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Supporting decision making in drug development is a key purpose of pharmacometric models. Pharmacokinetic models
predict exposures under alternative posologies or in different populations. Pharmacodynamic models predict drug effects
based on exposure to drug, disease, or other patient characteristics. Estimation uncertainty is commonly reported for model
parameters; however, prediction uncertainty is the key quantity for clinical decision making. This tutorial reviews confidence
and prediction intervals with associated calculation methods, encouraging pharmacometricians to report these routinely.
CPT Pharmacometrics Syst. Pharmacol. (2018) 7, 360–373; doi:10.1002/psp4.12286; published online 25 March 2018.

Pharmacometric models describe drug-related characteris-

tics, such as pharmacokinetic (PK) or pharmacodynamic

(PD) properties. Input parameters include the dose, dosing

regimen, treatment duration, and other possible factors.
Frequently, models are used not only to describe the

available clinical or nonclinical data but model-based simu-

lations are used to explore the expected outcomes of treat-

ment options. Typical questions may include “what drug

concentration is required to induce the targeted pharmaco-

logical effect in x% of treated patients?” or “how many

patients are predicted to experience an adverse event on

this dose?” Beyond the predictions, the uncertainty sur-

rounding them is of equal importance. With a large uncer-

tainty, decision makers might want to be more conservative

in their choice of treatment option or consider further exper-

imental assessments to reduce their level of uncertainty to

an acceptable level.
Confidence intervals, which are a measure used to

describe the uncertainty in a prediction or point estimate,

are common in use, but are often misinterpreted. A fre-

quentist confidence interval is defined as follows: if you

could repeat an experiment many, many times and create

an interval for some parameter with each experiment, then

a 90% confidence interval is such that 90% of those inter-

vals contain the true value. A confidence interval is not the

probability that the confidence interval contains the true

value (that is a Bayesian credible interval).
Predicting the value of a future observation has inherently

more uncertainty because it deals with a future unobserved

observation. The corresponding interval around that predic-

tion, which is called a prediction interval, is, therefore, gen-

erally wider.
Thus, the two types of intervals must be distinguished: (1)

confidence intervals related to a statistic of the observed

data, such as the mean (e.g., the 90% confidence interval

around the mean), and (2) prediction intervals related to pre-

dictions related to future observations (e.g., the 90% predic-

tion interval for a single future patient or the mean of a

number of future patients).

For pharmacometric models, the uncertainty around

model-predicted quantities originates from the uncertainty

about model parameters. These parameters are typically

estimated from data (e.g., from clinical study data), and their

estimates will change with a different dataset (e.g., if another

clinical study with the same study design is conducted).
Model diagnostics reported from clinical studies typically

include parameter estimates, standard errors, and relative

standard errors for single model parameters, such as the

absorption rate constant or drug clearance. An additional

postprocessing step is required for translating parameter

estimation errors to uncertainty around the quantity of inter-

est (i.e., confidence intervals for the response), which may

be a single value (e.g., the response at the end of treat-

ment) or a curve (e.g., drug concentration over time or the

difference to placebo in clinical response over time).
Uncertainty around a parameter estimate allows the deri-

vation of statistical quantities, such as power estimates

(e.g., the probability of detecting a given difference between

two treatment groups). In particular, it is important when

making predictions to answer questions such as “which

dose is required to achieve a given trough level concentra-

tion in 90% of all patients” or “how many patients are

expected to experience a biomarker level outside the nor-

mal range?” Of interest is the derivation of confidence or

prediction intervals or bands (over time) around the model

prediction that assess the reliability of such estimates and

may be important for decision making.
Standard linear and nonlinear models commonly assume

identical and independent distributions of the observations

with variability arising solely from residual variability. Soft-

ware for regression analysis commonly provides confidence

intervals for the fitted curve (e.g., the functions lm, nlm, or

nls in R1 or GraphPad2 routines). The underlying algorithm

can vary because different methods are available and they

often provide different results.
Pharmacometric mixed-effects models introduce a further

level of variability between units, such as human beings or ani-

mals. The observed variability originates from interindividual
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variability and residual variability. Interindividual variability is
modeled by random effects describing the deviation from pop-
ulation average parameter values (fixed effects). As additional
known or fixed effects, parameters can further depend on
covariates, such as body weight. The combination of known
and unknown effects in variability is reflected in the term
mixed-effects modeling.

Mixed-effects models can arise in many forms, including
linear mixed-effect and nonlinear mixed-effect (NLME) mod-
els.3 A further level of complexity arises with time as a
model component, for example, in describing drug concen-
trations over time for a particular patient population. Longi-
tudinal NLME models are the most common type of models
in pharmacometrics.4 Model parameters can differ between
individuals with differences originating from different sour-
ces: known (fixed) effects, such as age on drug clearance
or body weight on apparent volume of distribution along
with unexplained variability (random effects), such as differ-
ences in drug clearance for unknown reasons.

With random effects, interindividual variability (differences
between subjects) is the most typical case, but models may
include other random effects, such as interoccasional vari-
ability, which attributes variability to different occasions,
such as visits to the clinic. Simulations and quantification of
confidence intervals for these models are complicated by
the fact that model simulations themselves are (prediction)
intervals because they describe outcomes for the popula-
tion, including the random parameter variability. This vari-
ability can be termed “uncertainty” because the individual
parameter of a future subject is unknown, resulting in
uncertainty for an individual prediction. However, this uncer-
tainty is quantified by a model parameter (describing the
observed variability), not to be confused with uncertainty
about the parameter value. Note that the estimated variabil-
ity parameter also has an uncertainty. To clearly distinguish
between variability related to model parameter estimation
and variability in the data described by the model, the for-
mer is termed “uncertainty” and the latter “variability” for
the remainder of this tutorial.

For mixed-effect models with hierarchical variability struc-
ture, the question that is addressed determines at which
level, the individual level or the population level, confidence
and prediction intervals need to be calculated. For example,
it might be important to determine the percentage of
patients in which a given dosing is predicted to result in
concentration exceeding a safety threshold. In this case,
the calculation of a prediction interval needs to take inter-
individual variability into account. In contrast, taking only
parameter uncertainty into account might suffice when
assessing the difference in exposure levels of typical sub-
jects of two different populations. The tutorial covers differ-
ent scenarios for NLME models and typical questions that
are addressed in each.

Starting with proper definitions of the terminology related
to uncertainty, basic concepts are reviewed before different
methods for the calculations of confidence and prediction
intervals are discussed. Exact calculations of confidence
and prediction intervals for linear models illustrate the gen-
eral principles before approximation and estimation meth-
ods are introduced for nonlinear models. Finally, these

methods are discussed for NLME models. Case studies

illustrate the different methods and allow for a comparison

between them.
All models are abstractions, and confidence in model pre-

dictions depends on the extent of knowledge and data that

went into their development. Uncertainty is always here to

stay, but modelers need to be — and are — able to quan-

tify it. Pharmacometricians are encouraged to routinely pro-

vide confidence and prediction intervals when providing

input to decision making in drug development. Vice-versa,

collaborators, including physicians, clinical pharmacologists,

and managers, are encouraged to ask for them if they are

not provided.

Terminology
Before embarking on discussing the concepts and calculus

of confidence and prediction intervals, a proper definition of

the terminology is vital because common terms are not

used consistently across publications. It is appreciated that

the terminology is related to scientific viewpoints, such as

the frequentist or the Bayesian perspective. The terminol-

ogy used here is close to the frequentist perspective; the

Bayesian framework is discussed later.
This tutorial covers two types of models, standard regres-

sion models and NLME models. Both models comprise a

structural component (i.e., a function deterministically link-

ing independent variables) such as time to a response

(e.g., a concentration) given a set of model parameters.

Residual variability is added by the error model, describing

random deviations of the prediction from the observed

data. For NLME models, an additional layer of random vari-

ability is introduced by assuming that the model parameters

differ randomly between individuals or occasions.
In the following, the terms related to (i) both kinds of

models, (ii) mixed-effects models, and (iii) error models for

describing residual variability are introduced. Error models

apply to both, regression and mixed-effects models.

General terms
Uncertainty is the precision up to which an unknown quan-

tity can be determined given the available observations.

Examples of unknown quantities include drug clearance,

exposure to drug over a steady-state dosing interval (given

individual PK parameter estimates), or a PD effect, such as

blood pressure in a typical subject at the time after the first

dose. Note that uncertainty is only related to the precision

with which the model parameters can be estimated.
Variability is all unexplained variation, random effect(s),

and residual error(s) but not parameter uncertainty.
The estimate/estimator and estimation error is the value

calculated according to a certain method as an estimate for

an unknown quantity based on the available data and its

uncertainty depending on the information content of the

data.
A model parameter is an unknown quantity. Model param-

eters are estimated by statistics, such as the mean, but are

more commonly referred to as parameter estimates in the

pharmacometrics literature. Examples include drug absorp-

tion and elimination rate constants, interindividual model

parameter (co-)variance, or residual error variability.
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Variance, covariance, and SD are statistical terminology

to denote a parameter of a distribution that defines the

spread of the data. Examples include the variances of the

normal and the log-normal distributions.
A residual error is an unexplained variability when all other

components (fixed and random effects) are accounted for.

Examples include additive and multiplicative residual errors.
Residual variability is the variability parameter that

defines all unexplained variability in the data, which may be

due to assay error, etc. An example is the SD parameter of

the additive residual error.

Mixed effects modeling terms
Fixed effects are the known deviations from the population-

typical parameter. Examples include the effect of body

weight on apparent volume of distribution or the effect of

age on apparent drug clearance.
Random effects are the unexplained variability between

parts of data. Examples for parts include data from individu-

als in a population or occasions, such as visits to the clinic.
Interindividual variability is an unexplained variability

between individual population members (“individuals”). In

NONMEM5 terminology, this denotes the g (eta) parameter

of random effects assumed to be normally distributed with

mean 0 and covariance matrix X (Omega).
Interoccasion variability is the variability between occa-

sions, such as different mean measurements at different

visits to the clinic.
A study simulation is the simulation of the number of indi-

viduals of a population, as defined in the study protocol.

Repeated simulations with identical model parameters may

result in differences in the results due to expected random

differences between studies. Study simulations typically aim

at assessing response to treatment (e.g., the primary end-

point of the study) and uncertainty. Such simulations are

frequently used for statistical power estimation.
A population simulation is the simulation of a large num-

ber of individuals. The number should be selected large

enough such that results from repeated simulations with

identical model parameters are negligible. The higher the

random interindividual and intraindividual variability, the

larger the number required. Population simulations aim at

assessing the overall response to a treatment and its

distribution.

Error models
An appropriate error model that reflects the nature of the

observations needs to be chosen. For concentrations that

cannot be negative, a normal distribution of residuals inde-

pendent of the predicted value may be inappropriate because

the suggested prediction interval could expand to negative

values.
The normal distribution, however, is frequently used for

its computational properties. Many non-normal distributions

of observations can be transformed to the normal distribu-

tion (and back). Concentrations are typically assumed to be

log-normally distributed and the logarithmically transformed

concentrations can be described by a normal distribution.

In other cases, residuals are normally distributed but their

variability depends on the predicted value, hence, the SD

needs to be conditioned on the predicted value f(x, ĥ).
Commonly used error models in pharmacometric model-

ing are additive (Eq. 1), proportional (Eq. 2), a combination

of additive and proportional (Eq. 3; denoted as combined in

the following), or exponential (Eq. 4) with e � N(0, 1).6

e5a � e (1)

e5b � f x ; hð Þ � e (2)

e5 a1b � f x; hð Þð Þ � e (3)

e5exp a � eð Þ (4)

Basic concepts of confidence and prediction intervals
Confidence intervals quantify how precisely a variable can

be determined based on available information. Being inter-

ested in the average body weight of an entire population,

the arithmetic mean of a sample can serve as an estimate.

The larger the sample, the more precisely average body

weight can be determined. The precision of the estimate

can be characterized by the 90% confidence interval. Note

that with the law of large numbers, confidence intervals

generally get smaller with increasing numbers of observa-

tions because the standard error of the estimate gets

smaller.
Prediction intervals are wider because they take confi-

dence intervals and include the inherent random variability

of a future observation. Using the previous weight example,

a prediction interval quantifies the expected range of body

weight in a future population of subject(s), not just in the

dataset used to estimate the average.
Bayesian techniques, which incorporate prior beliefs into

the confidence interval calculation, base inference on what is

called the highest posterior density (HPD) creating what

is called a credible interval. The HPD interval reflects what is

known about the parameter (i.e., the distribution after having

updated the prior information with data). The HPD is com-

monly defined as the area that contains a specified percent-

age of the posterior density (such as 90%) with no value

outside the area having higher probability than any value

inside the area.7–9

To some extent, the difference is philosophical: whereas

the frequentist would postulate that the 90% confidence

interval contains the true value in 90% of the cases if the

experiment could be repeated many times (therefore, a fre-

quentist argument), the Bayesian would state that the 90%

HPD is the interval that contains the unknown parameter

value with 90% probability. If nothing is known about the

prior distribution, that prior distribution is said to be nonin-

formative (i.e., flat), and frequentist confidence intervals

and Bayesian credible intervals are generally the same.10,11

The Bayesian definition is frequently attributed to a fre-

quentist interval (i.e., assuming that the frequentist interval

contains the true value with x% probability).
A confidence interval is, therefore, a statement about the

precision of the estimated value or statistic given the vari-

ability in the data, whereas prediction intervals quantify the

expected range for one or multiple additional future
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observations, including uncertainty about the parameter
and random variability.

In this tutorial, a simulation is defined as any future pre-
diction and Monte-Carlo simulation that takes into account
random variability.

Focusing on confidence and prediction intervals for
model prediction, the confidence intervals for model param-
eters are not discussed in detail in this tutorial. Neverthe-
less, their definition is shortly described for the various
methods introduced.

CONFIDENCE AND PREDICTION INTERVALS FOR
REGRESSION MODELS
Exact calculation for linear models
In the case of linear regression models of the form
y5a1b � x1e; e � N 0;r2

� �
with independent observa-

tions, confidence and prediction intervals can be deter-
mined analytically. The method, ordinary least squares,
minimizes the sum of the squared errors in the y-
direction (i.e.,

Pn
i51 yi 2ŷ ið Þ2 with ŷ i5â1b̂ � x , with the hat

symbol, ,̂ denoting parameter estimates). Therefore, the
confidence interval is determined in the direction of the
dependent variable only (y).8 It is noted that these models
are frequently used for data for which the independent vari-
able is not measured error-free and the error should be
minimized in both directions. Such methods (that are com-
putationally more burdensome) are known as errors-in-
variables models.12

For a given value of x, the confidence interval is depen-
dent on the SD, s, of the residuals, ri 5yi2ŷ i ; the sample
size, N, and the distance from the arithmetic mean of x (�x )
as follows:

SDCI xð Þ5s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

1
x2�xð Þ2PN

i51 xi2�xð Þ2

s
(5)

Details are provided in Supplementary Material S2.1.
The confidence interval is smallest at the x-value with

most information (i.e., the mean of x (�x ) for the linear
regression model), and gets wider the farther away the x-
value is from �x .

For the prediction interval of a future observation, the
interval containing a future observation with a given proba-
bility, additional variability from the SD of the residual s is
added because the observation has not been observed
yet. It becomes apparent immediately that prediction inter-
vals are always wider than confidence intervals. Note that
s, an estimator for the true SD, is considered to be inde-
pendent of x or y (e is added with a constant r in the
regression model depicted above). As discussed later, the
prediction interval directly depends on the assumption
how residuals are distributed (i.e., which error model is
assumed). Supplementary Material S2.2 provides the full
equations.

In the computing environment R,1 model fits, and confi-
dence and prediction intervals can be calculated in a
straightforward manner:

set.seed(38497)
df <- data.frame(x=rnorm(10))
df$y <- -3+0.2 * df$x+rnorm(nrow(df))
fit <- lm(y ~ x, data=df)
predict(fit, interval="confidence",

level=0.9)
predict(fit, interval="prediction",

level=0.9)

Estimation approaches for confidence intervals
For nonlinear models, such exact calculation for the confi-

dence intervals of the model prediction as discussed above

does not exist in general. Estimators of confidence and pre-

diction intervals are introduced in the following and their

calculus illustrated. Note that a comparison of the analytical

solution and the estimation approaches for the linear case

are provided in the Supplementary Material.

Estimation by the Delta method
The Delta method works by approximating the underlying

model f ðx ; ĥÞ with a first-order Taylor series expansion.8,13

The uncertainty of the parameter estimates (i.e., the covari-

ance matrix R) is translated to uncertainty in the predictions

via the Jacobian matrix, @f=@ĥ, containing the partial deriv-

atives of the model function f with respect to the model

parameters ĥ. The Jacobian matrix defines the change in

model prediction for changes in model parameters at the

estimated value (i.e., at the maximum likelihood).

Var f x; ĥ
� �h i

5
@f

@ĥ
� R̂ � @f

@ĥ

� �T

(6)

It is noted that the approximation is generally biased, but

becomes more exact if using second-order or higher deriva-

tives. The error due to the approximation can be quanti-

fied.14 Confidence intervals of model parameters are based

on the covariance matrix of the estimates, R.

Estimation by simulation
In contrast to approximation methods, such as the Delta

method, simulation methods generally estimate the unknown

quantity accurately on average and for large numbers of sim-

ulations: the method is unbiased. For many problems, con-

ducting simulations is substantially easier to implement than

computing the Jacobian matrix using the Delta method.
The straightforward simulation approach for calculating

confidence intervals for model predictions is to perform simu-

lations based on parameters sampled from the uncertainty

distribution of the parameters.15 The parameter estimates

are assumed to be multivariate normally distributed, as

defined by their covariance matrix, R. Thus, the calculation of

confidence intervals for the model prediction involves iterat-

ing over: (1) sampling of parameters; (2) calculation of model

predictions; and (3) determination of the interval boundaries

as percentiles of the model prediction distribution.
As for the Delta method, confidence intervals for

model parameters are calculated based on the covariance

matrix, R.
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Estimation by simulation/re-estimation (bootstrap)
If it would be possible to repeat the experiment or study to

obtain the data a large number of times, the parameter dis-

tribution across all datasets would represent the uncertainty

with which they can be determined. As this approach is not

feasible in most cases, simulated datasets are used that

mimic the many observed datasets. Simulated datasets can

be generated using either Monte-Carlo simulations based

on the model or bootstrapping from the data.

Monte-Carlo simulations. With Monte-Carlo simulations,

model predictions are calculated for the observed data.

Simulated datasets are created by sampling residuals

according to the residual error model. This method is called

parametric bootstrap because it is based on a parametric

distribution to sample from.

(Nonparametric) bootstrap. Nonparametric bootstrapping is

another alternative to generate simulated datasets. The

bootstrap, as proposed by Efron & Tibshirani16 and Efron,17

involves resampling a dataset with replacement. A particu-

lar feature of this approach is that the correlation structure

between covariates is kept when entire associated observa-

tions are drawn. Furthermore, random sampling is cheap with

respect to computing time. Inference is, in turn, drawn from

the sampled datasets.8,17,18 Consider an application ran-

domly sampling patient data by sampling from the set of

patients yields a large number of new datasets with the same

number of patients but, in each dataset, some patients occur

more than once and others not at all (due to sampling with

replacements). If there are correlations in the patient charac-

teristics (e.g., between age and body weight), the correlation

is preserved because only the entire observations are

sampled.
Pharmacometric datasets commonly comprise longitudi-

nal data of individual subjects (i.e., multiple observations

per subject). Therefore, resampling should generally be

performed at the subject level and not at the observation

level (i.e., subject identifiers are sampled, and all data from

the sampled subjects enter the dataset). This may generate

datasets with a different number of total observations than

in the original dataset. Care should be taken that the ran-

domness of the bootstrap procedure reflects the randomness

of the study conduct. If bootstrapping is performed on a com-

bined dataset (e.g., with healthy subjects and patients), the

bootstrapped dataset should contain the same number of

healthy subjects and patients as the original dataset. Covari-

ates, such as sex, should be adjusted for if the adjustment is

specified in the study setup (e.g., the protocol). If not, it is

part of the randomness.
Once the simulated datasets are generated by Monte-

Carlo simulation or bootstrapping, parameters are esti-

mated for each dataset. The sets of estimated parameters

provide empirical distributions of the parameter estimates.

Confidence intervals are calculated from the set of parame-

ter estimates (e.g., the 90% confidence interval for a partic-

ular parameter is estimated as the range from the 5th to

the 95th percentile of the set of parameter estimates).

Thus, this approach provides a stochastic approximation

(not assuming any distribution) of confidence interval

estimation for parameter estimates. This is in contrast to

the Delta method and the simulation approach that uses a

parametric definition of the distribution of parameter esti-

mates (i.e., a multivariate normal distribution defined by the

estimates ĥ and their covariance matrix, R).
To finally derive confidence interval for model prediction,

these are calculated for each set of re-estimated parame-

ters. The set of model predictions across all sets of re-

estimated parameters provides a nonparametric distribution

that confidence intervals are derived from.

Approximation of prediction intervals
For the simulation and the simulation-estimation approach,

at each iteration, randomly sampled residuals are added to

the predicted value to obtain a distribution of simulated val-

ues from which the prediction interval is derived. For the

simulation approach, the residual variability estimate based

on the original dataset is used. For the simulation-estimation

approach, the estimated residual variability of the current

iteration based on a simulated dataset is used. The Delta

method does not define prediction intervals.
Because prediction intervals include the residual variabil-

ity, they directly depend on the model that describes the

residual distribution (i.e., the error model).

ESTIMATION OF CONFIDENCE AND PREDICTION

INTERVALS FOR POPULATION MODELS

Population or NLME models strive to explain only part of

the observed variability based on known determinants and

residual variability but also acknowledging random interindi-

vidual variability. In the example discussed earlier, for body

weight, the observed variability is only to a small extent due

to measurement errors. There is a contribution of known

factors, such as sex, age, or nutritional supply, on the one

hand and the natural interindividual variability of body

weights on the other. Thus, two levels of random variability

are included. To describe interindividual variability, parame-

ters are typically assumed to be normally distributed and,

thus, the mean and SD of this distribution are parameter

estimates for the population model.

Scenarios
The question to be answered drives how the different layers

of variability are considered when calculating confidence

and prediction intervals in the context of NLME models. With

a population model, inferences can be made for individuals

or for the population. Different scenarios are distinguished.

Scenario 1: prediction of the response for a typical subject.

We use, for example, a 40-year-old white man. For the

model prediction of a “typical subject” or “reference sub-

ject” (or, in fact, any subject with given characteristics),

the confidence interval comprises only the uncertainty of

parameter estimates: only the fixed effects of the model

are considered and the same methods apply as for the

regression model and will not be discussed in the follow-

ing. Examples of questions that are addressed by this

scenario are the difference between exposures for typical

subjects of two different populations, or whether two
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different posologies would lead to different treatment
effects in a typical subject.

Scenario 2: prediction of the distribution of (future)
individual observations. The idea is to simulate a large num-
ber of individuals and determine the prediction interval based
on the percentiles of the distribution of simulated observations.
Interindividual and residual variability as well as parameter
uncertainty are required to characterize the distribution. The
simulation approach or the estimation/simulation approach
can be used. A typical question for this scenario is, for exam-
ple, the expected exposure variability across the whole patient
population for dosing regimen with and without adjusting the
dose with covariates.

Scenario 3: population-level outcomes. As an example,
estimation of the proportion of responders in a population
or the exposure is achieved by at least 90% of the popula-
tion. Hence, for a large number of times, a population is
simulated and summarized by the statistic of interest. For
example, the 90% prediction interval of the population’s 5th
percentile ranges from the 5th to the 95th percentile of the
distribution of 5th percentiles across all iterations. As for
scenario 2, uncertainty of model parameter estimates,
interindividual variability, and residual variability are taken
into account. The Delta method is not defined but the sim-
ulation and the estimation/simulation approaches can be
used. The key difference is that confidence and prediction
intervals are defined for statistics (e.g., mean, median, or
quantiles) of the distribution in a simulated population. As
an example, confidence and prediction intervals quantify
responder fractions to a treatment.

For both scenarios 2 and 3, two types of simulations are
distinguished depending on their purpose. For assessment
of (future) clinical studies or for model diagnostics, the
number of individuals is a design parameter defined in the
study protocol. Study simulations include simulation of a
population of individuals of this size. Prediction intervals for
clinical studies are often addressing questions related to
study design (e.g., whether responses for different treat-
ment arms can be distinguished sufficiently). For projecting
the results to a general (target) population and making gen-
eral population statements, population simulations of an
infinite number of individuals should be used. A question
addressed here could be the expectation of how many
adverse events have to be expected for the marketed drug.

To further illustrate the difference and purposes of study
vs. population simulation, assume that body weights were
assessed in a set of K individuals of a population. Study
simulation relates to the question of what (mean) body
weight can be expected if another set of K individuals
would be assessed. The smaller K the more the mean
body weight differs between sets of K individuals purely by
chance. Even if true mean body weight and interindividual
variability are known, the prediction interval would not be of
0 width. In contrast, population simulations are used to
quantify the expectation for the mean or spread of body
weights in the overall population. Here, prediction and confi-
dence intervals only depend on the interindividual variability
and parameter estimation uncertainty.

In practice, a large number is sufficient. Following our ter-
minology, these intervals are prediction intervals because
random variability is taken into account. However, if they
are used as model diagnostics, they are often referred to
as confidence intervals (i.e., in the context of visual predic-
tive checks).

In the following, calculation of confidence and prediction
intervals for scenarios 2 and 3 using the simulation and the
estimation/simulation approach are explained in detail.

Estimation by simulation
When calculating the prediction interval for individual obser-
vations (scenario 2), for each individual, a set of parameter
means (also referred to as structural or population typical
parameters), parameter SDs (i.e., interindividual variability),
and error model parameters are drawn from their uncer-
tainty distribution. From the mean and parameter SD, an
individual parameter set is sampled and the individual pre-
diction calculated and a residual added. Finally, summary
statistics, such as quantiles or means, are calculated pool-
ing all individual predictions.

For the simulation on the population level (scenario 3), at
each iteration, as for scenario 2, a set of parameter means
(also referred to as structural or population typical parame-
ters), parameter SDs (i.e., interindividual variability), and
error model parameters are drawn from their uncertainty dis-
tribution. Many sets of individual parameters are sampled
and model predictions calculated for all individuals in the
population. A residual sample error is added to the prediction
that is sampled from the error distribution. As the last step of
iteration, a summary statistic of interest is calculated (e.g.,
the population mean, the 90th percentile, or a percentage of
individuals for which the prediction or simulation is above a
certain value). Thus, at each iteration, a prediction for a pop-
ulation is calculated that is finally again summarized across
all iterations. A typical result would be the prediction interval
for the 95th percentile of the model prediction distribution.

Estimation by simulation/re-estimation (bootstrap)
As in the case of a regression model, compared to the sim-
ulation approach, the parameters used for the prediction/
simulation at each iteration are re-estimated using a simu-
lated (Monte-Carlo simulation) or resampled (bootstrapping)
dataset and not sampled from the uncertainty distribution.
The same procedure is applied otherwise.

For scenario 2, each individual simulation is used to esti-
mate model parameters based on a bootstrapped or
Monte-Carlo simulated dataset. In scenario 3, the new set
of estimated parameters is used for population simulation.
Because parameter estimation is computationally expen-
sive, this approach is typically not applied in scenario 3.
The calculation steps for the simulation approach and
the repeated estimation/simulation with either bootstrapped
or simulated datasets are summarized in Figure 1 and
Figure 2, respectively.

CASE STUDIES
Datasets
Data from a phase I study of ponesimod were used to
demonstrate the confidence interval calculation methods.
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Ponesimod is an S1P1 receptor modulator that reduces total
lymphocyte counts in the systemic circulation by preventing
them from leaving lymph nodes. In this study, ponesimod
was administered once daily with an increasing dose every
fourth day. Drug plasma concentrations and total lymphocyte
count in blood as the PD readouts were assessed.19

Two datasets were obtained from the study: a PK/PD
dataset containing time-matched ponesimod plasma con-
centrations and total lymphocyte count in blood and a PK
dataset containing only ponesimod concentrations over
time. Because censoring was not applied, concentrations
below the limit of quantification were discarded in the PK
data. However, to avoid discarding data informing on total
lymphocyte count reduction at very low or zero concentra-
tions, concentrations below the limit of quantification were
set to 0 in the PK/PD dataset.

Data from all subjects (i.e., actively treated and placebo-
treated), were included in the PK/PD data, whereas only
subjects treated according to the protocol with ponesimod
were considered in the PK data.

The PK/PD data comprised 517 observations from 16
subjects, whereas for the PK analysis 463 concentration
records from 10 subjects were included. The datasets are
shown in Figure 3.

Case study 1: PK/PD regression analysis
The relationship between plasma concentration, c, and total
lymphocyte count reduction relative to baseline levels was
described by an maximum effect (Emax) model with base-
line E0, maximum effect Emax, the concentration achieving
50% of the effect, half-maximal effective concentration, and
nonlinearity parameter (Hill coefficient) c.

f c; hð Þ5E01 Emax2E0ð Þ cc

ECc
501cc

(7)

Parameters and their covariance matrix R̂ were estimated
using nonlinear least squares (NLS) and maximum likeli-
hood estimate (MLE). Because with standard implemen-
tations of NLS the residual error cannot be conditioned
on the predicted value f(c, ĥ), an additive error was
applied.

Parameter estimates for NLS and MLE and their SEs and
confidence intervals determined by different confidence
interval calculation methods are very similar, leading to very
similar model predictions (Supplementary Figure S1). In
this case, the methods only differ with respect to the comput-
ing time that is considerably shorter for NLS than for MLE

Figure 1 Calculation of confidence and prediction intervals for regression models. (a) Simulation approach. (b) Repeated estimation/
simulation. The yellow edge indicates sampling from uncertainty in contrast to sampling from random variability. Confidence and predic-
tion intervals are determined as quantiles of the simulated values (e.g., 5th and 95th percentile). Notation: H, model parameters; r,
residual variability; R, parameter covariance matrix; e, residual error; K, number of sampled parameter sets.
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(Table 1). In particular, simulation-estimation methods

require considerably longer computation times than the Delta

method or the simulation approach. Using the Delta method

for confidence interval calculation is fastest because it is an

analytical solution. In the following, the confidence intervals

are discussed for MLE only.
The Delta method, the simulation approach, and the

Monte-Carlo simulation-estimation give comparable results

for the confidence intervals, whereas the intervals are wider

for nonparametric bootstrap (Figure 4a). These results are

not generalizable and can be different in different situations

of data and model. The smallest confidence interval width

is around a concentration of 300 ng/mL, in which many

data points are available. Larger confidence intervals are in

the concentration range around 30 ng/mL (at which the

effect is changing with concentration) and at concentrations

for which fewer data points are available.
Because the residual variability is considerably larger

than the prediction variability attributed to the parameter

estimation error, the differences in confidence intervals for

different calculation methods have no consequence for the

prediction interval. However, the overlay of prediction inter-

vals and data indicate that the residual variability might be

larger for larger lymphocyte counts. Hence, an additive

error model might not be the best choice (Figure 4b).
The error models in Eqs. 3–6 were fitted using MLE to

illustrate the impact of the error model on the results.

Supplementary Table S1 compares parameter estimates

and their estimation errors for different error models.

Figure 5 visualizes the confidence intervals and prediction

intervals for different error models using the simulation

approach for confidence interval calculation. For the additive

error model, the confidence interval width does not change

considerably for different concentrations. In contrast, for the

combined, proportional, and exponential error models, confi-

dence intervals are larger at low concentrations and large

lymphocyte count values. As indicated before, using the

additive error model, the prediction interval tends to under-

estimate the variability in the lower concentration range.

Using an exponential or a proportional error, it is overesti-

mated. The combined error seems to be most appropriately

describing the variability of the data. In line with this obser-

vation, it has the lowest Bayesian information criterion even

though the penalization term of the Bayesian information cri-

terion is larger compared to the other models due to an

additional parameter.
In summary, the confidence intervals for the concentration-

response relationship calculated by the different methods

were very similar. In this case study, the data basis was solid

and allowed for small parameter estimation errors. Note that

the error model had an impact on the confidence intervals

and not only on the prediction interval to which it is directly

linked. Assuming that the combined error best describes the

data, using the additive error would lead to a too narrow pre-

diction interval at low concentrations while using a propor-

tional or exponential error model it would be too wide.

Figure 2 Calculation of prediction intervals for nonlinear mixed effect models. (a) Simulation approach. (b) Repeated estimation/simula-
tion. The yellow edge indicates sampling from uncertainty in contrast to sampling from random variability. Prediction intervals are
determined as quantiles of the simulated values (e.g., 5th and 95th percentile). Notation: H, population parameters; r, residual variabil-
ity; R, parameter covariance matrix; X, random-effects covariance matrix; h, individual parameter set; e, residual error; K, number of
sampled parameter sets; J, number of sampled individuals from a population.
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Case study 2: Nonlinear mixed effects modeling for a
PK dataset
A two-compartment model with first-order absorption was
chosen to describe the PK of ponesimod after oral administra-
tion20 parameterized in terms of absorption rate constant ka,
central and peripheral volumes V1 and V2, intercompartmental

clearance Q, and clearance CL with interindividual variability
on all parameters using Monolix.

Prediction intervals according to scenarios 2 and 3 for

the median as well as the 5th and 95th percentiles were

calculated according to the simulation and the simulation-

estimation approaches introduced. For the simulation approach,

parameters were sampled from a multivariate Normal distri-

bution defined by the estimated parameters and covariance

matrix. Parameters were re-estimated 1,000 times either

based on a bootstrapped dataset or a simulated dataset

using the parameter estimates based on the original

observed data (Monte-Carlo simulation). For each set of

sampled or estimated parameters, a population of 1,000

individuals was simulated. To derive prediction intervals for

individuals (scenario 2), median, 5th, and 95th percentiles

were determined. For prediction intervals for population

summaries (scenario 3), first, the simulated concentration

distribution was summarized by the median, 5th, and 95th

percentile across the sets of 1,000 individuals of a simulated

population. Then, the prediction intervals were calculated as
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Figure 3 Case study datasets. (a) Pharmacokinetic/pharmacodynamic dataset. Observed data with concentrations above and below
the limit of quantification are indicated as black and red circles. (b) Pharmacokinetic dataset. Observed are indicated as black circles.
Gray lines connect data from individuals. Dosing times are indicated with green triangles.

Table 1 Computation times in seconds for PK/PD regression case study.

CI calculation method NLS MLE

Delta method 0.64 0.73

Simulation approach 1.11 1.30

Simulation/estimation using bootstrap 8.62 128.57

Simulation/estimation using Monte-Carlo simulation 7.11 132.79

CI, confidence interval; MLE, maximum likelihood estimation; NLS, nonlinear

least squares; PD, pharmacodynamic; PK, pharmacokinetic.

Computation times include parameter estimation as well as confidence and

prediction interval calculation using the R framework pecan that is described

in the Supplementary Material. Calculation was performed using R version

3.0.2 on a Lenovo ThinkPad T440s with a 2.1 GHz quad core Intel i7-4600U

processor and 8 GB RAM. The 1,000 simulations were performed for the

simulation approach and 1,000 parameter re-estimations for the simulation/

estimation approaches.
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the ranges from the 5th to the 95th percentile of the

summaries.
For the prediction intervals of individuals, the approaches

suggest similar prediction intervals.
In contrast, regarding the prediction intervals for popula-

tion summaries, differences between the approaches exist.
The bootstrapping approach has very narrow prediction
intervals for all the summaries of the concentration distribu-
tion in the population over time (Figure 6). The Monte-
Carlo simulations, as well as the simulation approach, sug-
gest wider confidence intervals because these approaches
rely on the estimated covariance matrix and lead to a more
pessimistic assessment of the reliability of the predictions.

For both the bootstrapping approach and the Monte-
Carlo simulation approach, the main difference between the
confidence and the prediction interval is that the 5th and
95th percentiles are more spread from the median of the
population.

DISCUSSION

Confidence interval calculation methods for nonlinear mod-
els were introduced and illustrated using datasets from

clinical studies (i.e., concentration-response (PK/PD) data
and concentration-time (PK) data). Advantages and disad-
vantages of the implemented confidence interval calculation
methods, the Delta method, the simulation approach, and
simulation-estimation approaches using either nonparamet-
ric bootstrap or Monte-Carlo simulation were highlighted.

All methods reviewed estimate confidence intervals and pre-
diction intervals in a point-wise manner: For a fixed indepen-
dent variable value x, the confidence interval and prediction
interval are calculated. To derive a confidence interval or pre-
diction interval band around the model predictions for a range
of independent values x, the confidence interval or prediction
interval is evaluated at each x (or a sufficiently fine x-grid).

Uncertainty with respect to the independent variable is not
considered. Modeling approaches accounting for variability in
both independent (x) and dependent variable (y; errors-in-
variables models) were not covered here, as they are not com-
monly used in pharmacometrics.

Assumptions of confidence interval calculation methods,
the Delta method, and the simulation approach rely on the
estimated covariance matrix, assuming a multivariate normal
distribution of the parameters to describe the parameter esti-
mate uncertainty. An appropriate parameter transformation
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Figure 4 Comparison of confidence and prediction intervals calculated by different methods. (a) The 95% confidence interval width of
total lymphocyte counts (i.e., the difference of the 2.5th and the 97.5th percentile from the predicted value) f (c, ĥ). Concentration val-
ues are indicated by ticks at the top of the panel. (b) The 95% prediction intervals. Observed data are indicated as circles. The 1,000
simulations (simulation approach) and 1,000 parameter re-estimations (simulation-estimation approaches) were performed.
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(e.g., a logarithmic transformation), can be applied to approx-

imately fulfill this condition if needed.
In addition, the Delta method involves a linearization of the

model with respect to the estimated parameters leading to sym-

metric confidence intervals around the predicted value. These

symmetric confidence intervals may only be a good approxima-

tion depending on how good the linear approximation is. For

very nonlinear models, the Delta method may not be a good

choice. Consider an application to drug concentration data:

whereas the data cannot be negative, the confidence interval

based on the Delta method may extend to negative values.
Simulation-estimation approaches, using either Monte-Carlo

simulations or nonparametric bootstrap, do not assume a

multivariate normal distribution for the estimated parame-

ters. As with the simulation approach, the confidence inter-

vals for the prediction will also not include inappropriate

values (e.g., negative concentrations) if the model itself

excludes them. Using a simulated instead of a bootstrapped

dataset for parameter re-estimation implies that the model is

an accurate representation of the data, including the error

model, and has the advantage that the datasets generated

by Monte-Carlo simulation have exactly the same independent

variables as the observed dataset, which is not the case for

the bootstrapped dataset. In the bootstrapped datasets,

some observations do not occur and others will be dupli-

cated. Obviously, the dataset needs to be reasonably large

to allow for a resampling approach.
One additional issue that was not observed in the case

studies reported here but may occur is the handling of non-

converging re-estimations. Often, these are ignored when

summarizing the results. This can result in biased estimates

for confidence intervals and prediction intervals because

nonconverging estimations occur systematically (e.g., depend-

ing on the inclusion of extreme values in bootstrapped

datasets).4,21–23

Noteworthy, sometimes predictions must be made not

based on the original model function but based on other

functions of the model parameters. For example, it may be

of interest to form a point estimate for the half-life of a drug

that is calculated as Ln(2)*V/CL with CL and V denoting

clearance and central volume, respectively. The introduced

methods can be applied in this case as well by substituting

the model function by the function of interest in the

calculation.

    −8

    −4

     0

     4

     8

0001001011

C
on

fid
en

ce
 in

te
rv

al
 li

m
its

(d
iff

er
en

ce
 fr

om
 p

re
di

ct
ed

 v
al

ue
)

�

�
�
�

�
�

��
�

� �

�
�

� ��

��
�

��

� �

�
�

�
�

�
��

�
�

�
����

�

�
�

��

�

�

�

�
�

�

�

�
�
�

�

�

�

�
�

� �
� �

��
��

�
� �

�
��

�

��
� �

��
�

�
�

�

�

�

�
�

��

�
�

�

�

�
��

��
� �

�
�

�

�

�
�

�
�

�

�

� �
�

�
�

�
�

� ��
�

� �
�

�
�

��

�
�

�

�

�

�
�

�
�

�
� �

�
�

�

� �
���

�
�

�

�

�
��

�
��� ��

�

�
���

��
��

�
�

�

�
�

�

�
�

��
�

�

�

�

�

�
�

�

�

�� �

�
��

�

�

�

�

�

�
�

�

�
�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�
� �

�

�
�

�
�

�
� �

�

�

�
� �

�

�
� �

�

�

��

�
�

�
�

�
���

�
�

����
�

�

��

�

�

�
�

�

�

�

�
�

�

�

�

�
�

�
�

�

�
�

�
� �

�

�
�
�

��
�

��
�
�

�
�

��
�

�
�

�
�

�

�

�

�

�

�
�

�
�

� �

�

�

�

�
�

�
�

�
�

�

��� �
�

�
�

�
� �

�

�
� �

�
�� ���

�

�
�

�
�

�
�

�
�

��

�

�
�

�
�

�

�
�

��� �
�

�

�
�

�

� �
�

� �

��

�

�

��

�
�

�
�

�
�

�

� �

��

�

�
� �

�

�

�
�

� �
��� ��

�� �
�

�
�

�
�
�

�
�

��

�

�

�

�

�

�
�

�

�

� �

��

�
�

�
�

�

�
�

�
�

�

�

�
��

�

�

�

�
�
�

� �

��
�

� ��� �
�

�
��

�

�

�

�

�

�

� �

�

�

�
�

�
�

�
�
�

�

�
� ��

� �
�

� �
�

�� ��� �
��

�
�

�
�

�

�

�
�

�
�

   0

  50

 100

 150

0001001011

Ponesimod concentration (ng/mL)

To
ta

l l
ym

ph
oc

yt
e 

co
un

t
(%

 re
la

tiv
e 

to
 b

as
el

in
e)

Error model Additive Proportional Combined Exponential

(a)

(b)

Figure 5 Comparison of confidence and prediction intervals for different error models. (a) 95% confidence interval width (i.e., the differ-
ence of the 2.5th and 97.5th percentile from the predicted value), f (c, ĥ). Concentration values of the data are indicated by ticks at the
top of the panel. (b) 95% prediction intervals. Observed data are indicated as circles. 1,000 simulations (simulation approach) and
1,000 parameter re-estimations (simulation-estimation approaches) were performed.
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Current uses in pharmacometrics
The multiple comparison and modeling method24 for analy-
sis of dose-response relationships in clinical trials imple-
ments the Delta method to derive confidence and prediction
models. This method is not used in population-based mod-
els, as it is not developed for NLME models. Comparing the
estimated variability of population-based models to the vari-
ability in the observed data was introduced years ago: visual
predictive checks allow for comparison of observed and
model-predicted (simulated) variability corresponding to
calculation of prediction intervals for study simulations.25

The next step, provision of intervals describing variability of

simulation scenarios, is not routine yet. This is partially

owed to the lack of standardized methods and software for

derivation and visualization of the corresponding intervals.

Computational effort
The Delta method is the computationally fastest among the

compared confidence interval calculation methods. The

simulation approach is also fast compared to the methods

that involve repeated parameter estimation for which the

computational effort increased 100-fold for the PK/PD case

study. Re-estimation based on bootstrapped datasets is
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faster compared to re-estimation based on Monte-Carlo
simulated datasets.

Impact of the error model
The error model has a direct impact on the prediction inter-

val because it includes the residual variability defined by
the error model. The confidence interval of the prediction
that is a result of parameter estimation uncertainty is influ-

enced indirectly. The error model impacts the parameter
estimates and their estimation error. As could be seen for

the PK dataset example, high estimation errors led to
unreasonable confidence intervals when simulating by sam-
pling from the parameter covariance matrix. The other

methods were more robust to determine the prediction con-
fidence interval. In particular, nonparametric bootstrap and

Monte-Carlo simulation-estimation may be more robust
because they do not rely on model linearization or a normal
distribution of model parameters.

Implementation in current software
In R, functions from the basic statistics package (i.e., lm

and glm) and functions for fitting (generalized) linear mod-
els provide confidence intervals for the predictions. For lm,
confidence intervals of the prediction are calculated using

the analytical solution, whereas likelihood profiling26 (an
approximation) is used for glm. For the nonlinear parameter

estimation routines (e.g., nls), calculation of confidence
intervals for model prediction is not implemented. The
nlsTools package27 provides some additional functionality

for nls objects, including nonparametric methods (i.e., jack-
knife and bootstrap), for confidence interval estimation for

parameters but not for model predictions. Additional pack-

ages exist that include confidence intervals for predictions.

The DoseFinding package24 that implements the multiple
comparison and modeling approach fits linear as well as

nonlinear models to dose-response data using least-

squares and provides confidence intervals based on the

Delta method.
Typical software used for population PK and PK/PD

modeling (e.g., Monolix28 and NONMEM), primarily focus

on the parameter estimation step. Within the graphical user

interface of Monolix, simulations or nonstandard analyses

are possible. Recently, the software has been extended

with several tools for data visualization and simulation. The
mlxR29 package provides a link between Monolix modeling

results and R. In NONMEM, simulations can be run and

statistics for parameter estimates are provided. For estima-

tion postprocessing, several tools were developed and
implemented in Perl (PsN) and R (Xpose).30 Using these

postprocessing tools, confidence interval calculation can be

implemented by the modeler.
All confidence interval calculation methods discussed in

this tutorial were implemented in an R library (see the Sup-

plementary Material for details). Using this implementation
based on standard R packages, parameter estimations as

well as confidence interval and prediction interval calcula-

tions can be performed by a single function call for naive-

pooled regression. Next to the numerical output, the main

results (i.e., parameter estimates and an overlay of confi-
dence intervals, prediction intervals, and observed data),

are displayed graphically (Figure 7). The R library can be

Figure 7 Result visualization with the R library pecan to calculate confidence intervals and prediction intervals for nonlinear regression
models. Settings for parameter estimation and confidence interval calculation are given in the left table. The right table displays the
parameter estimation results (i.e., parameter estimates with confidence intervals). Observed data (blue circles) and prediction with con-
fidence interval and prediction interval (solid, dashed, and dotted green line). CI, confidence interval; EC50, half-maximal effective con-
centration; Emax, maximum effect; MLE, maximum likelihood estimate; PI, prediction interval.
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used directly for confidence interval calculations for any

other model and dataset. The code also gives an example
of how to implement the discussed methods in R. In addi-
tion, an R Shiny31 application (available at https://carum-

carvi.shinyapps.io/pecan/) provides access to the same
functionality for a broader audience for a set of standard

models used in pharmacometric analyses.

CONCLUSIONS

The simulation/re-estimation methods are preferable over

the Delta method and the simulation approach given that
the computational effort allows their implementation. Using

bootstrapped datasets is favorable if the data are not too
sparse. Approximation of the model by linearization and the

assumption that the uncertainty of the estimates can be
described by the normal distribution are often not appropri-

ate. The pure simulation approach can be an acceptable
compromise if the parameter covariance matrix is well-
defined and parameter estimation errors are limited.

Pharmacometricians are encouraged to routinely include

the quantification of prediction uncertainty in modeling proj-
ects. Confidence and prediction intervals should be a stan-

dard element of visualizations by which model predictions
are communicated. Because model predictions are often

the key result and the basis for decision making, the confi-
dence in these predictions needs to be assessed and

shared with the stakeholders for informed decision making.
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