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Abstract

Statistical shape analysis captures the geometric properties of a given set of shapes, obtained from 

medical images, by means of statistical methods. Orthognathic surgery is a type of craniofacial 

surgery that is aimed at correcting severe skeletal deformities in the mandible and maxilla. 

Methods assuming spherical topology cannot represent the class of anatomical structures 

exhibiting complex geometries and topologies, including the mandible. In this paper we propose 

methodology based on non-rigid deformations of 3D geometries to be applied to objects with thin, 

complex structures. We are able to accurately and quantitatively characterize bone healing at the 

osteotomy site as well as condylar remodeling for three orthognathic surgery cases, demonstrating 

the effectiveness of the proposed methodology.
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1. INTRODUCTION

The goal of shape analysis studies is to capture the geometrical and statistical properties of a 

given set of shapes. This field is of interest to the biomedical community due to its potential 

to precisely locate morphological changes between two shapes, such as healthy and 

pathological structures, or to quantify the effects of treatment in a given structure(s). 

Methods such as Spherical Harmonic Representation of Point Distribution Models 

(SPHARM-PDM) [1], entropy-based particle systems [2] or skeletal representations (s-reps) 

[3] allow to accurately perform 3D statistical shape analysis on objects with spherical 

topology by computing a population of corresponding model surfaces. These methods have 

been valuable to biomedical research and have helped to characterize how anatomy changes 

due to treatment or disease. However, a large number of medical or biological objects are 

often composed of sharp features and regions of high curvatures. Methods such as 

SPHARM-PDM fail to clearly capture certain classes of anatomical structures presenting 
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complex surfaces and change of topology, for example vertebrae, pelvic bones, mandibles or 

skulls.

Orthognathic surgery is a type of craniofacial surgery that is aimed at correcting severe 

skeletal deformities. These deformities are disabling and stigmatizing. Individuals with 

craniofacial deformities experience speech and masticatory problems as a result of their 

condition [4]. Orthognathic surgery often creates bony defects at the site of the surgical cuts. 

The defect heals and remodel with time depending on the location and size of defect. A 

morphometric assessment method which can evaluate the rate and extent of bony remodeling 

is crucial to understanding long-term surgical stability as well as complications resulting 

from these surgeries. In addition, improper relocation of the condyles and 

temporomandibular joint to its pre-operative position can lead to surgical relapse or condylar 

remodeling. Measuring and correlating the rate of condylar remodeling is important to 

understanding why some patients develop temporomandibular joint disorder after surgery. 

Existing shape analysis methods such as SPHARM-PDM or s-reps have not been able to 

properly densely represent mandibular shapes, due to its highly concave and thin shape.

In this paper we propose an alternative method based on non-rigid deformations of 3D 

geometries that can even be applied to objects of non-spherical topology as well as of highly 

complex shape. We will demonstrate its validity using three mandibular shapes obtained 

from patients that underwent orthognathic surgery.

2. MATERIALS

Three patients selected for the study had a history of temporomandibular joint disorder and 

severe skeletal disharmony. All patients underwent maxillo-mandibular advancement 

(MMA) with counterclockwise rotation. Patient 001 had genioplasty advancement and 

anchored mini-implants placed into their condylar head, patient 002 had anchored mini-

implants, and patient 003 had genioplasty advancement.

Cone Beam Computed Tomography (CBCT) scans were taken using the ICAT (Imaging 

Sciences International, Hart-field, PA) with a voxel resolution of 0.3mm × 0.3mm × 0.3mm. 

CBCT scans were obtained before surgery (T1), after surgery (T2), completion of 

orthodontic treatment (T3) and 1–2 year follow-up (T4, T5, only in patient 001). All patients 

were instructed to bite into maximum intercuspation during the scan. All scans were 

evaluated to make sure the condyles were seated in the center of the fossa and patients were 

excluded from study if condyles were postured. No subjects were excluded for posturing 

during CBCT scan.

CBCT DICOM files were converted to an ITK [5] compatible format. Longitudinal scans 

were registered to T1 scans on the anterior cranial fossa using cranial-based registration 

methods [6] in 3DSlicer [7] and 3D semi-automated segmentation with ITK-SNAP [8].
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3. METHODS

Shape correspondences are estimated by group-wise diffeomorphic shape registration. Given 

a population of N shapes Yi, the problem consists of jointly estimating a set of 

diffeomorphic transformations ϕi which minimize the following criterion:

E(X0, ϕi) = ∑
i = 1

N
‖ϕi(X0) − Y i‖W ∗

2 + γReg(ϕi) (1)

given a prototype shape configuration X0, where W* is the norm on varifolds [9], Reg is a 

measure of regularity of the transformations ϕi (see [10] for more detail), and γ is a trade-off 

parameter which balances data-matching and regularity. The prototype shape configuration 

X0 defines the number of points in the resulting model as well as their distribution. 

Correspondence is guaranteed since a single X0 is diffeomorphically transported onto each 

observation Yi, so that the estimated shapes ϕi(X0) share the same parameterization. During 

optimization, the location of the vertices of X0 can either be fixed, or estimated by the 

iterative process.

Representing shapes as varifolds has several important benefits for estimating shape 

correspondence. The varifold representation limits the need for extensive preprocessing, as 

shapes in the population do not need a consistent sampling or topology. The varifold 

representation also robustly handles non-oriented shapes with thin features, which is a 

known limitation of oriented representations such as currents [11]. This method is 

implemented in Deformetrica [10].

Prototype shape configuration

The prototype shape configuration X0 must be provided by the user. To ensure highly 

accurate correspondence, the prototype shape configuration should be densely sampled, 

particularly in areas of complex local geometry or high curvature, see Fig. 1 for an example. 

However, the sampling can be adaptive, with sparse sampling in areas of low curvature.

For objects with simple connected geometry, such as subcortical structures of the brain, an 

ellipsoid serves as an adequate initialization. However, shapes with complex geometry and 

topology will require a prototype shape configuration that is representative of the population. 

It is possible to choose one shape from the population as an initialization, which will be 

refined during estimation. However, the choice of initialization may bias the estimation. For 

our experiments, we computed a prototype shape configuration by unbiased atlas building 

[12] of the binary label maps, to estimate an average shape for initialization.

The prototype shape configuration also defines the topology of the final estimated model, as 

the diffeomorphic mappings cannot change topology. This makes the method robust to 

observations which contain small holes or missing pieces, since missing data will be 

effectively ‘filled in’ by the fact that the prototype shape configuration does not have such 

imperfections. This allows for the inclusion of more data and reduces the need for extensive 

preprocessing.
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Parameter settings

The method has three main parameters. First, the kernel width controlling the non-linearity 

of the diffeomorphism. Second, the kernel width defining the metric properties of the space 

of varifolds. These two kernel widths have physical units defined by the data (e.g. mm) and 

can generally be set to a low value to prioritize highly non-linear deformations and very 

accurate data-matching. The third parameter, γ, controls the regularity of the 

diffeomorphisms. This can also be set to a low value to favor data-matching over regularity, 

or tuned empirically to find a balance which is reasonable for a given application. See [10, 

13] for details about parameter selection.

4. EXPERIMENTAL VALIDATION

Shape correspondence

We compute corresponding and densely sampled surface representations for our set of three 

orthognathic surgery patients to accurately detect surgical movements before and after 

surgery, as well as to quantify bone healing and condylar remodeling changes. In order to 

confirm the likeness between the estimated shapes and the original observations, different 

closest point errors between the estimated corresponding shapes and the original 

observations have been computed for each patient. The bottom of Fig. 2 shows that average 

errors for all the observations of all patients is below sub-millimeter accuracy.

Full error distributions (Fig. 2) show that the amount of gross errors in the reconstructed 

surfaces is very small, with the majority of the errors tightly distributed around 0mm. These 

histograms are computed for all surfaces of each dataset. In addition to reconstruction errors, 

the estimated correspondence model for three observations of subject 002 is shown in Fig. 3 

to illustrate accurate correspondences.

Shape analysis

Gross surgical movements between pre-surgery (T1) and post-surgery (T2) semitransparency 

models are shown in Fig. 4 for each patient. Surgical movements clearly show the 

displacement obtained through the surgical maxillo-mandibular advancement (MMA).

MMA aims to bring skeletal occlusions back to alignment by moving the mandible forward 

and rotating it back. Further quantitative information is displayed in Fig. 5. The range of the 

distance maps has been clamped to the [−10,10] mm range to establish parallelisms between 

patients. Signed distance maps between each time point of each patient reflect bone 

advancement in red (positive) in the front face of the mandibular bone paired with blue 

(negative) in the back face of the mandibular bone. Bone apposition (red) and resorption 

(blue) are also displayed.

All patients show the MMA movements in the distances computed between T1 and T2, bone 

filling in the osteotomy cuts between T2 and T3, and some degree of condylar remodeling/

displacement between T3 and T4/T5. Measurements were made using 

ModelToModelDistance [14], a surface to surface distance plugin in 3DSlicer.
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Localized remodeling data was calculated thanks to the Pick n’ Paint [15] and the Mesh 

Statistics [16] plugins of 3DSlicer. We selected 4 landmarks in the left and right surgical 

osteotomies and left and right condyles. Regions of interest (ROI) were computed around 

each landmark and extended in a neighborhood of 10 edges each, and also propagated to 

each time point per patient. Results for each ROI are displayed in Fig. 6. Our method 

accurately calculates the average magnitude of remodeling and displacement in condyles 

and osteotomy areas for each time interval. The plots capture the surgical movements 

between T1 and T2, as well bone healing illustrated by decreased remodeling rate in future 

time intervals (from completion of orthodontics treatment in T3 to stability follow ups in T4 

and T5). Although the magnitude of condylar remodeling is much smaller than the 

osteotomy areas, it is possible to see that mandibular condyles do not remain stable after 

orthognathic surgery, especially between T3 to T4 time interval for all patients.

5. CONCLUSIONS

In this paper, we estimate densely sampled corresponding mandibular shapes via group-wise 

diffeomorphic shape registration. Our method is capable of handling complex shapes with 

varying topology. We showed that our estimated models are highly accurate in matching the 

original geometry of the shapes, as well producing precise correspondence. The method was 

applied to measure the effects of maxillo-mandibular advancement (MMA) in the 

mandibular bone. Other shape methods oriented to spherical topology objects [1, 2, 3] have 

failed to properly represent mandibular shapes due to their highly concave and thin 

geometry. This has hindered discoveries in fields like orthognathic surgery, which depend on 

highly accurate representations of mandibular shape in order to understand and correlate the 

rate of condylar remodeling. Future steps include packaging the method into SlicerSALT 

[17], our new open source shape analysis software, for free and wide dissemination.
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Fig. 1. 
Example prototype shape for the full mandible, which defines the number of shape points 

and their distribution.
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Fig. 2. 
Normalized histograms of surface error (mm) between the estimated shapes and original 

observations for patient datasets a) 001 b) 002 and c) 003.
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Fig. 3. 
Surfaces colored by vertex location for three observations of patient 002 which show 

accurate correspondence, even in the presence of dramatic changes due to surgery.
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Fig. 4. 
Semi-transparencies of pre-surgical (T1) models in solid white and post-surgical (T2) 

models in transparent red for patients a) 001 b) 002 and c) 003.
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Fig. 5. 
Signed corresponding distance computed between a-e-h) T1 and T2 shapes, displayed on 

T1, b-f-i) T2 and T3, displayed on T2, c-f-i) T3 and T4, displayed on T3 and d) T4 and T5, 

displayed on T4
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Fig. 6. 
Average remodeling/displacements in each time interval for patients a) 001 b) 002, c) 003 

and d) ROI marked in red for right condyle and osteotomy areas of one of the patients.
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