changes associated with changes in cardiometabolic traits

We detected strong associations between analyte changes and changes in cardiometabolic 

traits (p < 3 × 10-4, Table 4). Changes in the branched chain amino acids leucine and 

isoleucine, and UDP-GlcNAc were inversely associated with changes in CRF (ml/kg/min), 

whereas change in the TCA cycle intermediate, isocitric acid, was positively correlated. 

These changes stayed significant even after adjustment for known relationships (BMI, 

fasting glucose). Changes in gluconeogenic amino acids (alanine, tyrosine, and proline) and 

UDP-GlcNAc were positively associated with change in BMI; UDP-GlcNAc was similarly 

associated with WC and insulin metabolism (insulin and insulin AUC). Xanthurenic acid 

was also associated with change in insulin AUC. These relationships remained significant 

after further adjusting for change in weight.

Changes in metabolites that were associated with changes in cardiometabolic traits at 

nominal significance are reported (see Table, Supplemental Digital Content 1, Associations 

between change in metabolites and change in cardiometabolic traits, http://

links.lww.com/MSS/B221).

Baseline metabolites associated with change in cardiometabolic traits

We detected baseline metabolite levels measured prior to the initiation of exercise that 

predicted a favorable cardiometabolic trait response after 24 weeks of chronic exercise, even 

after adjusting for the baseline clinical trait (Table 5). Baseline taurine and asymmetric 

dimethylarginine (ADMA)/symmetric dimethylarginine (SDMA) concentrations were 

inversely associated with changes in WC and 2-hour glucose, respectively, while glutamate 
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was positively associated with change in DBP (p < 3 × 10-4). Additional associations 

between baseline metabolites and change in cardiometabolic risk factors and CRF at 

nominal significance are reported (see Table, Supplemental Digital Content 2, Associations 

between baseline metabolites and change in cardiometabolic risk factors, http://

links.lww.com/MSS/B222).

Discussion

Advancements in metabolomics technologies have enabled efforts to systematically profile 

blood-based metabolites in order to characterize changes predictive (13, 24) or reflective (9) 

of physiologic states. Here, we employed a targeted LC-MS/MS platform to describe the 

changes in a large and varied set of plasma metabolites in a cohort of 216 abdominally obese 

subjects randomized to 24 weeks of inactivity or one of three aerobic exercise interventions. 

We found no significant differences between metabolites in the control and exercise arms at 

our a priori level of statistical significance. Products of lipolysis, adenine nucleotide 

metabolism, and both polar- and non-polar amino acids changed within individual exercise 

groups, albeit not differently from control. We confirmed cross-sectional relationships 

between metabolites and cardiometabolic risk traits. Additionally, we demonstrated 

associations between changes in metabolite level and changes in these traits.

Prior metabolomics investigations into the effects of chronic exercise training were either 

limited by a small sample size and less expansive metabolite platform (16), or characterized 

changes in skeletal muscle rather than blood (17). Huffman et al. randomized participants 

into exercise groups varying in amount and intensity and a control group and observed only 

three nominally significant metabolite changes between groups (16). The same group also 

studied changes in skeletal muscle metabolite concentrations after exercise training and 

found nominally (p < 0.05) significant increases in even-chain acylcarnitines and TCA cycle 

intermediates, whereas skeletal muscle concentrations of amino acids, glycolytic metabolites 

(lactate and pyruvate) and all other TCA cycle intermediates did not change (17).

Similarly, our group did not find significant differences in metabolites between exercise and 

control groups at the Bonferroni-adjusted level of significance (p < 4 × 10-4) but did detect 

significant metabolite changes within groups. Several potential explanations exist for these 

findings. First, the use of a strict statistical threshold may have masked biologically relevant 

associations, particularly when several of the metabolites under scrutiny cluster together and 

participate in known biologic pathways (11). Second, the presence of significant inter-

individual variability may have blunted group comparisons. Within group analysis using 

each individual as his/her own biologic control revealed significant changes within the 

exercise intervention arms, an experimental design that has been previously employed in 

small metabolomics (9, 13, 16) and proteomic (25) pertubational studies. While we cannot 

attribute exercise effects to the changes seen within individual exercise arms, our findings 

underscore the importance of performing much larger trials that are better powered to 

characterize the molecular response to physical activity (26).

The cross-sectional associations between baseline metabolites and clinical risk factors 

demonstrated here extend previous findings. Elevations in aromatic (tyrosine) and branched 
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chain amino acids, and tryptophan breakdown products (anthranilic acid, kynurenines) have 

been strongly correlated with elevated body mass and insulin resistance phenotypes (23, 27, 

28). In addition, we observed novel inverse associations between tyrosine, anthranilic acid, 

and inosine, and peak oxygen consumption (VO2peak) which is an established predictor of 

morbidity and mortality.

We further explored whether improvements in cardiometabolic traits were related to changes 

in circulating metabolite levels. For instance, decreased uridine diphosphate N-

acetylglucosamine (UDP-GlcNAc) concentrations were associated with improvements in 

anthropometric and insulin resistance traits, whereas increased levels were associated with 

worse CRF. UDP-GlcNAc, a nucleotide sugar, is the end-product of the hexosamine 

biosynthetic pathway (HBP) and acts as a substrate for the O-linked N-acetylglucosamine 

transferase enzymes (OGTs). Chronically elevated glucose concentrations are associated 

with increased UDP-GlcNAc concentrations via flux through the HBP, augmenting O-

GlcNAcylation of numerous proteins across the body and altering their function (29). 

Aberrant OGT activity has been implicated in insulin resistance, dyslipidemia, and diabetic 

cardiomyopathy (30-32), and increases in graded fashion with increased UDP-GlcNAc 

concentrations. In addition, increased O-GlcNAc mitochondrial protein expression within 

myocardium was seen among rats selected for low capacity running in comparison to high 

capacity runners, suggesting a role for OGT activity in aerobic capacity (33). Investigation 

into the effects of chronic exercise on OGT activity has been limited to myocardial tissue in 

different mouse models undergoing heterogeneous exercise interventions, and its role is not 

well understood (29). Our findings validate UDP-GlcNAc’s relationship to metabolic health 

traits, and further suggest its potential role as either a marker or effector of cardiorespiratory 

status.

Lastly, we explored whether baseline metabolite levels could predict exercise-induced 

response in a given cardiometabolic trait and identified three significant associations. 

Baseline glutamate levels were positively associated with change in DBP. This extends 

previous cross-sectional findings, wherein glutamate was positively associated with a range 

of cardiometabolic risk factors (insulin, HOMA-IR, SBP, and DBP) (23). ADMA/SDMA 

levels were inversely related to changes in 2-hour glucose, a finding previously supported 

(34). In addition, baseline taurine (a sulfated organic compound) was negatively associated 

with change in WC. These findings are consistent with previous observations investigating 

the relationship between taurine and obesity. In animal studies, a decrease in blood taurine 

concentration was associated with obesity (35) and taurine treatment reduced inflammatory 

processes in adipose tissue via reduction in macrophage infiltration. Our observations extend 

prior literature by suggesting that higher plasma taurine concentrations may predict a more 

favourable exercise response for abdominal obesity.

A limitation of our study is that the sample was relatively homogeneous which may have 

attenuated the strength of observed relationships. However, given that nearly 40% of US and 

Canadian adults are abdominally obese (36, 37), our findings are relevant to this population. 

Furthermore, while we measured a diverse panel of ~150 metabolites in plasma, our analysis 

was targeted and not comprehensive of the entire plasma metabolome.
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In summary, our study provides additional details on the metabolic changes induced by 

chronic exercise training, in addition to potential predictors of changes in metabolic traits. 

These data motivate additional studies in larger, heterogeneous cohorts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This study was supported by Canadian Institutes of Health Research (grant OHN-63277). REG received support 
from the NIH MoTrPAC consortium.

References

1. Leon AS, Connett J, Jacobs DR, Rauramaa R. Leisure-time physical activity levels and risk of 
coronary heart disease and death. The Multiple Risk Factor Intervention Trial. JAMA. 1987; 
258(17):2388–95. [PubMed: 3669210] 

2. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality 
among men referred for exercise testing. N Engl J Med. 2002; 346(11):793–801. [PubMed: 
11893790] 

3. Kraus WE, Houmard JA, Duscha BD, et al. Effects of the amount and intensity of exercise on 
plasma lipoproteins. N Engl J Med. 2002; 347(19):1483–92. [PubMed: 12421890] 

4. Janiszewski PM, Ross R. The utility of physical activity in the management of global 
cardiometabolic risk. Obesity (Silver Spring). 2009; 17(Suppl 3):S3–S14. [PubMed: 19927143] 

5. Ross R, Blair SN, Arena R, et al. Importance of Assessing Cardiorespiratory Fitness in Clinical 
Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American 
Heart Association. Circulation. 2016; 134(24):e653–e99. [PubMed: 27881567] 

6. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci 
Sports Exerc. 2001; 33(6 Suppl):S446–51. [PubMed: 11427769] 

7. Bouchard C, Blair SN, Church TS, et al. Adverse metabolic response to regular exercise: is it a rare 
or common occurrence? PLoS One. 2012; 7(5):e37887. [PubMed: 22666405] 

8. de Lannoy L, Clarke J, Stotz PJ, Ross R. Effects of intensity and amount of exercise on measures of 
insulin and glucose: Analysis of inter-individual variability. PLoS One. 2017; 12(5):e0177095. 
[PubMed: 28493912] 

9. Sabatine MS, Liu E, Morrow DA, et al. Metabolomic identification of novel biomarkers of 
myocardial ischemia. Circulation. 2005; 112(25):3868–75. [PubMed: 16344383] 

10. Neufer PD, Bamman MM, Muoio DM, et al. Understanding the Cellular and Molecular 
Mechanisms of Physical Activity-Induced Health Benefits. Cell Metab. 2015; 22(1):4–11. 
[PubMed: 26073496] 

11. Lewis GD, Asnani A, Gerszten RE. Application of metabolomics to cardiovascular biomarker and 
pathway discovery. J Am Coll Cardiol. 2008; 52(2):117–23. [PubMed: 18598890] 

12. Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel 
biomarkers and mechanisms related to common cardiovascular diseases: form and function. 
Circulation. 2012; 126(9):1110–20. [PubMed: 22927473] 

13. Lewis GD, Farrell L, Wood MJ, et al. Metabolic signatures of exercise in human plasma. Science 
translational medicine. 2010; 2(33):33–7.

14. Muhsen Ali A, Burleigh M, Daskalaki E, Zhang T, Easton C, Watson DG. Metabolomic Profiling 
of Submaximal Exercise at a Standardised Relative Intensity in Healthy Adults. Metabolites. 2016; 
6(1)

15. Enea C, Seguin F, Petitpas-Mulliez J, et al. (1)H NMR-based metabolomics approach for exploring 
urinary metabolome modifications after acute and chronic physical exercise. Analytical and 
bioanalytical chemistry. 2010; 396(3):1167–76. [PubMed: 19943160] 

Brennan et al. Page 8

Med Sci Sports Exerc. Author manuscript; available in PMC 2018 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



16. Huffman KM, Slentz CA, Bateman LA, et al. Exercise-induced changes in metabolic 
intermediates, hormones, and inflammatory markers associated with improvements in insulin 
sensitivity. Diabetes Care. 2011; 34(1):174–6. [PubMed: 20921216] 

17. Huffman KM, Koves TR, Hubal MJ, et al. Metabolite signatures of exercise training in human 
skeletal muscle relate to mitochondrial remodelling and cardiometabolic fitness. Diabetologia. 
2014; 57(11):2282–95. [PubMed: 25091629] 

18. Ross R, H R, Stotz PJ, Lam M. Effects of exercise amount and intensity on abdominal obesity and 
glucose tolerance in obese adults. A randomized controlled trial. Annals of Internal Medicine. 
2014; 162(5):325–334.

19. Kimberly WT, O’Sullivan JF, Nath AK, et al. Metabolite profiling identifies anandamide as a 
biomarker of nonalcoholic steatohepatitis. JCI Insight. 2017; 2(9):e92989.

20. Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes. Nat 
Med. 2011; 17(4):448–53. [PubMed: 21423183] 

21. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that 
differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009; 9(4):
311–26. [PubMed: 19356713] 

22. Pedersen ER, Tuseth N, Eussen SJ, et al. Associations of plasma kynurenines with risk of acute 
myocardial infarction in patients with stable angina pectoris. Arterioscler Thromb Vasc Biol. 2015; 
35(2):455–62. [PubMed: 25524770] 

23. Cheng S, Rhee EP, Larson MG, et al. Metabolite profiling identifies pathways associated with 
metabolic risk in humans. Circulation. 2012; 125(18):2222–31. [PubMed: 22496159] 

24. Shah SH, Bain JR, Muehlbauer MJ, et al. Association of a peripheral blood metabolic profile with 
coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet. 2010; 
3(2):207–14. [PubMed: 20173117] 

25. Ngo D, Sinha S, Shen D, et al. Aptamer-Based Proteomic Profiling Reveals Novel Candidate 
Biomarkers and Pathways in Cardiovascular Disease. Circulation. 2016; 134(4):270–85. [PubMed: 
27444932] 

26. National Institutes of Health. [August 15, 2017] Molecular Transducers of Physical Activity in 
Humans. 2017. Available from:https://commonfund.nih.gov/moleculartransducers/overview

27. Ho JE, Larson MG, Ghorbani A, et al. Metabolomic Profiles of Body Mass Index in the 
Framingham Heart Study Reveal Distinct Cardiometabolic Phenotypes. PLoS One. 2016; 
11(2):e0148361. [PubMed: 26863521] 

28. Guasch-Ferré M, Hruby A, Toledo E, et al. Metabolomics in Prediabetes and Diabetes: A 
Systematic Review and Meta-analysis. Diabetes Care. 2016; 39(5):833–46. [PubMed: 27208380] 

29. Myslicki JP, Belke DD, Shearer J. Role of O-GlcNAcylation in nutritional sensing, insulin 
resistance and in mediating the benefits of exercise. Appl Physiol Nutr Metab. 2014; 39(11):1205–
13. [PubMed: 25203141] 

30. Yang X, Ongusaha PP, Miles PD, et al. Phosphoinositide signalling links O-GlcNAc transferase to 
insulin resistance. Nature. 2008; 451(7181):964–9. [PubMed: 18288188] 

31. Hu Y, Belke D, Suarez J, et al. Adenovirus-mediated overexpression of O-GlcNAcase improves 
contractile function in the diabetic heart. Circ Res. 2005; 96(9):1006–13. [PubMed: 15817886] 

32. Clark RJ, McDonough PM, Swanson E, et al. Diabetes and the accompanying hyperglycemia 
impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem. 
2003; 278(45):44230–7. [PubMed: 12941958] 

33. Johnsen VL, Belke DD, Hughey CC, et al. Enhanced cardiac protein glycosylation (O-GlcNAc) of 
selected mitochondrial proteins in rats artificially selected for low running capacity. Physiological 
genomics. 2013; 45(1):17–25. [PubMed: 23132757] 

34. Stühlinger MC, Abbasi F, Chu JW, et al. Relationship between insulin resistance and an 
endogenous nitric oxide synthase inhibitor. JAMA. 2002; 287(11):1420–6. [PubMed: 11903029] 

35. Tsuboyama-Kasaoka N, Shozawa C, Sano K, et al. Taurine (2-aminoethanesulfonic acid) 
deficiency creates a vicious circle promoting obesity. Endocrinology. 2006; 147(7):3276–84. 
[PubMed: 16627576] 

36. Janssen I. The public health burden of obesity in Canada. Can J Diabetes. 2013; 37(2):90–6. 
[PubMed: 24070798] 

Brennan et al. Page 9

Med Sci Sports Exerc. Author manuscript; available in PMC 2018 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://commonfund.nih.gov/moleculartransducers/overview


37. National Center for Health Statistics. Health, United States, 2016 With Chartbook on Long-term 
Trends in Health. Hyattsville, MD: 2017. p. 2-466.

Brennan et al. Page 10

Med Sci Sports Exerc. Author manuscript; available in PMC 2018 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brennan et al. Page 11

Table 1

Principal component analysis factors.

Factors Metabolites Eigenvalue Variance, %

1 Glutamine, lysine, arginine, histidine, asparagine, NMMA, citrulline, ornithine, methionine, 
cysteine, threonine, serine, aspartate, ADMA/SDMA, proline, alanine, tyrosine, glycine

19.047 13.046

2 C10-carnitine, C8-carnitine, C12-carnitine, C6-carnitine, C14-carnitine, C7-carnitine, C5-
glutarylcarnitine, C16-carnitine, C9-carnitine, C18-carnitine, C18:1-carnitine, C2-carnitine

10.154 6.955

3 2-aminoadipic acid, 2-hydroxyglutaric acid, phosphocreatine, malic acid, malonic acid, D-gluconic 
acid, Quinolinic acid, oxalic acid, citric acid isocitric acid

8.143 5.578

4 Lactic acid, pyruvic acid, hypoxanthine, alpha-ketoglutaric acid, alanine, fumaric acid, aconitic 
acid, hydroxybutyric acid, inosine, ketoisocaproic acid, 2-ketoisovaleric acid

7.101 4.863

5 Methionine, tryptophan, xanthurenate, leucine, isoleucine, indole-3-lactic acid, valine, tyrosine 5.756 3.943

6 C3-carnitine, C4-butyryl-carnitine, carnitine, C5-valeryl carnitine, C4-methylmalonyl carnitine, C2-
carnitine

5.108 3.499

7 Quinolinic acid, kynurenine, anthranilic acid, indole-3-carboxylic acid 4.716 3.230

8 Glycocholic acid, taurodeoxycholic acid, taurocholic acid, glycochenodeoxycholic acid, 4.210 2.884

9 C16-carnitine, C26-carnitine, C18-carniitne, C18:1-carnitine, C18:2-carnitine, 3.677 2.519

10 Xanthosine, inosine, xanthine 3.384 2.318

11 3-hydroxybutyric acid, acetoacetic acid, C3-malonyl-carnitine, C2-carnitine 3.115 2.133

12 ADP, AMP, ATP, UDP-glucose-galactose 2.879 1.972

13 Uridine, uracil 2.754 1.886

14 Glucose-fructose-galactose, 2-deoxyuridine, ketoisocaproic acid, 2-ketoisovaleric acid, uric acid 2.639 1.808

15 Indole-3-lactic acid, xanthurenic acid, kynurenic acid 2.417 1.655

16 Pantothenic acid, thiamine, cystamine, niacinamide, glutathione reduced 2.157 1.477

17 Choline, dimethylglycine 2.094 1.434

18 Betaine, allantoin 2.029 1.390

19 3-aminoisobutyric acid, aminoisobutyric acid 1.955 1.339

20 Trimethylamine-N-oxide, cysteamine 1.859 1.273

21 UDP-GlcNAc, homogentisic acid, UDP-glucose-galactose 1.738 1.190

22 Succinic acid, cyclic AMP 1.642 1.125

23 Glyceric acid, pyroglutamic acid 1.629 1.116

24 Glycine, 5-adenosylhomocysteine,serine 1.557 1.066

25 2-deoxycytidine, cytidine 1.480 1.013

26 Psuedouridine, S-adenosyl-L-homocysteine 1.375 0.942

27 Phosphocholine, phenylalanine, N-acetyl-L-glutamic acid 1.322 0.906

28 Arachidonoylglycerol 1.278 0.875

29 Thyroxine, glycerol, creatine 1.254 0.859

30 Indoxylsulfate, oxaloacetic acid 1.204 0.825

31 Indole-3-carboxylic acid, hydroxyphenylpyruvic acid 1.173 0.804

32 N-acetyl-L-glutamic acid, cis/transhydroxproline 1.153 0.790

33 Thymidine, n-acetyl-L-methionine 1.118 0.766

34 5-MTHF 1.096 0.751
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Factors Metabolites Eigenvalue Variance, %

35 Homocysteine, indole-3-propanoic acid 1.067 0.731

36 1,5-AG-1-deoxyglucose 1.042 0.713

37 Maleic acid 1.039 0.711

PCA, principal component analysis. Metabolites retained within each factor have factor load ≥ |0.4|.
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Table 2

Participant characteristics at baseline and 24 weeks.

All Exercise (n=163) Control (n=53)

Characteristic Baseline Change Baseline Change

 Age, y 52.4 ± 7.8 52.3 ± 8.4

 Sex (% male, % female) 36, 64 34, 66

 Weight (kg) 94.7 ± 15.9 -5.4 ± 4.7* 93.6 ± 16.9 -0.7 ± 4.4

 WC (cm) 110.5 ± 11.3 -5.4 ± 4.7* 108.8 ± 10.6 -0.9 ± 4.2

 Fasting insulin (pmol/L) 65.6 ± 35.7 -14.2 ± 23.3* 70.7 ± 34.9 -6.6 ± 27.1

 HOMA-IR 2.3 ± 1.4 -0.5 ± 0.9* 2.5 ± 1.3 -0.3 ± 1.0

 2-hr glucose (mmol/L) 7.2 ± 1.6 -0.2 ± 1.7 7.6 ± 1.7 0.06 ± 1.6

 Insulin AUC (pmol/L) 2080.6 ± 1281.9 -458.2 ± 817.8* 2042.4 ± 1021.4 -112.4 ± 661.3

 SBP (mmHg) 121.7 ± 12.9 -3.1 ± 10.2 122.1 ± 13.1 -0.4 ± 13.3

 DBP (mmHg) 80.2 ± 8.2 -2.9 ± 7.4 79.7 ± 8.1 -0.8 ± 7.8

 CRF (VO2peak)

  L/min 2.7 ± 0.7 0.4 ± 0.3* 2.7 ± 0.8 -0.02 ± 0.2

  mL/kg/min 28.4 ± 5.1 6.3 ± 4.1* 29.2 ± 6.0 -0.09 ± 3.0

Mean ± SD. WC, waist circumference; AUC, area under the curve; SBP, systolic blood pressure; DBP, diastolic blood pressure; CRF, 
cardiorespiratory fitness.

*
Exercise differs from control (p<0.05).
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Table 4

Associations between change in metabolites and change in cardiometabolic traits (p < 3.0 × 10-4).

Δ Risk Factor Δ Metabolite Beta Coefficient p-Value

CRF (mL/kg/min) UDP-GlcNAc -0.47 1.94×10-8

Isoleucine -0.34 9.56×10-5

Citric Acid/Isocitric Acid 0.33 1.30×10-4

Leucine -0.33 1.60×10-4

WC UDP-GlcNAc 0.51 7.55×10-11

BMI UDP-GlcNAc 0.49 3.99×10-10

Alanine 0.42 9.82×10-8

Tyrosine 0.33 3.99×10-5

Proline 0.30 2.59×10-4

Fasting Insulin UDP-GlcNAc 0.36 2.02×10-4

Insulin AUC UDP-GlcNAc 0.37 3.10×10-4

Xanthurenic Acid 0.36 3.56×10-4

WC, waist circumference; AUC, area under the curve; SBP, systolic blood pressure; DBP, diastolic blood pressure; CRF, cardiorespiratory fitness. 
Multiple regression adjusted for age, sex and baseline risk factor.

Med Sci Sports Exerc. Author manuscript; available in PMC 2018 July 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brennan et al. Page 17

Table 5

Associations between baseline metabolites and change in cardiometabolic traits (p < 3.0 × 10-4).

Δ Risk Factor Δ Metabolite Beta Coefficient p-Value

WC Taurine -0.28 3.0×10-4

2-hour Glucose ADMA/SDMA -0.25 2.5×10-4

DBP Glutamate 0.29 2.5×10-4

WC, waist circumference; DBP, diastolic blood pressure; ADMA/SDMA, asymmetric dimethylarginine/symmetricdimethylarginine.
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