Skip to main content
. 2018 May 24;8(7):2471–2481. doi: 10.1534/g3.118.200273

Table 3. Cross-validation correlations obtained with BRR and BayesB models by trait and model.

Proportion of times that the model in row gave a higher correlation than the model in columns
CV-Correlation BRRa BayesBa
Priora Model # (label)b Averagec SDd M5 (A) M6 (A+D) M7 (G) M5 (A) M6 (A+D) M7 (G)
Late Blight
BRR M5 (A) 0.258 0.023 0.96 0.00 0.33 0.91 0.00
M6 (A+D) 0.241 0.023 0.04 0.00 0.04 0.57 0.00
M7 (G) 0.312 0.017 1.00 1.00 1.00 1.00 0.5
BayesB M5 (A) 0.260 0.024 0.67 0.96 0.00 0.94 0.00
M6 (A+D) 0.240 0.024 0.09 0.43 0.00 0.06 0.00
M7 (G) 0.313 0.017 1.00 1.00 0.50 1.00 1.00
Common Scab
BRR M5 (A) 0.268 0.025 0.81 0.99 0.1 0.55 1.00
M6 (A+D) 0.259 0.023 0.19 0.99 0.07 0.20 0.99
M7 (G) 0.218 0.022 0.01 0.01 0.00 0.02 0.63
BayesB M5 (A) 0.278 0.026 0.9 0.93 1.00 0.91 1.00
M6 (A+D) 0.265 0.025 0.45 0.8 0.98 0.09 0.98
M7 (G) 0.216 0.022 0 0.01 0.37 0.00 0.02
a

BRR uses a Gaussian prior for effects, BayesB uses a prior that has a point of mass at zero and a scaled-t slab.

b

A: Additive model, A+D: additive+dominance; G: general model (with up to 4 degrees of freedom per locus).

c

Average from 100 cross-validations.

d

Standard deviation.