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Abstract

Longitudinal shape analysis has shown great potential to model anatomical processes from 

baseline to follow-up observations. Shape regression estimates a continuous trajectory of time-

discrete anatomical shapes to quantify temporal changes. The need for shape alignment and point-

to-point correspondences represent limitations of current shape analysis methodologies, and 

present significant challenges in shape evaluation. We propose a method that estimates a 

continuous trajectory of continuous medial representations (CM-Rep) from a set of time-discrete 

observed shapes. To avoid the traditional step of aligning individual objects, shape changes are 

modeled via diffeomorphic ambient space deformations. Using a medial shape representation, we 

separately capture object pose changes and intrinsic geometry changes. Tests and validation with 

synthetic and real anatomical shapes demonstrate that the new method captures extrinsic shape 

changes as well as intrinsic shape changes encoded with CM-Reps, a highly relevant property for 

studying growth and disease processes.
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1. INTRODUCTION

Increased availability of repeated longitudinal scans of individual subjects enable studies of 

spatiotemporal shape changes. Preliminary results show great potential to improve our 

understanding of anatomical changes related to growth, disease progression, or degeneration 

[1]. Challenges for longitudinal studies of anatomical objects are variability in the number of 

observations as well as time intervals of observations which encode spatiotemporal changes. 

Shape regression estimates continuous evolution of shapes from a sparse set of shapes 

distributed over time [2]. To address the importance of including multiple sources of 

geometry as a multi-object complex, ambient space regression methods have been proposed. 

These methods are based on the large deformation setting (LDDMM), where several sources 

and types of geometry contribute to the estimation of a single time-varying deformation of 

the ambient space [3, 4]. This concept overcomes limitations of traditional shape analysis 

often performed on single shapes independently, where analysis is inherently biased towards 

shape alignment. While ambient space methods account for interactions between 

neighboring structures, the momenta vectors which parametrize shape changes do not 

readily differentiate between extrinsic changes of pose and intrinsic changes of shape 
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geometry. Extrinsic and intrinsic changes are coupled and prohibit straightforward 

interpretation.

Representation of intrinsic shape properties has been widely studied by skeletonization 

methods in image processing and graphics [5]. Medial surface geometry and associated radii 

capture intrinsic shape properties, but statistical analysis is challenging depending on the 

definition of correspondence between medial surface and shape boundary [5]. In [6], the 

authors propose a fixed graph to aid statistical analysis on intrinsic shape properties. 

Continuous medial representation (CM-Rep) [7] deforms a template CM-Rep and updates its 

attached radius scalar field to match a target shape. Analysis of longitudinal data requires an 

extension of skeletonization to a 4D continuous skeleton, a concept which to our knowledge 

has not yet been presented.

In this paper, we propose geodesic shape regression of time-discrete CM-Reps to estimate a 

continuous medial surface trajectory as well as a reconstructed volumetric shape trajectory 

with an explicit radius scalar field model. The novel method estimates a model of continuous 

change of CM-Reps over time in the LDDMM setting by matching a continuous trajectory 

of CM-Rep surfaces to those from observed shapes. We demonstrate on synthetic and real 

medical data that our method captures ambient space deformations in the same manner as 

previous methods, while additionally capturing continuous intrinsic changes. This allows for 

the straight-forward interpretation and statistical analysis of the evolution of multi-object 

complexes in their natural anatomical space, a result not yet available to the research 

community.

2. METHODS

Continuous Medial Representations

For a 3D volumetric shape, X, a CM-Rep m is a parametrized continuous medial surface 

model with radius scalar field R attached on the surface [8]. X is reconstructed by a 

maximum inscribed ball (MIB) with radius R on each point of m. X can be parametrized as 

X±(u) which X+ and X− are on opposite sides of a parametrized surface m(u), where u is a 

surface parameter of m. Because m is a continuous surface, the surface of X± can be 

considered as the set of points of tangency between X(u) and MIB of m(u) and R(u),

X±(u) = m(u) + R(u)U±(u) . (1)

U± is the unit outward normal vectors on both directions of X,

U± = − ∇mR ± 1 − ∇mR 2Nm, (2)

where Nm and ∇m are a surface normal of m and gradient with respect to m, respectively. U 
is a function of m and R. X can be, therefore, defined as a function of m and R.
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At each time point ti, a CM-Rep surface mti
O and a radius scalar field Rti

O are estimated by the 

method suggested in [8] to match an observation shape Oti
. In other words, the observation 

shape Oti
 are now decomposed to CM-Rep surfaces mti

O and radius scalar fields Rti
O, which 

represent pose changes and radius changes independent from pose changes, respectively. A 

CM-Rep surface mti
O estimated to match the first observation shape Ot0

 is used as an initial 

baseline CM-Rep as a template m0 for CM-Rep shape trajectory estimation which will be 

explained in the following section. CM-Rep surface trajectory estimation also makes use of 

a set of radius scalar fields Rti
O to create reconstructed volumetric shapes with CM-Rep 

surface trajectory to show a continuous trajectory of reconstructed shapes to match with 

observations.

For implementation purposes, a CM-Rep m is represented as a surface triangular mesh with 

a fixed number of vertices. The edge information of the reconstructed shape X is copied 

from m on both sides of X± to create a surface mesh. This guarantees the surface mesh of X 
is well-defined from the medial surface mesh. Since the deformation flow of m over time is 

a flow of diffeomorphisms, the reconstructed surface mesh stays well-defined.

Geodesic CM-Rep Surface Regression

The proposed method estimates a diffeomorphic shape trajectory of CM-Rep m over time t 

from a set of observed shapes Oti
 with a CM-Rep surface mti

O and a fixed radius scalar field 

Rti
O estimated individually for each Oti

. The geodesic flow of diffeomorphisms ϕt is 

estimated at control points c on an ambient space of all mti
s. The control points c carry 

momenta vectors α which define the entire flow [4].

The energy function of a CM-Rep trajectory estimation measures the sum of distances 

between the modeled CM-Rep surface ϕti
(m0) from the trajectory and mti

O at each 

observation time point ti with a regularity term Reg(ϕt) of deformation:

E(m0, ϕt) = ∑
i = 1

Nobs
ϕti

(m0) − mti
O

W ∗

2 + Reg(ϕt), (3)

where ·

W ∗

2

 is varifold shape distance metric [9]. The varifold metric has desired 

properties which it does not require correspondence between mti
O and mti

 since it can be 
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defined on the ambient space of shapes [3]. The metric is also robust to flipped normals on 

meshes which might be present on mti
.

By optimizing Eq. 3, the geodesic flow of diffeomorphisms ϕt and also the initial baseline 

CM-Rep surface m0 are updated to match the set of observation shapes. The entire flow of 

diffeomorphisms is defined by the control points and momenta vectors on the ambient space 

of CM-Rep surfaces.

The diffeomorphic regularity term Reg(ϕt) and the formulation of the geodesic flow of 

diffeomorphisms defined by control points and momenta vectors ensure CM-Rep surfaces of 

the shape trajectory to have same topology to each other, see [4] for more details. This also 

guarantees that the reconstructed volumetric shapes of the CM-Reps have the same topology 

to each other since they are homologous to the CM-Rep surfaces.

To reconstruct a volumetric shape trajectory of the CM-Rep surface trajectory, radius scalar 

fields of the CM-Rep shape trajectory over time Rt are estimated by a linear regression 

model of the radius scalar fields of all observations Rti
. Xt is reconstructed by combining a 

CM-Rep surface trajectory ϕt(m0) and the estimated radius scalar field Rt.

It is worthwhile to note that if given only two data points, a baseline and a follow-up shape, 

the proposed method works as a geodesic shape matching method based on CM-Reps with 

shape interpolation. CM-Rep surfaces and radius scalar fields are estimated on both shapes. 

The CM-Rep surface trajectory and linearly interpolated radius fields create continuous 

interpolation in time, and the end point of the volumetric shape trajectory matches the 

follow-up shape.

3. EXPERIMENTAL RESULTS

Results of the proposed method with synthetic shapes and real anatomical data from a 

control group in the PREDICT-HD database [10] are presented to demonstrate the ability of 

the proposed method in comparison to shape regression that works directly on shape 

boundaries.

Synthetic Data

We create two synthetic examples to show the ability and feasibility of the proposed method. 

We first consider an ellipsoid as the source, and deform it to match a target putamen shape, 

which allows the synthetic example to contain significant nonlinear deformations and radius 

changes. A second example (Set 2) is created by inducing only pose changes to the synthetic 

set (Set 1) whereas the intrinsic shape properties of the two sets is identical (Fig. 1 top).

Fig. 1 shows the results using the proposed method. While the shapes change and deform 

over time, the estimated radius scalar fields are almost identical between Set 1 and Set 2, 

which were imposed in creating the synthetic example. Fig. 2 plots mean radius changes 

estimated by the proposed method and the mean magnitude of displacements between shape 

boundaries of each Set 1 (green) and Set 2 (blue). Even when volume changes are not 
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significant, the magnitude of deformation can be large due to pose changes. The deformation 

caused by pose changes is encoded on the CM-Rep surfaces as shown in the mean 

magnitude of displacements of CM-Rep surfaces. Local radius change is also traceable with 

the radius scalar fields colored on the shape surfaces.

Compared to standard geodesic shape regression methods [4] working on shape boundaries, 

the proposed method may lose accuracy regarding shape matching since it models shapes as 

reconstructed boundaries of CM-Reps with fixed topology. However, we claim that the loss 

may not be significant if we choose a proper CM-Rep template for given shapes, also 

experimentally shown by the mean and the standard deviation of shape surface distances of 

the proposed method for the synthetic example is 0.2744 ± 0.0571(mm) in the range from 

0.2176mm to 0.3403mm while the results of [4] is 0.2136 ± 0.0043(mm) from 0.2072mm to 

0.2176mm.

Regression for Normative Model of Aging

We apply our method to analyze the shape changes of caudate and putamen of the basal 

ganglia complex of subjects of a control group in PREDICT-HD Huntington’s disease (HD) 

database [10]. A CM-Rep surface trajectory is estimated for 107 baseline scans with an age 

range from 24 to 70 years old. A CM-Rep surface trajectory colored by radius scalar fields 

and a reconstructed volumetric shape trajectory are shown in the top row of Fig. 3. Pose 

change of the shape complex can be observed as the structures are pushed outward by the 

expansion of lateral ventricles with age. Such pose changes and intrinsic shape changes are 

coupled together in the deformation estimated by a shape regression method working 

directly on shape surfaces.

The proposed method decouples the pose changes and radius changes over time and captures 

intrinsic shape properties as shown in the bottom row of Fig. 3. In addition to the large pose 

change from ventricle expansion with normal aging, we also clearly capture the thinning of 

the caudate and putamen. The thinning is not readily differentiated from pose changes by 

momenta vectors only. Our model estimates such momenta vectors and shape boundaries at 

essentially the same level of accuracy of previous methods, but with the added benefit of 

trajectories of intrinsic changes (histograms such as in Fig. 3 can be viewed as an animation 

in a supplemental video). Also, point correspondences are established between the 

reconstructed shape surfaces and CM-Rep surfaces along the trajectory. Thus tracking and 

statistical analysis of local shape properties are also possible with the proposed method 

which have not been available before.

We calculated the sum of surface distances of all 107 observations to the estimated 

reconstructed volumetric shape trajectory. Observed shapes are compared to the shapes of 

the estimated trajectory at the corresponding time points. The mean of surface distances of 

the proposed method is 5.1mm and the results of [4] was 4.7mm for all observations with a 

set of four shapes. Therefore, the proposed method maintains accuracy if compared to the 

shape regression method working directly on shape surfaces while it reveals extra 

information on intrinsic shape properties of a set of shapes over time, e.g. quantifying 

locality and magnitude of intrinsic shape changes.
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4. CONCLUSIONS

This work presents a novel 4D continuous medial representation by geodesic shape 

regression for characterization of spatiotemporal shape changes. Extending the CM-Rep 

method to 4D, the medial shape model decouples temporal shape deformations into changes 

of pose and intrinsic property changes, thus overcoming limitations of current schemes 

where surface changes could not be attributed to changes of shapes themselves or mere 

motion. The strength of the proposed scheme is demonstrated by the driving clinical 

application of modeling changes of the set of subcortical structures of the human brain over 

time. Ambient space deformations of the multi-object set of shapes clearly show that these 

are affected by adjacent objects, which may lead to wrong clinical conclusions. To our 

knowledge, this is the first presentation of a continuous 4D skeleton representation for 

spatiotemporal shape analysis. Future work focuses on the development of a statistical 

framework for 4D medial analysis, and on applying the methodology to anatomical shapes 

from large-scale clinical neuroimaging studies including the PREDICT-HD Huntington’s 

disease database [10].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(Top) Two experiments (Set 1: green and Set 2: blue) of synthetic shapes which start from 

the same source shape and match target shapes which differ only in pose. (Bottom) 

Estimated shape trajectories using the proposed method, colored by radius. Radius fields of 

both pairs are nearly identical since pose changes are encoded on CM-Reps, which show 

that our method captures intrinsic changes even in the presence of additional extrinsic 

changes.
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Fig. 2. 
(Left) Mean radius measured from estimated CM-Rep trajectories of the two synthetic sets 

(Set 1: green and Set 2: blue). Intrinsic properties of the shape are captured nearly 

identically despite significant pose changes. (Right) Mean point displacement between the 

two estimated CM-Rep trajectories show large differences, with pose changes encoded on 

the CM-Rep surface. Our method is able to model both intrinsic and extrinsic properties of 

shape changes.
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Fig. 3. 
Normative model of aging. (Top) CM-Rep surfaces colored with radius scalar fields. 

Reconstructed shape complexes (mesh) are sampled from the reconstructed shape trajectory 

at age 24, 47, and 70 from left to right. The oldest 20 observations are overlaid as 

transparent gray to show the final location of the shape-complex. (Bottom) Normalized 

radius histograms of each left caudate shape from the top row. We observe that radius 

distributions tend to have a larger portion of smaller radii (thinning) with increased age. 

Gamma functions are fitted to show the change of radii distribution with age.
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